
VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY

INSTITUTE OF MATHEMATICS

DUONG THI VIET AN

SUBDIFFERENTIALS OF OPTIMAL VALUE

FUNCTIONS IN PARAMETRIC CONVEX

OPTIMIZATION PROBLEMS

Speciality: Applied Mathematics

Speciality code: 9 46 01 12

SUMMARY

DOCTORAL DISSERTATION IN MATHEMATICS

HANOI - 2018



The dissertation was written on the basis of the author’s research works carried
at Institute of Mathematics, Vietnam Academy of Science and Technology.

Supervisor: Prof. Dr.Sc. Nguyen Dong Yen

First referee: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Second referee: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Third referee: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To be defended at the Jury of Institute of Mathematics, Vietnam Academy of
Science and Technology:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

on . . . . . . . . . . . . . . . . . . . . . , at . . . . . . . . . . . . o’clock . . . . . . . . . . . . . . . . . . . . . . . . . . .

The dissertation is publicly available at:

• The National Library of Vietnam

• The Library of Institute of Mathematics



Introduction

If a mathematical programming problem depends on a parameter, that is,
the objective function and the constraints depend on a certain parameter, then
the optimal value is a function of the parameter, and the solution map is a
set-valued map on the parameter of the problem. In general, the optimal value
function is a fairly complicated function of the parameter; it is often nondif-
ferentiable on the parameter, even if the functions defining the problem in
question are smooth w.r.t. all the programming variables and the parameter.
This is the reason of the great interest in having formulas for computing gener-
alized directional derivatives (Dini directional derivative, Dini-Hadarmard di-
rectional derivative, Clarke generalized directional derivative,...) and formulas
for evaluating subdifferentials (subdifferential in the sense of convex analysis,
Clarke subdifferential, Fréchet subdifferential, limiting subdifferential - also
called Mordukhovich subdifferential,...) of the optimal value function.

Studies on differentiability properties of the optimal value function and of
the solution map in parametric mathematical programming are usually classi-
fied as studies on differential stability of optimization problems.

For differentiable nonconvex programs, pioneering works are due to J. Gau-
vin and W.J. Tolle (1977), J. Gauvin and F. Dubeau (1982). The authors ob-
tained formulas for computing and estimating Dini directional derivatives and
Clarke generalized gradients of the optimal value function when the problem
data undergoes smooth perturbations. A. Auslender (1979), R.T. Rockafellar
(1982), B. Golan (1984), L. Thibault (1991), and many other authors, have
shown that similar results can be obtained for nondifferentiable nonconvex
programs. For optimization problems with inclusion constraints on Banach
spaces, differentiability properties of the optimal value function have been es-
tablished via the dual-space approach by B.S. Mordukhovich, N.M. Nam, and
N.D. Yen (2009), where it is shown that the new general results imply several
fundamental results which were obtained by the primal-space approach.

Differential stability for convex programs has been studied intensively in the
last five decades. A formula for computing the subdifferential of the optimal
value function of a standard convex mathematical programming problem with
right-hand-side perturbations, called the perturbation function, via the set of
Kuhn-Tucker vectors (i.e., the vectors of Kuhn-Tucker coefficients) was given
by R.T. Rockafellar (1970). Until now, many analogues and extensions of this
classical result have been given in the literature.

Besides the investigations on differential stability of parametric mathemati-
cal programming problems, the study on differential stability of optimal control
problems is also an issue of importance.
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According to A.E. Bryson (1996), optimal control had its origins in the cal-
culus of variations in the 17th century. The calculus of variations was devel-
oped further in the 18th by L. Euler and J.L. Lagrange and in the 19th century
by A.M. Legendre, C.G.J. Jacobi, W.R. Hamilton, and K.T.W. Weierstrass.
In 1957, R.E. Bellman gave a new view of Hamilton-Jacobi theory which he
called dynamic programming, essentially a nonlinear feedback control scheme.
E.J. McShane (1939) and L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkre-
lidze, and E.F. Mishchenko (1962) extended the calculus of variations to handle
control variable inequality constraints. The Maximum Principle was enunci-
ated by Pontryagin.

As noted by P.N.V. Tu (1984), although much pioneering work had been
carried out by other authors, Pontryagin and his associates are the first ones
to develop and present the Maximum Principle in unified manner. Their work
attracted great attention among mathematicians, engineers, economists, and
spurred wide research activities in the area.

Motivated by the recent work of B.S. Mordukhovich, N.M. Nam, and N.D.
Yen (Math. Program., 2009) on the optimal value function in parametric
programming under inclusion constraints, this dissertation focuses on differ-
ential stability of convex optimization problems. In other words, we study
differential properties of the optimal value function. Namely, we obtain some
formulas for computing the subdifferential and the singular subdifferential of
the optimal value function of infinite-dimensional convex optimization prob-
lems under inclusion constraints and of infinite-dimensional convex optimiza-
tion problems under geometrical and functional constraints. Our main tool
is Moreau–Rockafellar Theorem and appropriate regularity conditions. By
virtue of the convexity, several assumptions used in the just cited work, like
the nonemptyness of the Fréchet upper subdifferential of the objective func-
tion, the existence of a local upper Lipschitzian selection of the solution map,
as well as the µ-inner semicontinuity or the µ-inner semicompactness of the
solution map, are no longer needed. We also discuss the connection between
the subdifferentials of the optimal value function and certain multiplier sets.
Applied to parametric optimal control problems, with convex objective func-
tions and linear dynamical systems, either discrete or continuous, our results
can lead to some rules for computing the subdifferential and the singular sub-
differential of the optimal value function via the data of the given problem.

The dissertation has six chapters, a list of the related papers of the author, a
section of general conclusions, and a list of references. The first four chapters,
where some preliminaries and a series of new results on sensitivity analysis
of parametric convex programming problems under inclusion constraints are
given, constitute the first part of the dissertation. The second part is formed
by the last two chapters, where applications of the just mentioned results to
parametric convex control problems under linear constraints are carried on.

Chapter 1 collects some basic concepts from convex analysis, variational
analysis, and functional analysis needed for subsequent chapters.
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Chapter 2 presents some new results on differential stability of convex op-
timization problems under inclusion constraints in Hausdorff locally convex
topological vector spaces. The main tool is the Moreau-Rockafellar Theorem,
which can be viewed as a well-known result in convex analysis, and some ap-
propriate regularity conditions. The results obtained here lead to new facts on
differential stability of convex optimization problems under geometrical and
functional constraints.

In Chapter 3 we first establish formulas for computing the subdifferentials
of the optimal value function for parametric convex programs under three as-
sumptions: the objective function is closed, the constraint multifunction has
closed graph, and Aubin’s regularity condition is satisfied. Then, we derive
relationships between regularity conditions. Our investigations have revealed
that one cannot use Aubin’s regularity assumption in a Hausdorff locally con-
vex topological vector space setting, because the related sum rule is established
via the Banach open mapping theorem.

Chapter 4 discusses differential stability of convex programming problems
in Hausdorff locally convex topological vector spaces. Optimality conditions
for convex optimization problems under inclusion constraints and for convex
optimization problems under geometrical and functional constraints are for-
mulated here too. After establishing an upper estimate for the subdifferentials
via the Lagrange multiplier sets, we give an example to show that the upper
estimate can be strict. Then, by defining a satisfactory multiplier set, we ob-
tain formulas for computing the subdifferential and the singular subdifferential
of the optimal value function.

In Chapter 5 we first derive an upper estimate for the subdifferential of the
optimal value function of convex discrete optimal control problems in Banach
spaces. Then we present new calculus rules for computing the subdifferential
if the objective function is differentiable. The main tools of our analysis are
the formulas for computing subdifferentials of the optimal value function from
Chapter 2. We also show that the singular subdifferential of the just mention
optimal value function always consists of the origin of the dual space.

Finally, in Chapter 6, we focus on differential stability of convex continuous
optimal control problems. Namely, based on the results of Chapter 5 about
differential stability of parametric convex mathematical programming prob-
lems, we get new formulas for computing the subdifferential and the singular
subdifferential of the optimal value function. Moreover, we also describe in de-
tails the process of finding vectors belonging to the subdifferential (resp., the
singular subdifferential) of the optimal value function. Meaningful examples,
which have the origin in the book of Pontryagin et al. (1962), are designed to
illustrate our results.
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Chapter 1

Preliminaries

Several concepts and results from convex analysis, variational analysis, and
functional analysis are recalled in this chapter. Two types of parametric opti-
mization problems to be considered in the subsequent three chapters are also
presented in this chapter.

1.1 Subdifferentials

Let X, Y be Hausdorff locally convex topological vector spaces with the
topological duals denoted respectively by X∗ and Y ∗.

Definition 1.1 For a convex set Ω ⊂ X, the normal cone of Ω at x̄ ∈ Ω is
given by

N(x̄; Ω) = {x∗ ∈ X∗ | 〈x∗, x− x̄〉 ≤ 0, ∀x ∈ Ω}.

Consider a function f : X → R = [−∞,+∞] := R ∪ {−∞} ∪ {+∞} having
values in the extended real line. One says that f is proper if f(x) > −∞ for
all x ∈ X, and the domain dom f := {x ∈ X | f(x) <∞} is nonempty.

The epigraph of f is defined by epi f := {(x, α) ∈ X × R | α ≥ f(x)}. If
epi f is a convex set, then f is said to be a convex function.

Definition 1.2 Let f : X → R be a convex function. Suppose that x̄ ∈ X
and |f(x̄)| <∞.

(i) The set

∂f(x̄) = {x∗ ∈ X∗ | 〈x∗, x− x̄〉 ≤ f(x)− f(x̄), ∀x ∈ X}

is called the subdifferential of f at x̄.

(ii) The set

∂∞f(x̄) = {x∗ ∈ X∗ | (x∗, 0) ∈ N((x̄, f(x̄)); epi f)}

is called the singular subdifferential of f at x̄.

In the case where |f(x̄)| =∞, one lets ∂f(x̄) and ∂∞f(x̄) to be empty sets.
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1.2 Coderivatives

Let F : X ⇒ Y be a convex set-valued map. The graph and the domain of
F are given, respectively, by the formulas

gphF := {(x, y) ∈ X × Y | y ∈ F (x)},

domF := {x ∈ X | F (x) 6= ∅}.

Definition 1.3 The coderivative of F at (x̄, ȳ) ∈ gphF is the multifunction
D∗F (x̄, ȳ) : Y ∗ ⇒ X∗ defined by

D∗F (x̄, ȳ)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ N((x̄, ȳ); gphF )} , ∀y∗ ∈ Y ∗.

If (x̄, ȳ) /∈ gphF , then we accept the convention that the set D∗F (x̄, ȳ)(y∗) is
empty for any y∗ ∈ Y ∗.

1.3 Optimal Value Function

Consider a function ϕ : X × Y → R, a set-valued map G : X ⇒ Y between
Banach spaces. The optimal value function (or the marginal function) of the
parametric optimization problem under an inclusion constraint, defined by G
and ϕ, is the function µ : X → R, with

µ(x) := inf {ϕ(x, y) | y ∈ G(x)} . (1.1)

By the convention inf ∅ = +∞, we have µ(x) = +∞ for any x /∈ domG.

The set-valued map G (resp., the function ϕ) is called the map describing
the constraint set (resp., the objective function) of the optimization problem
on the right-hand-side of (1.1).

Corresponding to each data pair {G,ϕ} we have one optimization problem
depending on a parameter x:

min{ϕ(x, y) | y ∈ G(x)}. (1.2)

Formulas for computing or estimating the subdifferentials (the Fréchet sub-
differential, the Mordukhovich subdifferential, the singular subdifferential, and
the subdifferential in the sense of convex analysis) of the optimal value function
µ(.) are tightly connected with the solution map of (1.2). The just mentioned
solution map, denoted by M : domG ⇒ Y , is given by

M(x) := {y ∈ G(x) | µ(x) = ϕ(x, y)} (∀x ∈ domG).

By imposing the convexity requirement on (1.2), in next Chapters 2 and 3,

we need not to rely on the assumption ∂̂+ϕ(x̄, ȳ) 6= ∅ in Theorem 1 of the
paper by B.S. Mordukhovich, N.M. Nam, and N.D. Yen (Math. Program.,
2009), the condition saying that the solution map M : domG ⇒ Y has a
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local upper Lipschitzian selection at (x̄, ȳ) in Theorem 2 of the just cited
paper, as well as the sequentially normally compact property of ϕ, the µ-inner
semicontinuity or the µ-inner semicompactness conditions on the solution map
M(·) in Theorem 7 of the same article.

1.4 Problems under the Convexity

Let X and Y be Hausdorff locally convex topological vector spaces. Let
ϕ : X × Y → R be a proper convex extended-real-valued function. Given
a convex set-valued map G : X ⇒ Y , we consider the parametric convex
optimization problem under an inclusion constraint

min{ϕ(x, y) | y ∈ G(x)}. (1.3)

depending on the parameter x. The optimal value function of problem (1.3),
is the function µ : X → R, with

µ(x) := inf {ϕ(x, y) | y ∈ G(x)} . (1.4)

The solution map M : domG ⇒ Y of that problem is defined by

M(x) := {y ∈ G(x) | µ(x) = ϕ(x, y)} (∀x ∈ domG).

Proposition 1.1 Let G : X ⇒ Y be a convex set-valued map, ϕ : X ×Y → R
a convex function. Then, the function µ(.) is defined by (1.4) is convex.

In next two chapters, to obtain formulas for computing/estimating the sub-
differential of the optimal value function µ via the subdifferential of ϕ and
the coderivative of G, we will apply the following scheme, which has been
formulated clearly by Professor Truong Xuan Duc Ha in her review on this
dissertation.

Step 1. Consider the unconstrained optimization problem

µ(x) := inf
{
ϕ(x, y) + δ((x, y); gphG)

}
,

where δ(·; gphG) is the indicator function of gphG.

Step 2. Apply some known results to show that

(x∗, 0) ∈ ∂
(
ϕ+ δ(·; gphG)

)
(x̄, ȳ)

for every x∗ ∈ ∂µ(x̄) and for some ȳ ∈M(x̄).

Step 3. Employ the sum rule for subdifferentials to get

(x∗, 0) ∈ ∂ϕ(x̄, ȳ) + ∂δ((x̄, ȳ); gphG).

Step 4. Use the relationships between ∂δ((x̄, ȳ); gphG), N((x̄, ȳ); gphG) and
the definition of the coderivative in question.
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1.5 Some Facts from Functional Analysis and Convex

Analysis

Consider a continuous linear operator A : X → Y from a Banach space X
to another Banach space Y with the adjoint A∗ : Y ∗ → X∗. The null space
and the range of A are defined, respectively, by kerA = {x ∈ X | Ax = 0}
and rgeA = {y ∈ Y | y = Ax, x ∈ X}.
Proposition 1.2 (See J.F. Bonnans and A. Shapiro (2000)) The next proper-
ties are valid:
(i) (ker A)⊥ = cl∗(rge (A∗)), where cl∗(rge (A∗)) denotes the closure of the set
rge (A∗) in the weak∗ topology of X∗, and

(kerA)⊥ = {x∗ ∈ X∗ | 〈x∗, x〉 = 0 ∀x ∈ kerA}
stands for the orthogonal complement of the set kerA.
(ii) If rgeA is closed, then (kerA)⊥ = rge (A∗), and there is c > 0 such that
for every x∗ ∈ rge (A∗) there exists y∗ ∈ Y ∗ with ||y∗|| ≤ c||x∗|| and x∗ = A∗y∗.
(iii) If, in addition, rgeA = Y , i.e., A is onto, then A∗ is one-to-one and there
exists c > 0 such that ||y∗|| ≤ c||A∗y∗||, for all y∗ ∈ Y ∗.
(iv) (kerA∗)⊥ = cl(rgeA).

Suppose that A0, A1, . . . , An are convex subsets of a Hausdorff locally convex
topological vector space X and A = A0 ∩ A1 ∩ · · · ∩ An. By intAi, for i =
1, . . . , n, we denote the interior of Ai. The following two propositions and one
theorem can be found in the book “Theory of Extremal Problems” of A.D. Ioffe
and V.M. Tihomirov (1979).

Proposition 1.3 If one has

A0 ∩ (intA1) ∩ · · · ∩ (intAn) 6= ∅,
then N(x;A) = N(x;A0) +N(x;A1) + · · ·+N(x;An) for any point x ∈ A.

Proposition 1.4 If one has intAi 6= ∅ for i = 1, 2, . . . , n then, for any x0 ∈ A,
the following statements are equivalent:
(a) A0 ∩ (intA1) ∩ · · · ∩ (intAn) = ∅;
(b) There exist x∗i ∈ N(x0;Ai) for i = 0, 1, . . . , n, not all zero, such that

x∗0 + x∗1 + · · ·+ x∗n = 0.

Theorem 1.1 (The Moreau-Rockafellar Theorem) Let f1, . . . , fm be proper
convex functions on X. Then

∂(f1 + · · ·+ fm)(x) ⊃ ∂f1(x) + · · ·+ ∂fm(x)

for all x ∈ X. If, at a point x0 ∈ dom f1 ∩ · · · ∩ dom fm, all the functions
f1, . . . , fm, except, possibly, one are continuous, then

∂(f1 + · · ·+ fm)(x) = ∂f1(x) + · · ·+ ∂fm(x)

for all x ∈ X.
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Chapter 2

Differential Stability in Parametric

Convex Programming Problems

This chapter establishes some new results about differential stability of
convex optimization problems under inclusion constraints and functional con-
straints. By using a version of the Moreau-Rockafellar Theorem, which has
been recalled in Theorem 1.1, and appropriate regularity conditions, we obtain
formulas for computing the subdifferential and the singular subdifferential of
the optimal value function.

2.1 Differential Stability of Convex Optimization Prob-

lems under Inclusion Constraints

The next theorem provides us with formulas for computing the subdifferen-
tial and the singular subdifferential of µ given in (1.4).

Theorem 2.1 Let G : X ⇒ Y be a convex set-valued mapping and ϕ : X ×
Y → R a proper convex function. If at least one of the following regularity
conditions is satisfied:

(a) int(gphG) ∩ domϕ 6= ∅,
(b) ϕ is continuous at a point (x0, y0) ∈ gphG,

then for any x̄ ∈ domµ, with µ(x̄) 6= −∞, and for any ȳ ∈M(x̄) we have

∂µ(x̄) =
⋃

(x∗,y∗)∈∂ϕ(x̄,ȳ)

{
x∗ +D∗G(x̄, ȳ)(y∗)

}
and

∂∞µ(x̄) =
⋃

(x∗,y∗)∈∂∞ϕ(x̄,ȳ)

{
x∗ +D∗G(x̄, ȳ)(y∗)

}
.
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2.2 Convex Programming Problems under Functional

Constraints

Consider the problem

min {ϕ(x, y) | (x, y) ∈ C, gi(x, y) ≤ 0, i ∈ I, hj(x, y) = 0, j ∈ J} , (2.1)

in which ϕ : X × Y → R is a convex function, C ⊂ X × Y is a convex set,
I = {1, . . . ,m}, J = {1, . . . , k}, gi : X × Y → R (i ∈ I) are continuous convex
functions, and hj : X × Y → R (j ∈ J) are continuous affine functions. For
each x ∈ X, we put

G(x) = {y ∈ Y | (x, y) ∈ C, gi(x, y) ≤ 0, i ∈ I, hj(x, y) = 0, j ∈ J} . (2.2)

It clear that the set-valued map G(·) given by (2.2) is convex and

gphG = C ∩
(⋂
i∈I

Ωi

)
∩
(⋂
j∈J

Qj

)
,

where Ωi := {(x, y) | gi(x, y) ≤ 0} (i ∈ I) andQj := {(x, y) | hj(x, y) = 0} (j ∈
J) are convex sets.

Theorem 2.2 Suppose that the equality constraints hj(x, y) = 0 (j ∈ J) are
absent in (2.1). If at least one of the following regularity conditions

(a1) There exists a point (u0, v0) ∈ domϕ such that (u0, v0) ∈ intC and
gi(u

0, v0) < 0 for all i ∈ I,

(b1) ϕ is continuous at a point (x0, y0) ∈ C where gi(x
0, y0) < 0 for all i ∈ I,

is satisfied, then for any x̄ ∈ domµ, with µ(x̄) 6= −∞, and for any ȳ ∈ M(x̄)
we have

∂µ(x̄) =
⋃

(x∗,y∗)∈∂ϕ(x̄,ȳ)

{
x∗ +Q∗0

}
and

∂∞µ(x̄) =
⋃

(x∗,y∗)∈∂∞ϕ(x̄,ȳ)

{
x∗ +Q∗0

}
,

where

Q∗0 :=

{
u∗ ∈ X∗ | (u∗,−y∗) ∈ N((x̄, ȳ);C) +

∑
i∈I(x̄,ȳ)

cone ∂gi(x̄, ȳ)

}
with I(x̄, ȳ) := {i | gi(x̄, ȳ) = 0} and coneM := {tz | t ≥ 0, z ∈ M} denoting
the cone generated by M .

Theorem 2.3 For every j ∈ J , suppose that

hj(x, y) = 〈(x∗j , y∗j ), (x, y)〉 − αj, αj ∈ R.
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If ϕ is continuous at a point (x0, y0) with (x0, y0) ∈ intC, gi(x
0, y0) < 0, for

all i ∈ I and hj(x
0, y0) = 0, for all j ∈ J , then for any x̄ ∈ domµ, with

µ(x̄) 6= −∞, and for any ȳ ∈M(x̄) we have

∂µ(x̄) =
⋃

(x∗,y∗)∈∂ϕ(x̄,ȳ)

{
x∗ + Q̃∗

}
and

∂∞µ(x̄) =
⋃

(x∗,y∗)∈∂∞ϕ(x̄,ȳ)

{
x∗ + Q̃∗

}
,

where

Q̃∗ :=

{
u∗ ∈ X∗ | (u∗,−y∗) ∈ A+N((x̄, ȳ);C)

}
with A :=

∑
i∈I(x̄,ȳ)

cone ∂gi(x̄, ȳ) + span{(x∗j , y∗j ), j ∈ J}.

Chapter 3

Stability Analysis using Aubin’s

Regularity Condition

In this chapter, we obtain formulas for computing the subdifferentials of the
optimal value function for parametric convex programs under three assump-
tions: the objective function is closed; the constraint multifunction has closed
graph; and an interior regularity condition (we will call it Aubin’s regularity
condition) is satisfied.

3.1 Differential Stability under Aubin’s Regularity Con-

dition

Let G : X ⇒ Y be a convex multifunction between Banach spaces, whose
graph is closed. Let ϕ : X × Y → R be a proper, closed, convex function.
Consider the parametric optimization problem under an inclusion constraint

min {ϕ(x, y) | y ∈ G(x)} . (3.1)

Using the regularity condition

(0, 0) ∈ int(domϕ− gphG), (3.2)
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we will derive formulas for computing the subdifferential and the singular
subdifferential of the optimal value function µ : X → R of (3.1), which is
given by

µ(x) = inf{ϕ(x, y) | y ∈ G(x)}. (3.3)

Theorem 3.1 If the regularity condition (3.2) is satisfied, then for every x̄ ∈
domµ with µ(x̄) 6= −∞, and for every ȳ ∈M(x̄), we have

∂µ(x̄) =
⋃

(x∗,y∗)∈∂ϕ(x̄,ȳ)

{
x∗ +D∗G(x̄, ȳ)(y∗)

}
. (3.4)

Theorem 3.2 In addition to the assumption of Theorem 3.1, suppose that the
set domϕ is closed. Then

∂∞µ(x̄) =
⋃

(x∗,y∗)∈∂∞ϕ(x̄,ȳ)

{
x∗ +D∗G(x̄, ȳ)(y∗)

}
.

3.2 An Analysis of the Regularity Conditions

Consider an example satisfying Aubin’s regularity condition (3.2), but both
regularity conditions (a) and (b) in Theorem 2.1 are not fulfilled, whereas the
conclusion of the Theorem 3.1 holds true.

Example 3.1 Let X = Y = R2 and (x̄, ȳ) = (0, 0). Consider the optimal
value function µ(x) defined by (3.3) with ϕ0(y) = 0 if y1 = 0 and ϕ0(y) = +∞
if y1 6= 0, for every y = (y1, y2) ∈ Y, and

G(x) =

{
R× {0} if x = 0,

∅ if x 6= 0,

for every x = (x1, x2) ∈ X. Clearly, ϕ0 is a proper, closed, convex function with
domϕ0 being closed. In addition, G is a convex multifunction of closed graph.
Setting ϕ(x, y) = ϕ0(y) for all (x, y) ∈ X×Y , we have gphG = {0R2}×R×{0}
and domϕ = R2 × {0} × R. Since int(gphG) = ∅, the regularity condition
int(gphG) ∩ domϕ 6= ∅ fails to hold. Obviously, ϕ is discontinuous at any
point (x0, y0) ∈ gphG. Meanwhile, domϕ − gphG = X × Y , so (3.2) is
satisfied. It is easy to see that

µ(x) = inf {ϕ0(y) | y ∈ G(x)} =

{
0 if x = 0,

+∞ if x 6= 0.

A simple calculation shows that ∂µ(x̄) = R2 and ∂ϕ(x̄, ȳ) = {0R2} × R× {0} .
For any y∗ = (y∗1, 0) ∈ R× {0}, we have

D∗G(x̄, ȳ)(y∗) =

{
R2 if y∗1 = 0,

∅ if y∗1 6= 0.

Hence the equality (3.4) is valid.
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Proposition 3.1 If the assumption int(gphG) 6= ∅ is fulfilled, then the regu-
larity condition (a) in Theorem 2.1 is equivalent to Aubin’s regularity condi-
tion (3.2).

Proposition 3.2 If the assumption int(domϕ) 6= ∅ is satisfied, then the reg-
ularity condition (b) in Theorem 2.1 and the condition (3.2) are equivalent.

Chapter 4

Subdifferential Formulas Based on

Multiplier Sets

This chapter discusses the connection between the subdifferentials of the op-
timal value function of parametric convex mathematical programming prob-
lems under geometrical and/or functional constraints and certain multiplier
sets. Optimality conditions for convex optimization problems under inclusion
constraints and functional constraints are formulated too.

4.1 Optimality Conditions for Convex Optimization

Optimality conditions for convex optimization problems, which can be de-
rived from the calculus rules of convex analysis, have been presented in many
books and research papers. We now present some optimality conditions for
convex programs under inclusion constraints and for convex optimization prob-
lems under geometrical and functional constraints. These conditions lead to
certain Lagrange multiplier sets which are used in our subsequent differential
stability analysis of parametric convex programs. Note that Theorems 4.1 - 4.3
below are consequences of Proposition 1 on p. 81 in the book of A.D. Ioffe
and V.M. Tihomirov (1979), and the Moreau-Rockafellar Theorem (see Theo-
rem 1.1).

Let X and Y be Hausdorff locally convex topological vector spaces. Given
a convex function ϕ : X × Y → R, we denote by ∂xϕ(x̄, ȳ) (resp., ∂yϕ(x̄, ȳ))
its partial subdifferential in the first variable (resp., in the second variable)
at (x̄, ȳ). Thus, ∂xϕ(x̄, ȳ) = ∂ϕ(., ȳ)(x̄) and ∂yϕ(x̄, ȳ) = ∂ϕ(x̄, .)(ȳ), provided
that the expressions on the right-hand-sides are well defined.
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4.1.1 Problems under Inclusion Constraints

Let ϕ : X×Y → R be a proper convex function, G : X ⇒ Y a convex multi-
function between Hausdorff locally convex topological vector spaces. Consider
the parametric optimization problem under an inclusion constraint

(Px) min{ϕ(x, y) | y ∈ G(x)}

depending on the parameter x. The optimal value function µ : X → R of
problem (Px) is

µ(x) := inf {ϕ(x, y) | y ∈ G(x)} .
The usual convention inf ∅ = +∞ forces µ(x) = +∞ for every x /∈ domG.
The solution map M : domG ⇒ Y of that problem is defined by

M(x) := {y ∈ G(x) | µ(x) = ϕ(x, y)}.

The next theorems describe some necessary and sufficient optimality condi-
tions for (Px) at a given parameter x̄ ∈ X.

Theorem 4.1 Let x̄ ∈ X. Suppose that at least one of the following regularity
conditions is satisfied:

(a) intG(x̄) ∩ domϕ(x̄, .) 6= ∅,
(b) ϕ(x̄, .) is continuous at a point belonging to G(x̄).

Then, one has ȳ ∈M(x̄) if and only if

0 ∈ ∂yϕ(x̄, ȳ) +N(ȳ;G(x̄)).

Theorem 4.2 Let X, Y be Banach spaces, ϕ : X × Y → R a proper, closed,
convex function. Suppose that G : X ⇒ Y is a convex multifunction, whose
graph is closed. Let x̄ ∈ X be such that the regularity condition

0 ∈ int
(
domϕ(x̄, .)−G(x̄)

)
is satisfied. Then, ȳ ∈M(x̄) if and only if

0 ∈ ∂yϕ(x̄, ȳ) +N(ȳ;G(x̄)).

4.1.2 Problems under Geometrical and Functional Constraints

Consider the program

(P̃x) min {ϕ(x, y) | (x, y) ∈ C, gi(x, y) ≤ 0, i ∈ I, hj(x, y) = 0, j ∈ J}
depending on the parameter x, where C ⊂ X×Y is a convex set, the functions
gi : X × Y → R (i ∈ I), with I := {1, . . . ,m}, are continuous convex, hj :
X × Y → R (j ∈ J), with J := {1, . . . , k}, are continuous affine. For each
x ∈ X, we put

G(x) = {y ∈ Y | (x, y) ∈ C, g(x, y) ≤ 0, h(x, y) = 0} , (4.1)
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where

g(x, y) := (g1(x, y), . . . , gm(x, y))T , h(x, y) := (h1(x, y), . . . , hk(x, y))T .

Fix a point x̄ ∈ X and put

Cx̄ := {y ∈ Y | (x̄, y) ∈ C}. (4.2)

Theorem 4.3 If ϕ(x̄, .) is continuous at a point y0 ∈ intCx̄, gi(x̄, y
0) < 0 for

all i ∈ I and hj(x̄, y
0) = 0 for all j ∈ J , then for a point ȳ ∈ G(x̄) to be a

solution of (P̃x̄), it is necessary and sufficient that there exist λi ≥ 0, i ∈ I,
and µj ∈ R, j ∈ J, such that
(a) 0 ∈ ∂yϕ(x̄, ȳ) +

∑
i∈I
λi∂ygi(x̄, ȳ) +

∑
j∈J

µj∂yhj(x̄, ȳ) +N(ȳ;Cx̄);

(b) λigi(x̄, ȳ) = 0, i ∈ I.

4.2 Subdifferential Estimates via Multiplier Sets

The Lagrangian function corresponding to the parametric problem (P̃x) is

L(x, y, λ, µ) := ϕ(x, y) + λTg(x, y) + µTh(x, y) + δ((x, y);C),

where λ = (λ1, λ2, ..., λm) ∈ Rm and µ = (µ1, µ2, ..., µk) ∈ Rk. For each pair
(x, y) ∈ X × Y , by Λ0(x, y) we denote the set of all the multipliers λ ∈ Rm

and µ ∈ Rk with λi ≥ 0 for all i ∈ I and λi = 0 for every i ∈ I \ I(x, y), where
I(x, y) = {i ∈ I | gi(x, y) = 0}.

For a parameter x̄, the Lagrangian function corresponding to the unper-
turbed problem (P̃x̄) is

L(x̄, y, λ, µ) = ϕ(x̄, y) + λTg(x̄, y) + µTh(x̄, y) + δ((x̄, y);C). (4.3)

Denote by Λ(x̄, ȳ) the Lagrange multiplier set corresponding to an optimal

solution ȳ of problem (P̃x̄). Thus, Λ(x̄, ȳ) consists of the pairs (λ, µ) ∈ Rm×Rk

satisfying 
0 ∈ ∂yL(x̄, ȳ, λ, µ),

λigi(x̄, ȳ) = 0, i = 1, . . . ,m,

λi ≥ 0, i = 1, . . . ,m,

where ∂yL(x̄, ȳ, λ, µ) is the subdifferential of the function L(x̄, ., λ, µ) defined
by (4.3) at ȳ. It is clear that δ((x̄, y);C) = δ(y;Cx̄), where Cx̄ has been defined
by (4.2).

Theorem 4.4 Suppose that hj(x, y) = 〈(x∗j , y∗j ), (x, y)〉 − αj, αj ∈ R, j ∈ J,
and M(x̄) is nonempty for some x̄ ∈ domµ. If ϕ is continuous at a point
(x0, y0) ∈ intC, gi(x

0, y0) < 0 for all i ∈ I and hj(x
0, y0) = 0 for all j ∈ J
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then, for any ȳ ∈M(x̄), one has

∂µ(x̄) =

 ⋃
(λ,µ)∈Λ0(x̄,ȳ)

prX∗

(
∂L(x̄, ȳ, λ, µ) ∩

(
X∗ × {0}

)) , (4.4)

where ∂L(x̄, ȳ, λ, µ) is the subdifferential of the function L(., ., λ, µ) at (x̄, ȳ)
and, for any (x∗, y∗) ∈ X∗ × Y ∗, prX∗(x

∗, y∗) := x∗.

Example 4.1 Let X = Y = R, C = X × Y , ϕ(x, y) = |x + y|, m = 1, k = 0
(no equality functional constraint), g1(x, y) = y for all (x, y) ∈ X×Y . Choose
x̄ = 0, ȳ = 0, and note that M(x̄) = {ȳ}. We have Λ0(x̄, ȳ) = [0,∞) and
L(x, y, λ) = ϕ(x, y) + λy. We also have

∂ϕ(x̄, ȳ) = co
{
(1, 1)T , (−1,−1)T

}
.

Since ∂L(x̄, ȳ, λ) = ∂ϕ(x̄, ȳ) + {(0, λ)}, by (4.4) we can compute

∂µ(x̄) =

 ⋃
λ∈Λ0(x̄,ȳ)

prX∗

(
∂L(x̄, ȳ, λ) ∩

(
X∗ × {0}

))
= prX∗

( ⋃
λ∈Λ0(x̄,ȳ)

∂L(x̄, ȳ, λ)

)
∩
(
X∗ × {0}

)
= prX∗

{[
co
{
(1, 1)T , (−1,−1)T

}
+
(
{0} × R+

)]
∩
(
X∗ × {0}

)}
= [−1, 0].

To verify this result, observe that

µ(x) = inf {|x+ y| | y ≤ 0} =

{
0, if x ≥ 0,

−x, if x < 0.

So we find ∂µ(x̄) = [−1, 0], justifying (4.4) for the problem under considera-
tion.

Theorem 4.5 Under the assumptions of Theorem 4.4, one has

∂µ(x̄) ⊂
⋃

(λ,µ)∈Λ(x̄,ȳ)

∂xL(x̄, ȳ, λ, µ), (4.5)

where ∂xL(x̄, ȳ, λ, µ) stands for the subdifferential of L(., ȳ, λ, µ) at x̄.

The next example shows that the inclusion in Theorem 4.5 can be strict.

Example 4.2 Let X = Y = R, C = X × Y , ϕ(x, y) = |x + y|, m = 1, k = 0
(no equality functional constraint), g1(x, y) = y for all (x, y) ∈ X×Y . Choose
x̄ = 0, ȳ = 0, and note that M(x̄) = {ȳ}. We have L(x, y, λ) = ϕ(x, y) + λy
and

Λ(x̄, ȳ) = {λ ≥ 0 | 0 ∈ ∂yL(x̄, ȳ, λ)} = [0, 1].

15



As in Example 4.1, one has ∂µ(x̄) = [−1, 0]. We now compute the right-hand-
side of (4.5). By simple computation, we can easily obtain ∂xL(x̄, ȳ, λ) =
[−1, 1] for all λ ∈ Λ(x̄, ȳ). Then

⋃
λ∈Λ(x̄,ȳ)

∂xL(x̄, ȳ, λ) = [−1, 1]. Therefore, in

this example, inclusion (4.5) is strict.

4.3 Computation of the Singular Subdifferential

First, we observe that x ∈ domµ if and only if µ(x) = inf{ϕ(x, y) | y ∈
G(x)} <∞, with G(x) being given by (4.1). Since the strict inequality holds
if and only if there exists y ∈ G(x) with (x, y) ∈ domϕ, we have

δ(x; domµ) = inf{δ((x, y); domϕ) | y ∈ G(x)}.
To compute the singular subdifferential of µ(.), let us consider the minimiza-
tion problem(

P̂x
) {

δ((x, y); domϕ)→ inf

subject to (x, y) ∈ C, gi(x, y) ≤ 0, i ∈ I, hj(x, y) = 0, j ∈ J.

The Lagrangian function corresponding to (P̂x) is

L̂(x, y, λ, µ)=δ((x, y); domϕ) + λTg(x, y) + µTh(x, y) + δ((x, y);C),

where λ = (λ1, λ2, ..., λm) ∈ Rm, µ = (µ1, µ2, ..., µk) ∈ Rk.

Theorem 4.6 Under the hypotheses of Theorem 4.4, for any ȳ ∈ M(x̄), one
has

∂∞µ(x̄) =

 ⋃
(λ,µ)∈Λ0(x̄,ȳ)

prX∗

(
∂L̂(x̄, ȳ, λ, µ) ∩

(
X∗ × {0}

)) ,

where

∂L̂(x̄, ȳ, λ, µ) = ∂∞ϕ(x̄, ȳ) +
∑

i∈I(x̄,ȳ)

λi∂gi(x̄, ȳ) +
∑
j∈J

µj∂hj(x̄, ȳ)

+N((x̄, ȳ);C)

is the subdifferential of the function L̂(., ., λ, µ) at (x̄, ȳ), provided that a pair
(λ, µ) ∈ Λ0(x̄, ȳ) has been chosen.

Next, denote by Λ∞(x̄, ȳ) the singular Lagrange multiplier set corresponding

to an optimal solution ȳ of problem (P̂x̄), which consists of the pairs (λ, µ) ∈
Rm × Rk satisfying 

0 ∈ ∂yL̂(x̄, ȳ, λ, µ),

λigi(x̄, ȳ) = 0, i = 1, . . . ,m,

λi ≥ 0, i = 1, . . . ,m.
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Theorem 4.7 Under the assumptions of Theorem 4.4, for any ȳ ∈M(x̄), one
has

∂∞µ(x̄) ⊂
⋃

(λ,µ)∈Λ∞(x̄,ȳ)

∂xL̂(x̄, ȳ, λ, µ),

where ∂xL̂(x̄, ȳ, λ, µ) stands for the subdifferential of L̂(., ȳ, λ, µ) at x̄.

Chapter 5

Stability Analysis of Convex Discrete

Optimal Control Problems

In this chapter we present some new results on differential stability of convex
discrete optimal control problems. The main tools of our analysis are the
formulas for computing subdifferentials of the optimal value function from
Chapter 2.

5.1 Control Problem

Let Xk, Uk, Wk, for k = 0, 1, . . . , N − 1, and XN be Banach spaces, where
N is a positive natural number. Let there be given

- convex sets Ω0 ⊂ U0, . . . ,ΩN−1 ⊂ UN−1, and C ⊂ X0;

- continuous linear operators Ak : Xk → Xk+1, Bk : Uk → Xk+1, Tk : Wk →
Xk+1, for k = 0, 1, . . . , N − 1;

- functions hk : Xk×Uk×Wk → R, for k = 0, 1, . . . , N−1, and hN : XN → R,
which are convex.

Put W = W0×W1×· · ·×WN−1. For every vector w = (w0, w1, . . . , wN−1) ∈
W , consider the following convex discrete optimal control problem: Find a pair
(x, u) where x = (x0, x1, . . . , xN) ∈ X0 × X1 × · · · × XN is a trajectory and
u = (u0, u1, . . . , uN−1) ∈ U0 × U1 × · · · × UN−1 is a control sequence, which
minimizes the objective function

N−1∑
k=0

hk(xk, uk, wk) + hN(xN) (5.1)

and satisfies xk+1 = Akxk + Bkuk + Tkwk, k = 0, 1, . . . , N − 1, the initial
condition x0 ∈ C, and the control constraints

uk ∈ Ωk ⊂ Uk, k = 0, 1, . . . , N − 1. (5.2)
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Put X = X0 × X1 × · · · × XN , U = U0 × U1 × · · · × UN−1. For every
parameter w = (w0, w1, . . . , wN−1) ∈ W , denote by V (w) the optimal value
of problem (5.1)–(5.2), and by S(w) the solution set of that problem. The
extended real-valued function V : W → R is called the optimal value function
of problem (5.1)–(5.2). It is assumed that V is finite at a certain parameter
w̄ = (w̄0, w̄1, . . . , w̄N−1) ∈ W and (x̄, ū) is a solution of (5.1)–(5.2), that is
(x̄, ū) ∈ S(w̄) where x̄ = (x̄0, x̄1, . . . , x̄N), ū = (ū0, ū1, . . . , ūN−1).

For each w = (w0, w1, . . . , wN−1) ∈ W , let

f(x, u, w) =
N−1∑
k=0

hk(xk, uk, wk) + hN(xN).

Then, setting Ω = Ω0 × Ω1 × · · · × ΩN−1, X̃ = X1 ×X2 × · · · ×XN , and

G(w) = {(x, u) ∈ X × U |xk+1 = Akxk +Bkuk + Tkwk, k = 0, 1, . . . , N − 1},
we have

V (w) = inf
(x,u)∈G(w)∩(C×X̃×Ω)

f(x, u, w).

5.2 Differential Stability of the Parametric Mathemat-

ical Programming Problem

Suppose that X, W and Z are Banach spaces with the dual spaces X∗,
W ∗ and Z∗, respectively. Assume that M : Z → X and T : W → X are
continuous linear operators. Let M ∗ : X∗ → Z∗ and T ∗ : X∗ → W ∗ be the
adjoint operators of M and T , respectively. Let f : W × Z → R be a convex
function and Ω a convex subset of Z with nonempty interior. For each w ∈ W ,
put H(w) =

{
z ∈ Z |Mz = Tw

}
and consider the optimization problem

min{f(z, w) | z ∈ H(w) ∩ Ω}. (5.3)

We want to compute the subdifferential and the singular subdifferential of the
optimal value function

h(w) := inf
z∈H(w)∩Ω

f(z, w) (5.4)

of the parametric problem (5.3). Denote by Ŝ(w) the solution set of (5.3).

Define the linear operator Φ : W ×Z → X by setting Φ(w, z) = −Tw+Mz
for all (w, z) ∈ W × Z.

Lemma 5.1 For each (w̄, z̄) ∈ gphH, one has

N
(
(w̄, z̄); gphH

)
= cl∗

{
(−T ∗x∗,M ∗x∗) |x∗ ∈ X∗

}
.

Moreover, if Φ has closed range, then

N
(
(w̄, z̄); gphH

)
=
{
(−T ∗x∗,M ∗x∗) |x∗ ∈ X∗

}
. (5.5)

In particular, if Φ is surjective, then (5.5) is valid.
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Lemma 5.2 If Φ has closed range and kerT ∗ ⊂ kerM ∗, then one has for each
(w̄, z̄) ∈ gphH the equality

N
(
(w̄, z̄); (W × Ω) ∩ gphH

)
= {0} ×N(z̄; Ω) +N

(
(w̄, z̄); gphH

)
.

Theorem 5.1 Suppose that Φ has closed range and kerT ∗ ⊂ kerM ∗. If the
optimal value function h in (5.4) is finite at w̄ ∈ dom Ŝ and f is continuous
at (w̄, z̄) ∈ (W × Ω) ∩ gphH, then

∂h(w̄) =
⋃

(w∗,z∗)∈∂f(z̄,w̄)

⋃
v∗∈N(z̄;Ω)

[
w∗ + T ∗

(
(M ∗)−1(z∗ + v∗)

)]
and

∂∞h(w̄) =
⋃

(w∗,z∗)∈∂∞f(z̄,w̄)

⋃
v∗∈N(z̄;Ω)

[
w∗ + T ∗

(
(M ∗)−1(z∗ + v∗)

)]
,

where
(
M ∗)−1(z∗ + v∗) = {x∗ ∈ X∗ |M ∗x∗ = z∗ + v∗}.

Theorem 5.2 Under the assumptions of Theorem 5.1, suppose additionally
that the function f is Fréchet differentiable at (z̄, w̄). Then

∂h(w̄) =
⋃

v∗∈N(z̄;Ω)

[
∇wf(z̄, w̄) + T ∗

(
(M ∗)−1(∇zf(z̄, w̄) + v∗)

)]
,

where ∇zf(z̄, w̄) and ∇wf(z̄, w̄), respectively, stand for the Fréchet derivatives
of f(·, w̄) at z̄ and of f(z̄, ·) at w̄.

5.3 Differential Stability of the Control Problem

In the notation of Section 5.1, put Z = X × U and K = C × X̃ × Ω and
note that V (w) can be expressed as V (w) = inf

z∈G(w)∩K
f(z, w), where G(w) ={

z = (x, u) ∈ Z |Mz = Tw
}

with M : Z → X̃ and T : W → X̃ being defined,
respectively, by

Mz=


−A0 I 0 0 . . . 0 0 −B0 0 0 . . . 0
0 −A1 I 0 . . . 0 0 0 −B1 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 . . . −AN−1 I 0 0 0 . . . −BN−1





x0

x1
...
xN
u0

u1
...
uN−1


,

Tw =


T0w0

T1w1
...
TN−1wN−1

 .
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Then problem (5.1)–(5.2) reduces to the mathematical programming prob-

lem (5.3). For every x̃∗ = (x̃∗1, x̃
∗
2, ..., x̃

∗
N) ∈ X̃∗, one has

T ∗x̃∗ =
(
T ∗0 x̃

∗
1, T

∗
1 x̃
∗
2, · · · , T ∗N−1x̃

∗
N

)
∈ W ∗ = W ∗

0 ×W ∗
1 × · · · ×W ∗

N−1

and

M ∗x̃∗ =



−A∗0 0 0 . . . 0
I −A∗1 0 . . . 0
0 I . . . 0
...

...
...

...
...

0 0 0 . . . −A∗N−1

0 0 0 . . . I
−B∗0 0 0 . . . 0
0 −B∗1 0 . . . 0
...

...
...

...
...

0 0 0 . . . −B∗N−1




x̃∗1
x̃∗2
...
x̃∗N

 .

Theorem 5.3 Suppose that hk, k = 0, 1, . . . , N , are continuous and the inte-
riors of Ωk, for k = 0, 1, . . . , N − 1, are nonempty. Suppose in addition that
the following conditions are satisfied:

(i) kerT ∗ ⊂ kerM ∗;

(ii) The operator Φ : W × Z → X̃ defined by Φ(w, z) = −Tw + Mz has
closed range.
If a vector w̃∗ = (w̃∗0, w̃

∗
1, . . . , w̃

∗
N−1) ∈ ∂V (w̄) then there exist vectors x∗0 ∈

N(x̄0;C), x̃∗ = (x̃∗1, x̃
∗
2, . . . , x̃

∗
N) ∈ X̃∗, and u∗ = (u∗0, u

∗
1, . . . , u

∗
N−1) ∈ N(ū; Ω),

such that 

x̃∗N ∈ ∂hN(x̄N),

x̃∗k ∈ ∂xkhk(x̄k, ūk, w̄k) + A∗kx̃
∗
k+1, k = 1, 2, ..., N − 1,

x∗0 ∈ −∂x0h0(x̄0, ū0, w̄0)− A∗0x̃∗1,
u∗k ∈ −∂ukhk(x̄k, ūk, w̄k)−B∗kx̃∗k+1, k = 0, 1, ..., N − 1,

w̃∗k ∈ ∂wk
hk(x̄k, ūk, w̄k) + T ∗k x̃

∗
k+1, k = 0, 1, ..., N − 1.

Theorem 5.4 Under the assumptions of Theorem 5.3, suppose additionally
that the functions hk, for k = 0, 1, . . . , N , are Fréchet differentiable. Then,
w̃∗ = (w̃∗0, w̃

∗
1, . . . , w̃

∗
N−1) ∈ W ∗ belongs to ∂V (w̄) if and only if there exist x∗0 ∈

N(x̄0;C), x̃∗ = (x̃∗1, x̃
∗
2, . . . , x̃

∗
N) ∈ X̃∗, and u∗ = (u∗0, u

∗
1, . . . , u

∗
N−1) ∈ N(ū; Ω)

such that
x̃∗N = ∇hN(x̄N),
x̃∗k = ∇xkhk(x̄k, ūk, w̄k) + A∗kx̃

∗
k+1, k = 1, 2, . . . , N − 1,

x∗0 = −∇x0h0(x̄0, ū0, w̄0)− A∗0x̃∗1,
u∗k = −∇ukhk(x̄k, ūk, w̄k)−B∗kx̃∗k+1, k = 0, 1, . . . , N − 1,
w̃∗k = ∇wk

hk(x̄k, ūk, w̄k) + T ∗k x̃
∗
k+1, k = 0, 1, . . . , N − 1.
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Theorem 5.5 Under the assumptions of Theorem 5.3, we have

∂∞V (w̄) = {0W ∗}.

Chapter 6

Stability Analysis of Convex

Continuous Optimal Control Problems

In this chapter we develop the approach of N.T. Toan and L.Q. Thuy (2016)
to deal with constrained control problems. Namely, based on the result of Chap-
ter 5 about differential stability of parametric convex mathematical program-
ming problems, we will get new formulas for computing the subdifferential and
the singular subdifferential of the optimal value function. The computation
procedures and illustrative examples are presented in the dissertation.

6.1 Problem Setting and Auxiliary Results

LetW 1,p([0, 1],Rn), 1 ≤ p <∞, be the Sobolev space consisting of absolutely
continuous functions x : [0, 1] → Rn such that ẋ ∈ Lp([0, 1],Rn). Let there be
given

- matrix-valued functions A(t) = (aij(t))n×n, B(t) = (bij(t))n×m, and C(t) =
(cij(t))n×k;

- real-valued functions g : Rn → R and L : [0, 1]× Rn × Rm × Rk → R;

- a convex set U ⊂ Lp([0, 1],Rm);

- a pair of parameters (α, θ) ∈ Rn × Lp([0, 1],Rk).
Put

X = W 1,p([0, 1],Rn), U = Lp([0, 1],Rm), Z = X × U,
Θ = Lp([0, 1],Rk), W = Rn ×Θ.

Consider the constrained fixed time optimal control problem which depends
on a pair of parameters (α, θ): Find a pair (x, u), where x ∈ W 1,p([0, 1],Rn) is
a trajectory and u ∈ Lp([0, 1],Rm) is a control function, which minimizes the
objective function

g(x(1)) +

∫ 1

0

L(t, x(t), u(t), θ(t))dt (6.1)
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and satisfies the linear ordinary differential equation

ẋ(t) = A(t)x(t) +B(t)u(t) + C(t)θ(t) a.e. t ∈ [0, 1], (6.2)

the initial value

x(0) = α, (6.3)

and the control constraint

u ∈ U . (6.4)

It is well known that X, U, Z, and Θ are Banach spaces. For each w =
(α, θ) ∈ W , denote by V (w) and S(w), respectively, the optimal value and the
solution set of (6.1)–(6.4). We call V : W → R the optimal value function of
problem in question. If for each w = (α, θ) ∈ W we put

J(x, u, w) = g(x(1)) +

∫ 1

0

L(t, x(t), u(t), θ(t))dt,

G(w) =
{
z = (x, u) ∈ X × U | (6.2) and (6.3) are satisfied

}
,

and

K = X × U ,
then problem (6.1)–(6.4) can be written formally as min{J(z, w) | z ∈ G(w)∩
K}, and

V (w) = inf{J(z, w) | z = (x, u) ∈ G(w) ∩K}. (6.5)

It is assumed that V is finite at w̄ = (ᾱ, θ̄) ∈ W and (x̄, ū) is a solution of
the corresponding problem, that is (x̄, ū) ∈ S(w̄).

Consider the following assumptions:

(A1) The matrix-valued functions A : [0, 1]→Mn,n(R), B : [0, 1]→Mn,m(R),
and C : [0, 1]→Mn,k(R), are measurable and essentially bounded.

(A2) The functions g : Rn → R and L : [0, 1] × Rn × Rm × Rk → R are
such that g(·) is convex and continuously differentiable on Rn, L(·, x, u, v)
is measurable for all (x, u, v) ∈ Rn × Rm × Rk, L(t, ·, ·, ·) is convex and
continuously differentiable on Rn×Rm×Rk for almost every t ∈ [0, 1], and
there exist constants c1 > 0, c2 > 0, r ≥ 0, p ≥ p1 ≥ 0, p − 1 ≥ p2 ≥ 0,
and a nonnegative function w1 ∈ Lp([0, 1],R), such that

|L(t, x, u, v)| ≤ c1

(
w1(t) + ||x||p1 + ||u||p1 + ||v||p1

)
,

max
{
|Lx(t, x, u, v)|, |Lu(t, x, u, v)|, |Lv(t, x, u, v)|

}
≤ c2

(
||x||p2 + ||u||p2 + ||v||p2

)
+ r,

for all (t, x, u, v) ∈ [0, 1]× Rn × Rm × Rk.
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6.2 Differential Stability of the Control Problem

Let

ΨA : Lq([0, 1],Rn)→ R, ΨB : Lq([0, 1],Rn)→ Lq([0, 1],Rm),

ΨC : Lq([0, 1],Rn)→ Lq([0, 1],Rk), Ψ : Lq([0, 1],Rn)→ Lq([0, 1],Rn)

be defined by

ΨA(v) =

∫ 1

0

AT (t)v(t)dt, ΨB(v)(t) = −BT (t)v(t) a.e. t ∈ [0, 1],

ΨC(v)(t) = CT (t)v(t) a.e. t ∈ [0, 1], Ψ(v) = −
∫ (.)

0

AT (τ)v(τ)dτ.

We will employ the following two assumptions.

(A3) Suppose that

ker ΨC ⊂
(
ker ΨA ∩ ker ΨB ∩ FixΨ

)
,

where FixΨ := {x ∈ X | Ψ(x) = x} is the set of the fixed points of Ψ , and
ker ΨA (resp., ker ΨB, ker ΨC) denotes the kernel of ΨA (resp., ΨB, ΨC).

(A4) The operator Φ : W × Z → X, which is given by

Φ(w, z) = x−
∫ (.)

0

A(τ)x(τ)dτ −
∫ (.)

0

B(τ)v(τ)dτ − α−
∫ (.)

0

C(τ)θ(τ)dτ

for every w = (α, θ) ∈ W and z = (x, v) ∈ Z, has closed range.

The assumption (H3) in Toan and Thuy (2016) can be stated as follows

(A5) There exists a constant c3 > 0 such that, for every v ∈ Rn,

||CT (t)v|| ≥ c3||v|| a.e. t ∈ [0, 1].

Proposition 6.1 If (A5) is satisfied, then (A3) and (A4) are fulfilled.

Theorem 6.1 Suppose that the optimal value function V in (6.5) is finite at
w̄ = (ᾱ, θ̄), intU 6= ∅, and (A1) − (A4) are fulfilled. In addition, suppose
that problem (6.1)–(6.4), with w̄ = (ᾱ, θ̄) playing the role of w = (α, θ), has a
solution (x̄, ū). Then, a vector (α∗, θ∗) ∈ Rn×Lq([0, 1],Rk) belongs to ∂ V (ᾱ, θ̄)
if and only if

α∗ = g′(x̄(1)) +

∫ 1

0

Lx(t, x̄(t), ū(t), θ̄(t))dt−
∫ 1

0

AT (t)y(t)dt,

θ∗(t) = −CT (t)y(t) + Lθ(t, x̄(t), ū(t), θ̄(t)) a.e. t ∈ [0, 1],
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where y ∈ W 1,q([0, 1],Rn) is the unique solution of the system{
ẏ(t) + AT (t)y(t) = Lx(t, x̄(t), ū(t), θ̄(t)) a.e. t ∈ [0, 1],

y(1) = −g′(x̄(1)),

such that the function u∗ ∈ Lq([0, 1],Rm) defined by

u∗(t) = BT (t)y(t)− Lu(t, x̄(t), ū(t), θ̄(t)) a.e. t ∈ [0, 1]

satisfies the condition u∗ ∈ N(ū;U).

Theorem 6.2 Suppose that all the assumptions of Theorem 6.1 are satisfied.
Then, a vector (α∗, θ∗) ∈ Rn × Lq([0, 1],Rk) belongs to ∂∞V (w̄) if and only if

α∗ =
∫ 1

0 A
T (t)v(t)dt, θ∗(t) = CT (t)v(t) a.e. t ∈ [0, 1], where v ∈ W 1,q([0, 1],Rn)

is the unique solution of the system{
v̇(t) = −AT (t)v(t) a.e. t ∈ [0, 1],

v(0) = α∗,

such that the function u∗ ∈ Lq([0, 1],Rm) given by u∗(t) = −BT (t)v(t) a.e. t ∈
[0, 1] belongs to N(ū,U).

General Conclusions

The main results of this dissertation include:

1) Formulas for computing or estimating the subdifferential and the singular
subdifferential of the optimal value function of parametric convex mathemat-
ical programming problems under inclusion constraints;

2) Formulas showing the connection between the subdifferentials of the opti-
mal value function of parametric convex mathematical programming problems
under geometrical and/or functional constraints and certain multiplier sets;

3) Formulas for computing the subdifferential and the singular subdifferen-
tial of the optimal value function of convex optimal control problems under
linear constraints via the problem data.
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