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Abstract. In this paper we prove that the errors committed at each iteration of the

solution process for biharmonic type equation do not accumulate or exaggerate. Hence,

for obtaining an approximate solution of BVP for biharmonic type equation we can

use approximate methods at iterations.

1. Introduction

For solving boundary value problems (BVPs) in geometrically complicated do-
mains - a direction of research intensively developed in two recent decades, many
authors have proposed domain decomposition methods for reducing the original
problems to a sequence of problems in simple domains (see e.g. [2, 4, 10, 12,
13, 15]). The convergence of the iterative processes on continuous level is estab-
lished. Another class of BVPs is also lead to a sequence of BVPs for second order
differential equations. They are BVPs for biharmonic type equation. Several re-
searchers proposed iterative methods for reducing BVPs for high order equations
to the solution of second order problems with the aim to use wealthy available
efficient algorithms for the latter ones (see e.g. [1, 3, 5 - 9, 14]). But an impor-
tant problem that has not evolved in the above mentioned iterative processes,
where at each iteration the simpler BVPs should be solved, is the accumulation
of errors committed in the approximate solution of the second order problems
at iterations. It means that whether we will obtain a good approximate solution
of the original problem if at each iteration we have only approximate solution of

∗This work was supported by the National Basic Research Program in Natural Science Vietnam



138 Dang Quang A

the reduced problems.
In this paper we prove that the errors committed at each iteration of the

solution process for biharmonic type equation do not accumulate or exagger-
ate. Hence, for obtaining an approximate solution of BVP for biharmonic type
equation we can use approximate methods at iterations.

2. Recalling an Iterative Process for Biharmonic Equation

For simplicity of presentation, we shall consider below the iterative process for
the Dirichlet problem for biharmonic equation

Δ2u = f(x), x ∈ Ω, (1)

u|Γ = 0,
∂u

∂ν

∣∣∣
Γ
= 0, (2)

where Δ is the Laplace operator, Ω is a bounded domain in the m-dimensional
Euclidean space Rm with Lipschitz boundary Γ, ν is the outward normal to Γ.
This problem is a particular case of the equation Δ2u−aΔu+bu = f considered
in [5] when a = b = 0. The approximate solution of Problem (1), (2) is obtained
by extrapolation of the solutions of the problems

Δ2uδ = f(x), x ∈ Ω, (3)

uδ|Γ = 0,
(
δΔuδ +

∂uδ

∂ν

)∣∣∣
Γ
= 0, (4)

where δ > 0 is a small parameter. With the help of the operator B defined on
boundary functions v0 by the formula

Bv0 =
∂u

∂ν

∣∣∣
Γ
, (5)

where u is found from the problems
Δv = 0, x ∈ Ω, v|Γ = v0,
Δu = v, x ∈ Ω, u|Γ = 0, (6)

the perturbed problem (3)–(4) is reduced to the operator equation

(B + δI)vδ0 = F (7)

for
vδ0 = Δuδ|Γ. (8)

Here F is given by the formula

F = −∂u2

∂ν

∣∣∣
Γ
, (9)

u2 being the solution of the problem
Δv2 = f, x ∈ Ω, v2|Γ = 0,
Δu2 = v2, x ∈ Ω, u2|Γ = 0. (10)
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For solving Problem (3)–(4) we use the following iterative process, where for
brief the index δ of uδ is omitted.

Step 1. Given a starting approximation v(0)
0 , for example,

v
(0)
0 = 0. (11)

Step 2. Knowing v(k)
0 (k = 0, 1, ...) solve consecutively two problems

Δv(k) = f, x ∈ Ω, v(k)|Γ = v
(k)
0 ,

Δu(k) = v(k), x ∈ Ω, u(k)|Γ = 0.
(12)

Step 3. Compute
∂u(k)

∂ν

∣∣∣
Γ
. (13)

Step 4. Compute the new approximation

v
(k+1)
0 = v

(k)
0 − τ

(∂u(k)

∂ν

∣∣∣
Γ
+δv(k)

0

)
, (14)

where τ is the iterative parameter, whose optimal value is 2/(2δ + ‖B‖).
The above iterative process is a realization of the iterative scheme

v
(k+1)
0 − v

(k)
0

τ
+ (B + δI)v(k)

0 = F (15)

for Equation (7). In [5] it is proved that this process is convergent with the rate
of geometric progression.

3. Problem of Error Accumulation

Suppose that in the performance of the iterative process (11)–(14) at each itera-
tion k knowing the actual approximation ṽ(k)

0 of v(k)
0 after approximately solving

the problems (12) we get ṽ(k), ũ(k) instead of v(k), u(k), that is

Δṽ(k) = f + ξ(k), x ∈ Ω, ṽ(k)|Γ = ṽ
(k)
0 + ϕ(k),

Δũ(k) = ṽ(k) + η(k), x ∈ Ω, ũ(k)|Γ = ψ(k).
(16)

where ξ(k), ϕ(k), η(k), ψ(k) are errors of the approximate method for solving (12).
Furthermore, we assume that these errors do not exceed a prescribed ε,

namely,
‖ξ(k)‖L2(Ω) ≤ ε, ‖ϕ(k)‖H3/2(Γ) ≤ ε,

‖η(k)‖L2(Ω) ≤ ε, ‖ψ(k)‖H3/2(Γ) ≤ ε,
(17)

where Hs(Γ) is a Sobolev space.
Denote by ζ(k) the error committed in computing of the derivative ∂ũ(k)

∂ν ,which
also is assumed not exceed ε, i.e.

‖ζ(k)‖H1/2(Γ) ≤ ε. (18)

Therefore, the actual approximation ṽ(k+1)
0 of v0 at the iteration k satisfies the

relation
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ṽ
(k+1)
0 = ṽ

(k)
0 − τ

(∂ũ(k)

∂ν
+ δṽ

(k)
0 + ζ(k)

)
, (19)

which is equivalent to
ṽ
(k+1)
0 − ṽ

(k)
0

τ
+
∂ũ(k)

∂ν
+ δṽ

(k)
0 = −ζ(k) (20)

Next we denote by v̄(k) and ū(k) the solutions of the problems

Δv̄(k) = f, x ∈ Ω, v̄(k)|Γ = ṽ
(k)
0 ,

Δū(k) = v̄(k), x ∈ Ω, ū(k)|Γ = 0.
(21)

Then from (16) and (21) we have

Δ(ṽ(k) − v̄(k)) = ξ(k), x ∈ Ω, (ṽ(k) − v̄(k))|Γ = ϕ(k),

Δ(ũ(k) − ū(k)) = (ṽ(k) − v̄(k)) + η(k), x ∈ Ω, (ũ(k) − ū(k))|Γ = ψ(k).

Using the estimate for the solution of the above Dirichlet problems [11] and
taking into account (17) we obtain

‖ũ(k) − ū(k)‖H2(Ω) ≤ C1ε,

where and hereafter Ci (i = 1, 2, ...) are constants independent of k.
By the well-known imbedding theorem [11]

∥∥∥∂u
∂ν

∥∥∥
H1/2(Γ)

≤ C2‖u‖H2(Ω), ∀u ∈ H2(Ω)

we have ∥∥∥∂ũ
(k)

∂ν
− ∂ū(k)

∂ν

∥∥∥
H1/2(Γ)

≤ C1C2ε (22)

From the definition of the operator B (5)–(6) and from (21) it follows that

Bṽ
(k)
0 = F +

∂ū(k)

∂ν
,

where F is given by (9)–(10).
Taking into account the above equality from (20) we get

ṽ
(k+1)
0 − ṽ

(k)
0

τ
+ (B + δI)ṽ(k)

0 = F + θ(k), (23)

where

θ(k) = ζ(k) −
(∂ũ(k)

∂ν
− ∂ū(k)

∂ν

)
.

Hence, using the estimates (18) and (22) we obtain

‖θ(k)‖H1/2(Γ) ≤ (1 + C1C2)ε. (24)

Now, we shall estimate the deviation of ṽ(k+1)
0 from v

(k+1)
0 exactly computed by

the algorithm (11)–(14). For this reason we set

z(k+1) = ṽ
(k+1)
0 − v

(k+1)
0 . (25)

From (15) and (23) it follows that
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z(k+1) − z(k)

τ
+ (B + δI)z(k) = θ(k).

Consequently,
z(k+1) = (I − τBδ)z(k) + τθ(k), (26)

where Bδ = B + δI. Since B = B∗ > 0 (see [5]) we have Bδ = B∗
δ ≥ δI. Hence,

it is possible to choose τ such that ‖I− τBδ‖ ≤ ρ < 1. Then from (26) it follows
that

‖z(k+1)‖H1/2(Γ) ≤ ρ‖z(k)‖H1/2(Γ) + C3τε

Due to z(0) = 0 we have

‖z(k+1)‖H1/2(Γ) ≤
C3τ

1 − ρ
ε (27)

From the representation

ṽ
(k+1)
0 − v0 = v

(k+1)
0 − v0 + z(k+1)

using (27) we obtain

‖v(k+1)
0 − v0‖H1/2(Γ) ≤ ‖v(k+1)

0 − v0‖H1/2(Γ) + C4ε (28)

Next we estimate ũ(k) − u, where u is the exact solution of Problem (3)–(4)
and ũ(k) is the actual approximate solution obtained by the algorithm (11)-(14).
From (12) and (16) we have

Δ(ṽ(k) − v(k)) = ξ(k), x ∈ Ω, (ṽ(k) − v(k))|Γ = ṽ
(k)
0 − v

(k)
0 + ϕ(k),

Δ(ũ(k) − u(k)) = (ṽ(k) − v(k)) + η(k), x ∈ Ω, (ũ(k) − u(k))|Γ = ψ(k).

From here and (17) it is easy to get

‖ũ(k) − u(k)‖H2(Ω) ≤ C5‖ṽ(k)
0 − v

(k)
0 ‖H1/2(Γ) + 4C5ε

Taking into account (25) and (27) we obtain

‖ũ(k) − u(k)‖H2(Ω) ≤ C6ε

Hence,

‖ũ(k) − u‖H2(Ω) ≤ ‖ũ(k) − u(k)‖H2(Ω) + ‖u(k) − u‖H2(Ω) ≤ ‖u(k) − u‖H2(Ω) +C6ε

Thus, we have proved the following

Theorem. The errors committed at iterations of the computational process by
the algorithm (11)–(14) are not accumulated, namely, for the actual approxima-
tions ṽ(k)

0 and ũ(k) we have the estimates

‖ṽ(k)
0 − v0‖H1/2(Γ) ≤ ‖v(k)

0 − v0‖H1/2(Γ) + C4ε,

‖ũ(k) − u‖H2(Ω) ≤ ‖u(k) − u‖H2(Ω) + C6ε,
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where v
(k)
0 and u(k) are exactly computed by the algorithm (11)–(14), u is the

exact solution of Problem (3) − (4), v0 = Δu|Γ, ε is the error of the method for
solving (12) and computing (13) (see (17)–(18)), and C4 and C6 are constants
independent of k .
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