
Vietnam Journal of Mathematics 31:1 (2003) 1-25 ������� 	
����


 �

�����������

� ���� ���	

Survey

Some Recent Trends in Calibrated Geometries*

Dao Trong Thi1 and Doan The Hieu2

1Vietnam National University Hanoi, 144 Xuan Thuy Road, Hanoi, Vietnam
2University of Hue, 77 Nguyen Hue, Hue, Vietnam

Received September 26, 2002

Abstract. This paper is a survey on some modern trends in calibrated geometries such

as: computing the maximal directions of a k-form; the Cartesian products problem;

the classification problem; system of calibrations for Steiner networks.

1. Calibrated Geometries

A one-dimensional curve, whose tangent vectors are in a constant direction (i.e.
a straightline segment), is the shortest path between two end points. We can
see that, the constant direction is just the (unique) direction, on which the dual
form attains its maximum.

Generalize this fact to higher dimensional cases, where k-dimensional sur-
faces are considered instead of curves and the sets of all maximal (k-dimensional)
directions of differential k-forms are considered instead of constant directions,
one gets a very nice mathematical idea called after the Principle of calibrations:

Let M be a Riemannian manifold of dimension n, S a compact oriented k-
dimensional submanifold of M(k < n), ϕ a closed differential k-form on M,
satisfying

ϕ(ξ) ≤ 1, (1)

for any unit tangent simple k-covector ξ of M and

ϕ(ξ) = 1 (2)

∗This work was supported by the National Basic Reseach Program 141101, Vietnam.
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whenever ξ is tangent to S. Then S is volume minimizing in its homological
class.

We call ϕ a calibration, (M,ϕ) a calibrated manifold, S a ϕ-submanifold or
S calibrated by ϕ. The proof is very simple. Suppose S′ is another submanifold
of M in the same homological class as S. Then

V olk(S) =
∫
S
ϕ =

∫
S′
ϕ ≤ V olk(S′),

by the equality in (2), by Stokes’ Theorem, and by the inequality in (1), respec-
tively.

Suppose ϕ is a k-covector on Rn. Denote by

‖ϕ‖∗ = sup{ϕ(ξ) | ξ ∈ G(k,Rn)}
the comass of ϕ, and

G(ϕ) = {ξ ∈ G(k,Rn) | ϕ(ξ) = ‖ϕ‖∗}
the set of all maximal directions of ϕ. G(ϕ) is just the intersection of G(k,Rn)
and the hyperplane {ξ ∈ ∧k(Rn) | ϕ(ξ) = 1}. So we also call G(ϕ) the face of
ϕ, or ϕ-Grassmannian.

If w is a differential k-form on a Riemannian manifold M, then the comass
of w is defined by

‖w‖∗ = sup{‖wx‖∗ | x ∈M},
while the set of all maximal directions (the face) of w is

G(w) = {ξ ∈ G(k, TxM) | w(ξ) = ‖w‖∗} =
⋃

‖wx‖∗=‖w‖∗
G(wx).

It is easy to see that the conditions (1) and (2) are equivalent to ‖w‖∗ = 1
and ξ ∈ G(w) respectively.

Calibrated geometries are a mathematical trend developed rapidly in the
past twenty years to make good use of Principle of calibrations for studying of
globally minimal surfaces on Riemannian manifolds.

Let

Ωp =
1
p!

Ωp =
1
p!

Ω ∧ Ω ∧ . . . ∧ Ω︸ ︷︷ ︸
p

,

where Ω is the Ka̋hler form on Cn ∼= R2n defined by

Ω =
∑

(
i

2
)dzj ∧ dzj .

By Wirtinger’s inequality ‖Ωp‖∗ = 1 and

G(Ωp) = {ξ ∈ G(2p,Cn = R
2n) | ξ is a complex p-plane}.

In 1965, Federer [14] used Ωp as calibrations to show that every complex
submanifold of Cn is area-minimizing in its homological class.
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In 1972, Berger [1] used suitably normalized powers of the quaternionic form
in the same way to prove that, every quaternionic submanifold of a Ka̋hler
quaternionic manifold is area-minimizing.

In 1977, 1978 Thi [66 - 71] used invariant forms on Lie groups and symmetric
spaces to investigate the global minimality of Lie subgroups, totally geodesic
submanifolds, the Pontryagin cycles.... By using the fundamental 3-form

τ(X,Y, Z) =
1
2
〈[X,Y ], Z〉 = −trXY Z

as a calibration, he proved that SU(2) is homologically area-minimi-
zing.

In 1982 Lawson and Harvey coined the term “ calibration” in their founda-
tional paper “Calibrated Geometries” [29]. They discovered interesting (parallel)
calibrations, including

ϕ = RedZ = Redz1 ∧ dz2 ∧ . . . ∧ dzn
on Cn ∼= R2n,

ΦASSOC(x ∧ y ∧ z) = 〈x, yz〉;
ΦCOASSOC(x ∧ y ∧ z ∧ w) = 〈x, [x, y, z]〉

=
1
2
〈x, (yz)w − y(zw)〉

on ImO ∼= R7, and

ΦCAY LEY (x ∧ y ∧ z ∧ w) = 〈x, y × z × w〉
=

1
2
〈x, y(zw) − w(zy)〉

on O ∼= R8, which are called the special Lagrangian, the associative, the coasso-
ciative and the Cayley calibrations, respectively.

They proved that G(RedZ) is just the SU(n) orbit of ξ0, where ξ0 is the real
part of Cn ∼= Rn ⊕ iRn. So the term special Lagrangian was used because the
U(n) orbit of ξ0 is the set of Lagrangian planes.

They also used the terms associative and coassociative because G(ΦASSOC)∪
G(−ΦASSOC) is the set of all ξ = x∧y∧z, where x, y, z are orthonormal vectors
satisfying the equality (xy)z − x(yz) = 0, and ΦCOASSOC = ∗ΦASSOC .

It is easy to see that

ΦCAY LEY = 1∗ ∧ ΦASSOC + ΦCOASSOC ,

and by choosing a suitably complex structure on R
8, we have

ΦASSOC = (Je1)∗ ∧ Ω + RedZ,
ΦCOASSOC = (Je1)∗ ∧ ImdZ − Ω2,

At present, calibrated geometries have flourished with many applications to
global problems in Riemannian geometry and interest many mathematicians:
Morgan, Dadok, Lawlor, Gluck, Mackenzie, Tasaki, Bryant, Haskins, Matessi,
McLean, Gang Tian, Joyce, Hitchin, Sema Salur, Van, Dung, Huan, Quang,
Binh...
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Every well described calibration is often associated with some strong struc-
ture of manifolds or of the form itself. The Ka̋hler and the special Lagrangian
calibrations are associated with the complex structure, the associative; the coas-
sociative and the Cayley calibrations are associated with the octonionic struc-
ture, the quaternionic calibration is associated with the Ka̋hler quaternionic
structure, while the fundamental 3-form τ is defined on Lie groups. Some nice
calibrations on symmetric spaces, Grassmannian manifolds were discovered in
[19 - 20, 64 - 71, 76 78],...

It seems very hard to discover calibrations on a general Riemannian manifold,
because of the difficulty of computing the comass and describing the faces of k-
covectors. Therefore, the application of the Principle of calibrations to discover
minimal surfaces runs into obstacles.

Some authors try to enlarge the method of calibrations to the problem of
minimizing the functional given by a Lagrangian [12, 13, 71]. In this case, The-
orem 3.6 in [71] shows that, the Principle of calibrations, which applies to the
case of the (real) currents, is also the necessary condition, i.e. a current S is
globally minimal with respect to the integrand J given by a Lagrangian l if and
only if it is calibrated by some calibration.

In another direction, some suitable systems of calibrations were applied to
soap films, immiscible fluids [17, 58] or to globally minimal Steiner networks
[59 - 61, 73].

Very recently, many mathematicians (Bryant, Haskins, Matessi, Joyce, Hit
-chin, Sema Salur...) study on special Lagrangian geometries (geometries de-
termined by the special Lagrangian calibrations) [5 - 8, 40, 42 - 52, 63 - 64]. Many
new examples on area-minimizing surfaces calibrated by special Lagrangian cal-
ibrations have been constructed.

In this paper we want to mention some study trends in calibrated geometries
including:
1. Computing the comass and describing the face of a k-covector.
2. The Cartesian products problem.
3. The classification problem.
4. System of calibrations and the globally length-minimizing Steiner networks.

2. Computing the Comass and Describing the Face of a k-Covector

Computing the comass and describing the face of a differential k-form w is the
first obstacle for using w as a calibration. In order to know the comass and the
face of a differential k-form w, first one needs to know the comass and the face
of (the k-covector) wx for every x. Even in that case, the computation is still
quite difficult.

In this section, we present some recent results on computing the comass and
describing the faces of some classes of k-covectors. Every method for computing
the comass seems to be useful only for some classes of k-covectors. The method
in [31] is useful for 3-covectors on R

7, the method in Subsec. 2.1 for some classes
of 3-covectors in low dimensional spaces, while Theorem 3 can be used for k-
covectors invariant under transitive actions and Theorem 2 for some cases in
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general.

2.1. A Method for Computing the Comass and Describing the Faces of
3-Covectors

Let ϕ be a k-covector on Rn, and {e1, e2, . . . , en} an orthonormal basis of Rn.
For every x ∈ Rn, set

ϕx = x � ϕ,

ϕ = (ϕe1 , ϕe2 , . . . , ϕen),

i.e. ϕx(η) = ϕ(x ∧ η) and ϕ(η) = Σϕei (η)ei for every (k − 1)-vector η.
We can prove that, ϕ does not depend on the chosen basis and

ϕ(x1 ∧ x2 ∧ . . . ∧ xk) = 〈x1, ϕ(x2 ∧ x3 ∧ . . . ∧ xk)〉.
Some results concerning ϕ are (see [33 – 34]):

(1) ‖ϕ‖∗ = max
η∈G(k−1,Rn)

|ϕ(η)| := A,

(2) G(ϕ) = { ϕ(η)
|ϕ(η)| ∧ η | ϕ(η) = A}.

(3) If ξ ∈ G(ϕ), then span(ξ) is ϕ-invariant, i.e. for all x1, x2, . . . , xk−1 ∈
span(ξ)

ϕ(x1 ∧ x2 ∧ . . . ∧ xk−1) ∈ span(ξ).

Suppose V is a k-dimensional ϕ-invariant subspace with the orthonormal
basis {e1, e2, . . . , ek}, we have

ϕ(e1 ∧ e2 ∧ . . . ∧ ∧
ei ∧ . . . ∧ ek) = λei if n is even,

ϕ(e1 ∧ e2 ∧ . . . ∧ ∧
ei, . . . ∧ ek) = (−1)i+1λei if n is odd,

A computation shows that, the matrix of τX corresponding to the basis {Eij}i<j
is

1
2

⎛
⎜⎜⎜⎜⎜⎝

0 −a4 −a5 a2 a3 0
a4 0 −a6 −a1 0 a3

a5 a6 0 0 −a1 −a2

−a2 a1 0 0 −a6 a5

−a3 0 a1 a6 0 −a4

0 −a3 a2 −a5 a4 0

⎞
⎟⎟⎟⎟⎟⎠ ,

and
det(τX − λI) = λ2(λ2 + f1(X))(λ2 + f2(X)),

where
f1(X) =

1
4
Σ
i
a2
i +

1
2
(a1a6 + a3a4 − a2a5);

f2(X) =
1
4
Σ
i
a2
i −

1
2
(a1a6 + a3a4 − a2a5).

We have
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f1(X) =
1
4
Σ
i
a2
i +

1
2
(a1a6 + a3a4 − a2a5)

≤ 1
2
Σ
i
a2
i =

1
4
.

The equality holds if and only if a1 = a6, a2 = −a5, a3 = a4. Therefore, X must
be of the form:

X =

⎛
⎜⎝

0 a b c
−a 0 c −b
−b −c 0 a
−c b −a 0

⎞
⎟⎠ .

f2(X) =
1
4
Σ
i
a2
i −

1
2
(a1a6 + a3a4 − a2a5)

≤ 1
2
Σ
i
a2
i =

1
4
.

The equality holds if and only if a1 = −a6, a2 = a5, a3 = −a4. Hence X must be
of the form:

X =

⎛
⎜⎝

0 a b c
−a 0 −c b
−b c 0 −a
−c −b a 0

⎞
⎟⎠ .

Thus,
‖τ‖∗ =

1
2
,

and
G(τ) = {L1 ∧ L2 ∧ L3, R1 ∧R2 ∧R3},

where

L1 =
1
2

⎛
⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎠ , R1 =

1
2

⎛
⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎠ ,

L2 =
1
2

⎛
⎜⎝

0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

⎞
⎟⎠ , R2 =

1
2

⎛
⎜⎝

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎞
⎟⎠ ,

L3 =
1
2

⎛
⎜⎝

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

⎞
⎟⎠ , R3 =

1
2

⎛
⎜⎝

0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

⎞
⎟⎠ .

By using the above result, a computation of the comass of τ on SO(n) and
a description of the face G(τ) has done successfully (see [33] for more detail).
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A computation shows that the comass of τ is also equal to 1/2 and G(τ) is
just two O(n)-orbits

G(τ) = {AdT (L1 ∧ L2 ∧ L3), AdT (R1 ∧R2 ∧R3)},
where

L1 =
(
L1 O
O O

)
, R1 =

(
R1 O
O O

)
,

L2 =
(
L2 O
O O

)
, R2 =

(
R2 O
O O

)
,

L3 =
(
L3 O
O O

)
, R3 =

(
R3 O
O O

)
.

2.2. The Slag-Assoc Calibrations of Type (k, l)

In this subsection, we construct an operation [., .] on Hn, which is bilinear,
alternating and max

|x|=|y|=1
|[x, y]| = 1, x, y ∈ H

n. So, the 3-covector 〈., [., .]〉 has

comass one. It is called the multi-associative calibration. Restricting these
calibrations on suitable subspaces, we get the so-called slag-assoc calibrations
of type (k, l). Their faces can be viewed as “a connection” between k special
Lagrangian faces and l associative faces in some ways.

Let H be the quaternionic algebra. For each X = (x1, x2, . . . , xn) ∈ Hn and
Y = (y1, y2, . . . , yn) ∈ Hn, we define the product XY to be

XY = Z = (z1, z2, . . . , zn),

where
z1 = x1y1 − ȳ2x2 − ȳ3x3 − . . .− ȳnxn,

z2 = y2x1 + x2ȳ1,

z3 = y3x1 + x3ȳ1,

. . . . . .

zn = ynx1 + xnȳ1.

Denote by 1 = (1, 0, . . . , 0) the unit element of Hn. Let ReHn be the span of
1, and ImHn the orthogonal complement of ReHn. Then each X ∈ Hn has the
unique orthogonal decomposition

X = X1 +X ′,

where X1 ∈ ReHn and X ′ ∈ ImHn.
The conjugation X of X is defined by

X = X1 −X ′.

Some simple properties concerning the conjugation are:

X = X, XY = Y X, XX = XX = |X |2,
〈X,Y 〉 = ReXY =

1
2
(XY + Y X).
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Set

[X,Y ] = −1
2
(XY − Y X) = ImY X.

We have

Theorem 1.
(1) [., .] is bilinear and alternating.
(2) [X,Y ] ⊥ X,Y ∀X,Y ∈ Hn.
(3) max

|X|=|Y |=1
|[X,Y ]| = 1; X,Y ∈ H

n.

Therefore, we get the 3-covector

Φ(X ∧ Y ∧ Z) = 〈X, [Y, Z]〉
on Im Hn being a calibration, which is called the multi-associative calibration.
Moreover, we have

G(Φ) = {[X,Y ] ∧X ∧ Y | X,Y satisfying
(i) Σ

i
xiyi = 0,

(ii) y2x2 ↑↑ y3x3 ↑↑ . . . ↑↑ ynxn,
(iii) |xiyj| = |xjyi| i, j ≥ 2, i �= j},
where a ↑↑ b means that a = kb (k ≥ 0) (see [33] for more detail).

Let V = ImH×ImH × . . .× ImH︸ ︷︷ ︸
k

×H × . . .× H︸ ︷︷ ︸
l

×{0}×. . .×{0} ∼= R3(k+1)+4l,

then Φ|V is also a calibration belonging to F ∗(SLAG). It is called the slag-assoc
calibration of type (k, l). The faces of these calibrations contain many ASSOC,
SLAG, and CP k faces.

It is easy to see that, the double-slag and the double-assoc calibrations (two
calibrations have described by Morgan [57]) are the slag-assoc calibrations of
type (2, 0), and (0, 2), respectively.

2.3. Decomposition of a k-Covector with Respect to a Given Unit Vector

Suppose Φ is a k-covector on R
n with

span(Φ)∗ := {v ∈ R
n | v � Φ = 0}⊥ = R

n,

and let e be a unit vector on Rn. Set ϕ = e � Φ, and ψ = Φ − e∗ ∧ ϕ. Then Φ
has the decomposition with respect to e

Φ = e∗ ∧ ϕ+ ψ.

Note that ϕ is a (k − 1)-covector and ψ is a k-covector on e⊥. We obtain

Theorem 2.

(1) ‖Φ‖∗ = max
η∈G(k−1,e⊥)

{
√
ϕ(η)2 + |ψ(η)|2} := A.

(2) G(Φ) = {(cosα(η)e+ sinα(η)f(η)) ∧ η |
η ∈ G(k − 1, e⊥), ϕ(η)2 + |ψ(η)|2 = A2},
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where f(η) = ψ(η)

|ψ(η)| , cosα(η) = ϕ(η)
A , sinα(η) = |ψ(η)|

A .

Proof. Suppose ξ ∈ G(k,Rn) has the canonical form with respect to the subspace
span(e) = {r.e | r ∈ R}

ξ = (cosαe+ sinαf) ∧ η,
where e, f are orthonormal vectors; η ∈ G(k−1, e⊥); e ∈ span(η)⊥; f ∈ span(η)⊥.
Then

Φ(η) = cosαϕ(η) + sinαψ(f ∧ η)
≤

√
cos2 α+ sin2 α.

√
ϕ(η)2 + ψ(f ∧ η)2

≤
√
ϕ(η)2 + |ψ(η)|2.

Therefore,

‖Φ‖∗ ≤ max
η∈G(k−1,e⊥)

{
√
ϕ(η)2 + |ψ(η)|2} = A.

Now suppose the equality
√
ϕ(η)2 + |ψ(η)|2 = A holds for some η ∈ G(k −

1, e⊥). Let

f(η) =
ψ(η)
|ψ(η)| , cosα(η) =

ϕ(η)
A

, sinα(η) =
|ψ(η)|
A

,

and
ξ = (cosα(η)e+ sinα(η)f(η)) ∧ η.

We have
Φ(ξ) = cosα(η)ϕ(η) + sinα(η)|ψ(η)|

=
ϕ(η)2 + |ψ(η)|2

A
=
A2

A
= A.

The first part is proved.
The proof of the second part is clear.

By using this theorem, we can compute the comass and describe the faces of
many well-known calibrations including the special Lagrangian, the associative,
the coassociative, the Cayley.... The computation here depends only on their
any expression in terms of axis planes, but does not depend on the (complex or
octionionic) structure associated with them.

Remark. When consider the k-covector of the following form

Φ = e∗1 ∧ ϕ+ e∗2 ∧ ψ,
where ϕ, ψ are (k−1)-covector on (e1, e2)⊥, Binh has showed that (by a similary
proof as the proof of Theorem 2)

‖Φ‖∗ = max
η∈G(k−1,Rn)

√
ϕ2(η) + ψ2(η) := A,
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and
G(Φ) ⊃ {(cosαe1 + sinαe2) ∧ η |

√
ϕ2(η) + ψ2(η) = ‖Φ‖∗},

where

f(η) =
ψ(η)
|ψ(η)| , cosα(η) =

ϕ(η)
A

, sinα(η) =
|ψ(η)|
A

.

2.4. General Associative and General Coassociative Calibrations.

Let {e1, Je1, e2, Je2, . . . , e2n, Je2n} be an orthonormal basis on C2n correspond-
ing to the complex structure J. The subspace (en, Jen)⊥ � C2n−1 inherits the
induced complex structure, which also denote by J .

Let
RedZ = Re(dz1 ∧ dz2 ∧ . . . ∧ dz2n−1),

and

Ωp =
1

(p)!
Ωp,

be the special Lagrangian calibration and the exterior power of the Ka̋hler form
on (en, Jen)⊥, respectively.

By virtue of Theorem 6.11 in [29], we have

|Ωn−1(η)|2 + |Re(dZ)(η)|2 = |Ωn−1(η)|2 + Σ
|I|=2(n−1)

|dZI(η)|2 ≤ |η|2 = 1,

and
|ImdZ(η)|2 + |Ωn(η)|2 ≤ |η|2 = 1.

Therefore, by virtue of Theorem 2 the (2n− 1)-covector

ΦGASSOC = (Jen)∗ ∧ Ωn−1 + RedZ,

and the (2n)-covector

ΦGCOASSOC = (Jen)∗ ∧ ImdZ + Ωn,

on span(Jen) ⊕ C2n−1 � R4n−1 have both comass one, i. e. calibrations. They
are called the general associative and general coassociative calibrations, respec-
tively.

We can see that:
(1) G(ΦGASSOC) is the set of all ξ = (cosα(η)Jen + sinα(η)f(η)) ∧ η, where

n−1∑
k=1

′∑
|I|=2k

|dZI ∧ Ωn−k(η)|2 = 0,

f(η) =
Re dZ(η)
|Re dZ(η)| ; cosα(η) = Ωn−1(η); sinα(η) = |Re dZ(η)|.
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(2) G(ΦGCOASSOC) is the set of all ξ = (cosα(η)Jen + sinα(η)f) ∧ η, where

|Re dZ(η)|2 = 0;
2(n−1)∑
k=1

∑
I=2k+1

|dZI ∧ Ω2k+1(η)|2 = 0,

f(η) =
Ωn(η)
|Ωn(η)|

, cosα(η) = Im dZ(η); sinα(η) = |Ωn(η)|.

(3) When n = 4, the general associative and general coassociative calibrations
are just the associative and coassociative calibrations, respectively.

2.5. Calibrations Invariant Under Transitive Actions

Let Φ be a k-covector on Rn. Denote by

G1(Φ) =
⋃

ξ∈G(Φ)

span(ξ).

Suppose Φ has the decomposition with respect to the unit vector e

Φ = e∗ ∧ ϕ+ ψ,

where ϕ is a (k − 1)-form and ψ is a k-form on e⊥.

Theorem 3.

‖Φ‖∗ = ‖ϕ‖∗ if and only if e ∈ G1(Φ).

G(Φ) =
⋃

e∈G1(Φ)

|e|=1

(e ∧G(ϕ)).

Proof. Lemma 2.3 in [34] shows that

‖Φ‖∗ ≥ max{‖ϕ‖∗, ‖ψ‖∗}.
If e ∈ G1(Φ), then there exists ξ ∈ G(Φ) such that e ∈ span(ξ) and hence

ξ = e ∧ η, where η ∈ G(k − 1, e⊥). We have

‖Φ‖∗ = Φ(e ∧ η) = ϕ(η) ≤ ‖ϕ‖∗,
and therefore the equality holds. Conversely, if ‖Φ‖∗ = ‖ϕ‖∗, let η ∈ G(ϕ) and
ξ = e ∧ η then

Φ(ξ) = ϕ(η) = ‖ϕ‖∗ = ‖Φ‖∗.
Thus, ξ = e ∧ η ∈ G(Φ) and hence e ∈ G1(Φ).

The proof of the second part is clear.
We consider below a simple application of Theorem 3, where the k-covector

Φ is assumed invariant under a transitive action.
Let G be a subgroup of SO(n), which acts transitively on Sn−1 and Φ be a

G-invariant k-covector on Rn
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Since Φ is a G-invariant form, G acts on both G(Φ) and G1(Φ). For every
u ∈ Sn−1 and unit vector v ∈ G1(Φ), there exists g ∈ G such that g(v) = u
(since G acts transitively on Sn−1). This implies that u ∈ G1(Φ) and hence

G1(Φ) = R
n.

Then by Theorem 3

‖Φ‖∗ = ‖ϕ‖∗, for every e ∈ Sn−1,

and
G(Φ) =

⋃
e∈Sn−1

(e ∧G(ϕ)) = {g(e ∧G(ϕ)) | g ∈ G}.

By using this fact, we can compute the comass and describe the face of some
SU(n)-invariant k-covectors (including Ka̋hler, exterior power of the Ka̋hler,
special Lagrangian, Cayley...) easily (see [35]).

2.6. Span of a 3-covector

Let {e1, e2, . . . , en} be an orthonormal basis of Rn and ϕ ∈ ∧k(Rn)∗. Then
ϕ is expressed in terms of n(n−1)(n−2)

6 axis 3-planes. The variables may be
unnecessary, so it is very convenient for computing the comass of ϕ if we eliminate
unnecessary variables. A subspace V ∗ is said to envelope ϕ if ϕ ∈ ∧k(V )∗ ⊆∧k(Rn)∗. It is easy to see that spanϕ = {η � ϕ | η ∈ ∧k−1(Rn)}, is a unique
minimal subspace which envelopes ϕ and (spanϕ)∗ = {v ∈ Rn | v � ϕ = 0}⊥.

For every ϕ ∈ ∧2(Rn)∗ we can choose a suitable orthonormal basis {e1, e2, . . .,
en} of Rn, such that ϕ can be written in the following canonical form:

λ1e
∗
1 ∧ e∗2 + λ2e

∗
3 ∧ e∗4 + . . .+ λke

∗
2m−1 ∧ e∗2m,

where 2m ≤ n and λ1 ≥ λ2 ≥ . . . λm > 0.
We can see that ‖ϕ‖∗ = λ1, G(ϕ) = CPk, where k is the largest index such

that λ1 = λ2 = . . . = λk and spanϕ = (R2m)∗ = span(e1, e2, . . . , e2m)∗.
For k-covector ϕ, it is very difficult to determine the minimal subspace which

envelopes it and to choose an orthonormal basis, so that ϕ can be expressed in
the simplest form. Theorem 4 below gives us a method for determining spanϕ
when ϕ is a 3-covector. For ϕ being a 3-covector and x ∈ R

n, let ad be the linear
mapping from Rn to L(Rn,Rn) [33] defined as follows:

ad(x) = ϕx.

Theorem 4.

(kerad)⊥ = (spanϕ)∗ = {v ∈ R
n | v � ϕ = 0}⊥.

Proof. Suppose that {e1, e2, ..., en} is an orthonormal basis on Rn, then

∀x ∈ kerad ⇔ adx = 0 ⇔ [x, ej ] = 0, ∀j = 1, ..., n
⇔ Σni=1(ei � ϕ)(x, ej)ei = 0, ∀j = 1, ..., n
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⇔ ϕ(ei, x, ej) = 0, ∀i, j = 1, ..., n
⇔ −ϕ(x, ei, ej) = 0, ∀i, j = 1, ..., n
⇔ ϕ(x, ei, ej) = 0, ∀i, j = 1, ..., n
⇔ x � ϕ(ei, ej) = 0, ∀i, j = 1, ..., n
⇔ x ∈ {v ∈ R

n | v � ϕ = 0}.
Thus, kerad = {v ∈ R

n | v � ϕ = 0}, or (kerad)⊥ = {v ∈ R
n | v � ϕ = 0}⊥.

The following is an application of Theorem 4.

Conclusion 5. ϕ ∈ ∧3(Rn)∗ is simple if and only if dim kerad = n− 3.

Examples. Direct computations show that:
1. If ϕ = e∗123 + e∗456(∈ λ3(R6)), then spanϕ = (R6)∗ and hence ϕ is not simple.
2. If ϕ = 2e∗125 + e∗127 −2e∗135 − e∗137 −2e∗245 − e∗247 +2e∗345 + e∗347(∈ Λ3(R7)), then
spanϕ has dimension 4. Thus, ϕ is simple.
3. If ϕ = 2e∗123 + e∗128 + 2e∗167 − e∗168 − e∗257 + e∗258 + e∗234 + e∗247 − e∗248 − e∗346 +
2e∗356 + e∗467 − e∗468 + e∗568(∈

∧3(R8)), then spanϕ has dimension 6 and ϕ can be
expressed in the following form:

ϕ = 2
√

2 β∗
123 + 3

√
2 β∗

456,

where
β1 =

1√
2
(1, 0, 0, 0, 1, 0, 0, 0), β2 =

1√
2
(0, 1, 0, 0, 0, 1, 0, 0),

β3 =
1√
2
(0, 0, 1, 0, 0, 0, 1, 0), β4 =

1√
3
(1, 0, 0, 1,−1, 0, 0, 0),

β5 =
1√
2
(0, 1, 0, 0, 0,−1, 0, 0), β6 =

1√
3
(0, 0, 1, 0, 0, 0,−1, 1).

3. Cartesian Products Problem [54]

Let ϕ ∈ ∧k(Rn)∗ and ψ ∈ ∧l(Rm)∗. Consider ϕ ∧ ψ ∈ ∧k+l(Rn+m)∗. The
following problem was posed by Federer:

Does the equality ‖ϕ ∧ ψ‖∗ = ‖ϕ‖∗‖ψ‖∗ hold?
If the equality holds, then it is sufficient (in the class of normal currents of

geometric measure theory with the area replaced by mass) to give an affirmative
answer to the following question:

Is the Cartesian product of two area-minimizing surfaces area-minimizing?
The inequality ‖ϕ ∧ ψ‖∗ ≥ ‖ϕ‖∗‖ψ‖∗ is trivial, but the equality has only

been proved for a few cases.
Federer proved the equality when ϕ or ψ is simple and Morgan proved the

equality when l = 2 or k = 2, k = l = 3 and n− k = l −m = 3 (for more detail
see [14, 54]).

Therefore, as conclusions of these results, one gets:
The Catersian product of two area-minimizing surfaces is area-minimizing

when one of the following is true
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1. one of the surfaces is a k-plane,
2. one of the surfaces is of dimension or codimension at most two,
3. both surfaces are of dimension or codimension three.

Below are some more results on this problem. Huan [41] proved the equality
for the case ϕ or ψ is simply separable and Binh [2] for the case when one of
factors is a torus form.

3.1. The Case When a Factor is Simply Separable

Let e1, e2 be unit vectors on Rn, and let Φ be a k-covector of the following form

Φ = e∗1 ∧ e∗2 ∧ ϕ+ ψ,

where ϕ is a (k − 2)-covector and ψ is a k-covector on Rn−2 = span(e1, e2)⊥.
A result of Dadok, Harvey and Morgan [11, Lemma 2.1] shows that

‖Φ‖∗ = max{‖ϕ‖∗, ‖ψ‖∗}.
Moreover, each ξ ∈ G(Φ) is of the following form

ξ = (cos ae1 + sin af1) ∧ (cos ae2 + sin af2) ∧ η,
where f1, f2 are orthnormal vectors in the orthogonal complement of span(e1, e2),
and one of the following holds:
(1) a = 0 and ϕ(η) = ‖ϕ‖∗ ≥ ‖ψ‖∗,
(2) a = π

2 and ψ(f1 ∧ f2 ∧ η) = ‖ψ‖∗ ≥ ‖ϕ‖∗,
(3) 0 < a < π

2 and ϕ(η) = ψ(f1 ∧ f2 ∧ η) = ‖ϕ‖∗ = ‖ψ‖∗.

Remark. We can see that:
- If ‖ϕ‖∗ > ‖ψ‖∗ (a = 0), then G(Φ) = G(ϕ),
- If ‖ϕ‖∗ < ‖ψ‖∗ (a = π

2 ), then G(Φ) = G(ψ),
- If ‖ϕ‖∗ = ‖ψ‖∗ (a ∈ [0, π2 ]), then G(Φ) = G(ϕ)∪G(ψ)∪A, where A is the

set of all ξ = (cos ae1 + sinaf1) ∧ (cos ae2 + sin af2) ∧ η, 0 < a < π
2 , η ∈ G(ϕ),

and f1 ∧ f2 ∧ η ∈ G(ψ).
A result of Huan [41, Theorem 3.2] shows that Amay be empty. For example,

if ϕ is of the form ϕ = e∗3 ∧ ϕ′, where ϕ′ ∈ ∧k−3(span(e1, e2,
e3))⊥.

Theorem 6. [41, Theorem 3.10] Let ϕ be a simply separable k-covector with
respect to (V1, V2, . . . , Vr) on Rn, and ψ a l-covector on Rm. Consider ϕ ∧ ψ ∈∧k+l(Rn+m)∗, we have

‖ϕ ∧ ψ‖∗ = ‖ϕ‖∗‖ψ‖∗,
and

G(ϕ ∧ ψ) = G(ϕ) ∧G(ψ).

Proof. (For more detail, see [41])
If r = 1, then ϕ is simple. The theorem is proved by a result of Federer [14].
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Suppose the theorem is proved for r = p−1. We shall prove that the theorem
is true for r = p. In fact, ϕ can be expressed in the following form

ϕ = eV1 ∧ ϕ1 + ϕ2,

where ϕ1, ϕ2 are simply separable covectors on V ⊥
1 . Therefore

‖ϕ‖ = max{‖ϕ1‖, ‖ϕ2‖},
and

ϕ ∧ ψ = eV1 ∧ ϕ1 ∧ ψ + ϕ2 ∧ ψ.
By Theorem 3.2 in [41], we have

‖ϕ ∧ ψ‖∗ = max{‖ϕ1 ∧ ψ‖∗, ‖ϕ2 ∧ ψ‖∗}
= max{‖ϕ1‖∗‖ψ‖∗, ‖ϕ2‖∗‖ψ‖∗}
= max{‖ϕ1‖∗, ‖ϕ2‖∗}‖ψ‖∗
= ‖ϕ‖∗‖ψ‖∗.

The proof of the second part is clear.

Remark. The complex line forms are simply separable, and the exterior powers
of a Ka̋hler form are complex line forms, so the theorem also holds for ϕ being
a complex line form or a exterior power of a Ka̋hler form.

As a conlusion of the above result, we obtain:

Conclusion 7. The Catersian product of two area-minimizing surfaces is area-
minimizing when one of the surfaces is a complex surface.

3.2. The Case When a Factor is Torus

Consider a k-covector ϕ of the form

Φ = e∗1 ∧ ϕ1 + e∗2 ∧ ϕ2,

where ϕ1 and ϕ2 are (k − 1)-covector on span(e1, e2)⊥. The such forms have
been studied by Morgan [11] and Binh [2]. We can see that Φ is invariant under
the action of SO(2) on span(e1, e2), the intersection of G1(Φ) and span(e1, e2)
is not empty and hence

‖Φ‖ = max
v∈span(e1,e2)

|v|=1

‖v � Φ‖∗.

Theorem 8. [2, Theorem 2.5] Let ϕ be a torus k-covector on R2k, and ψ a
l-covector on R

m. Consider ϕ ∧ ψ ∈ ∧k+l(R2k+m)∗, we have
‖ϕ ∧ ψ‖∗ = ‖ϕ‖∗‖ψ‖∗,
G(ϕ ∧ ψ) ⊃ G(ϕ) ∧G(ψ).

Remark. The special Lagrangian calibrations are torus forms, so we get
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Conclusion 9. The Catersian product of two area-minimizing surfaces is area-
minimizing when one of the surfaces is special Lagrangian.

3.3. An Approach to Cartesian Product Problem

In this subsection we introduce an approach to Cartesian product problem by
using the Reduction principle (see [31]) and the decomposition a k-covector with
respect to a unit vector (see Sec. 2.3).

First we have a result by using the decomposition a k-covector with respect
to a unit vector.

Theorem 10. Let ϕ ∈ ∧3(R6)∗ and ψ ∈ ∧k(Rn)∗, then we have:

‖ϕ ∧ ψ‖∗ = ‖ϕ‖∗‖ψ‖∗.

Proof. If k = 1, 2, 3, then Theorem 3 holds by results of Morgan [54].
If k ≥ 4, let ξ ∈ G(ϕ ∧ ψ), then we have spanξ ∩ Rn �= {0}. Therefore, there

exists a unit vector e ∈ spanξ ∩ Rn.
By vitue of Theorem 3, we get

‖ϕ ∧ ψ‖∗ = ‖e � ϕ ∧ ψ‖∗ = ‖ϕ ∧ (e � ψ)‖∗ = ‖ϕ‖‖e � ψ‖∗ ≤ ‖ϕ‖∗‖ψ‖∗,

and hence
‖ϕ ∧ ψ‖∗ = ‖ϕ‖∗‖ψ‖∗.

Lemma 11. (The Reduction principle [31, 2.1]) Let Φ ∈ ∧k(Rn)∗, and L be
a (k + 1)-dimensional linear subspace of R

n. For x ∈ R
n, let Φ[x] denote the

restriction of Φ to span(x)⊥. Then ‖Φ‖∗ ≤ 1 if and only if

‖Φ[x]‖∗ ≤ 1, for all x ∈ L.

If ‖Φ‖∗ = 1, then

G(Φ) =
⋃

{G(Φ[x]) | ‖Φ[x]‖∗ = 1, x ∈ L}.

Let ϕ ∈ ∧k(Rn)∗ and ψ ∈ ∧l(Rm)∗. We consider the following cases:
Case 1. k + l > n (or k + l > m). In this case, for ξ ∈ G(ϕ ∧ ψ), we have
span ξ ∩ Rm �= {0}.

Therefore, there exists a unit vector e ∈ Rm, such that

‖ϕ ∧ ψ‖∗ = ‖ϕ ∧ (e � ψ)‖∗.
Note that, ϕ ∧ (e � ψ) ∈ ∧k+l−1(Rn+m)∗.
Case 2. k + l < n (or k + l < m). By virtue of the Reduction principle, there
exists a unit vector e ∈ Rn, such that

‖ϕ ∧ ψ‖∗ = ‖ϕ‖∗‖ψ[e]‖∗.
Note that, ϕ ∧ (ψ[e]) ∈ ∧k+l(Rn+m−1)∗.
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The above facts lead us to the following theorem:

Theorem 12. If the equality ‖ϕ ∧ ψ‖∗ = ‖ϕ‖∗‖ψ‖∗ holds for the case n = m
and k + l = n (i.e. ϕ ∧ ψ is an n-covector on R2n), then the equality holds for
all n,m, k and l.

Proof. The proof is omitted.

Remark.
1. Let ϕ ∈ ∧k(Rn)∗ and ψ ∈ ∧l(Rm)∗. If ‖ϕ ∧ ψ‖∗ = ‖ϕ‖∗‖ 
 ψ‖∗, then the
equality ‖ϕ ∧ ψ‖∗ = ‖ϕ‖∗‖ψ‖∗ holds for k = 3, n = 7, l = 4,m = 7. Therefore
it holds for k = 3, n = 7, l = 4,m > 7 by the reduction principle and then for
k = 3, n = 7, l > 4,m > 7 by the decomposition a k-covector with respect to a
unit vector. So we address the question:

“Does the equality ‖ϕ ∧ ψ‖∗ = ‖ϕ‖∗‖ 
 ψ‖∗ hold?”
2. If G1(ϕ ∧ ψ) ∩ Rn �= ∅ or G1(ϕ ∧ ψ) ∩ Rm �= ∅ for all k, n, l,m , then the
equality ‖ϕ ∧ ψ‖∗ = ‖ϕ‖∗‖ψ‖∗ holds for every k, n, l,m by the decomposition a
k-covector with respect to a unit vector. So we address the question:
“Can we prove G1(ϕ ∧ ψ) ∩ Rn �= ∅ or G1(ϕ ∧ ψ) ∩ Rm �= ∅ for all k, n, l,m?”

3. Let ϕ ∈ ∧k(Rn)∗ and ψ ∈ ∧l(Rm)∗, where n = m, k+l = n and ξ ∈ G(ϕ∧ψ),
and let π : R2n −→ Rn denote the orthogonal projection. Consider the bilinear
form on span ξ defined by B(u, v) = 〈π(u), π(v)〉. If B has an eigenvalue 1, then
we can see that G1(ϕ∧ψ)∩R

n �= ∅. Therefore the equality ‖ϕ∧ψ‖∗ = ‖ϕ‖∗‖ψ‖∗
holds in this case. We hope that:

“B has at least an eigenvalue 1”.

4. Classification Problem

4.1. Classification Problem

The exterior algebra
∧k(Rn)∗ of k-covectors is an Euclidean space of dimen-

sion Ckn = n!
k!(n−k) . By identifying the k-plane of oriented orthonormal basis

{e1, e2, . . . , ek} with the k-vector e1 ∧ e2 ∧ . . . ∧ ek, the Grassmannian G(k,Rn)
may be viewed as a submanifold (of dimension k(n − k)) of the unit sphere in∧k(Rn)∗.

A face of G(k,Rn) is the set of the points of contact with a supporting
hyperplane in

∧k(Rn). We can see that a face of G(k,Rn) is just the set of
all maximal directions of a k-covector of comass one, i.e. a calibration. Thus
by Principle of calibration, a face of G(k,Rn) defines a Calibrated geometry of
area-minimizing surfaces.

A face of a single point (k-vector) associated with the geometry consists
merely of portion of k-planes defined that point. But large faces produce rich
Calibrated geometries.

If G(ϕ) ⊂ G(ψ), then we say that the Calibrated geometry associated with
ψ is richer than the one associated with ϕ or ψ is more effective than ϕ.
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Often the area-minimizing surfaces are compact portions of sum of k-planes
(viewed as area-minimizing intergral current). But that case is of interest in the
study of singularities in k-dimensional area-minimizing intergral currents. The
problem of classifying the faces of G(k,Rn) has been solved in a few cases:

When k = 1 or k = n − 1, G(k,Rn) is just the unit sphere of Rn and the
faces are all single points.

When k = 2, by classiacal canonical form for an alternating 2-form, we can
see that, each face of G(2,Rn) contains 2-planes which are complex lines in
some 2m-dimensional subspace (under some suitable complex structure) of Rn .
A complementary classification holds when k = n− 2.

In 1982, the faces of G(3,R6) were identified by the works of Dadok, Har-
vey and Morgan [10, 30, 54]. They are: singletons, doubletons, CP1’s and 5-
dimensional submanifolds of special Lagrangian planes.

In 1986, Harvey and Morgan [31] classified the faces of 12-dimensional mani-
fold G(3,R7). There are ten types: five discrete types and five infinite families of
types of faces. The faces of G(3,R7) are: associative, special Lagrangian, CP2,
CP

1, double CP
1, singleton, doubleton, S3, S2, and S1.

For the case k = 4, n = 8, many faces have been identified by the work of
Dadok, Harvey and Morgan [11].

The problem seems to be more difficult in the next cases, because in which
the dimension of

∧k(Rn)∗ is very large. A less complicated problem is:

“What are all calibrations, whose faces contain the face of a given calibra-
tion.”

This problem is equivalent to the classification problem when the given cal-
ibration is simple.

In the next subsection we consider this problem for the given calibration
being special Lagrangian on R8.

4.2. F ∗(SLAG) on R
8

Let F ∗(SLAG) = {Φ ∈ ∧3(R8)∗ | ‖Φ‖∗ = 1 and G(ΦSLAG) ⊂ G(Φ)}. The first
Cousin principle shows that each Φ ∈ F ∗(SLAG) must be of the following form

Φ(λ, a) = ΦSLAG + λ(e∗14 + e∗25 + e∗36) ∧ e∗7 + a.e∗1 ∧ e∗78.

Then by using the decomposition of Φ(λ, a) with respect to the vector e8 and
Theorem 2, direct computations show that Φ(λ, a) ∈ F ∗(SLAG) if and only if
a2 + λ2 ≤ 1. Thus, each Φ(λ, a) ∈ F ∗(SLAG) is one of the following four types:
1. Φ(±1, 0) = ΦASSOC . Then G(Φ(±1, 0)) = G(ΦASSOC).
2. Φ(0,±1) = ΦSLAG ± e∗178. Then G(Φ(0,±1)) = G(ΦSLAG)

⋃
CP 2.

3. Φ(λ, a) with λ2 + a2 < 1. Then G(Φ(λ, a)) = G(ΦSLAG).
4. Φ(λ, a) with λ �= 0, a �= 0 and λ2+a2 = 1. Then G(Φ(λ, a)) = G(ΦSLAG)

⋃
B,

where B is the set of all 3-vectors of the form (cosαe8 + sinαf) ∧ η, where
f = ψ(η)

|ψ(η)| , and η is of the form e1 ∧ (a2e2 + a3e3 + a5e5 + a6e6 + a7e7) in which
a7 �= 0.



Some Recent Trends in Calibrated Geometries 19

Remark. The calibrations corresponding the case λ2 + a2 = 1 are all maximal
calibrations, i.e. their faces are the lagest (under inclusion).

In the rest of this section we present some calibrations whose faces contain
a special Lagrangian face.

4.3. The Complexification of a (real) k-covector (see [73])

Suppose {e1, e2, . . . , en, Je1, Je2, . . . , Jen} is a real orthonormal basis of Cn ∼=
R
n+JR

n with complex structure J. Let {e∗1, e∗2, ..., e∗n, (Je1)∗, (Je2)∗, ..., (Jen)∗}
be the dual basis of {e1, e2, . . . , en, Je1, Je2, . . . , Jen}.

Suppose ϕ is a (real) k-covector on Rn =span{e1, e2, . . . , en} expressed in
terms of axis k-planes as below

ϕ =
∑

ai1...ike
∗
i1 ∧ e∗i2 ∧ . . . ∧ e∗ik .

Set

ϕc =
∑

ai1...ik(e∗i1 + J(Jei1)
∗) ∧ (e∗i2 + J(Jee2)

∗) ∧ . . . ∧ (e∗ik + J(Jeik)∗).

We can see that, ϕc does not depend on the chosen basis {e1, e2, . . . , en}. It
is called the complex form induced by ϕ.

Let dzξ denote the complex k-covector induced by the unit simple k-covector
on span(ξ) ∈ G(k,Rn). we have the following theorem:

Theorem 13. If ‖Reϕc‖∗ = ‖ϕ‖∗, then⋃
ξ∈G(ϕ)

G(Re dzξ) ⊂ G(Reϕc).

Remark. The above theorem shows that if ‖Reϕc‖∗ = ‖ϕ‖∗, then the face
G(Reϕc) must be larger than G(ϕ) very much. In fact, G(Reϕc) contains many
special Lagrangian faces. For example, if ϕ is simple then Reϕc is the special
Lagrangian calibration. The face of ϕ is just the set of one point, but the face
G(Reϕc) is the SU(n)-orbit of ξ0 (see Sec. 1).

Let V be a k-dimensional subspace of Rn. Denote by dxV the unit simple
k-covector on V.

Suppose Rn = V1 ⊕ V2 ⊕ . . . ⊕ Vm. For any multi-index I = (i1, i2, . . . , iq),
where |I| =

∑
ij∈I

dimVij = k, denote by dxI the k-covector dxVi1
∧ dxVi2

∧ . . . ∧
dxViq

.
In the case, where dimVi ≥ 2 for all i ≤ m, the k-covector ϕ =

∑
I

aIdxI is

called a simply separable k-covector (with respect to V1, V2, . . . , Vm) by Huan
[41].

Theorem 14. [73, Theorem 2.5] Suppose ϕ =
∑
I

aIdxI is a simply separable

k-covector, then

‖Reϕc‖∗ = ‖ϕ‖∗ = max
I

{|aI |}.
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We can see that the complex line forms [11] are simply separable. So we
have

Conclusion 15. The real part of the complexification of each complex line form
is a calibration.

Since an exterior power of the Ka̋hler form is a complex line form, so we also
have

Conclusion 16. The real part of the complexification of any exterior power of
the Ka̋hler form Ωp is a calibration.

Moreover, Thi and Binh [74] have shown that

G(ReΩcp) =
⋃
SLAG(V ),

where V is a p-dimensional quaternionic subspace of Hn ∼= Cn ⊕ Cn with the
suitably chosen quaternionic structure.

4.4. Some 3-Calibrations Whose Faces Contain a Special Lagrangian Face

Consider the special Lagrangian calibration of degree 3 on Cn ∼= R2n, i.e. for
a complex structure on a suitable complex subspace of dimension 3, ϕ can be
expressed in the following form:

ϕ = Re dZ = Re dz1 ∧ dz2 ∧ dz3.
And for a suitable orthonormal (real) basis, ϕ can be expressed in terms of axis
3-planes as follows :

ϕ = e∗123 − e∗156 + e∗246 − e∗345 = e∗1 ∧ (e∗23 − e∗56) + e∗4 ∧ (e∗35 − e∗26).

Let ψ be a 2-calibration on (e1, e4)⊥ ∼= C
n−1 whose face contains the face of

e∗35 − e∗26. A recent result of Hieu and Hanh [39] shows that the form:

Φ = e∗1 ∧ (e∗23 − e∗56) + e∗4 ∧ ψ
has comass one, i.e. a calibration. Its face contains a special Lagrangian face ,
some CP

1,CP
2,CP

3, . . . faces.
The case, when ψ is Ka̋hler, is more interesting. In this case, Φ is SU2 ×

SUn−3-invariant and if n = 4,Φ is a maximal calibration on C4, (a calibration
mentioned in 4.2 and [34]).

A recent result of Hieu [38] shows that Φ is not a maximal calibration on
C5 ∼= R10. A calibration whose face contains G(Φ) and obviously contains the
special Lagrangian face is:

e∗1 ∧ (e∗23 − e∗56 + e∗78 − e∗90) + e∗4 ∧ (e∗35 − e∗26 + e∗89 − e∗70).
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5. System of Calibrations with the Globally Length-Minimizing Steiner
Networks

5.1. Steiner Networks

Let M be a set of points in Rn. The problem of finding a network of least length
in the class of networks with fixed end M is called Steiner problem. There are
two approaches to this problem. The first requires that, the length-minimizing
network is searched in the class of networks, whose vertices all belong to M , and
the second allows the set of vertices may be larger than M . The vertices do not
belong to M are called Steiner points.

In this section we mention the second approach (for more detail see [55, 73]).

Some definitions

– A (simply) Steiner network in Rn is a connected complex of one-dimensional
simplexes, whose vertices have degree at most three, and the boundary vertices
are of degree one.

– A Steiner network is said to be oriented if its sides can be oriented so that
two adjacent sides are oriented opposite to each other. It is easy to see that,
each Steiner network has exactly two orientations.

– A path of a network is any continuous series of sides ( with orientation)
joining two vertices. If these vertices are boundary points, then it is called a
maximal path. A system of maximal paths is said to be independent if every
one of them is not a combination of other paths from the system.

– A system of maximal paths {Pj} in the network N is called a basis of
maximal paths if it satisfies the following conditions:

1. The union of all paths from {Pj} overlaps N.
2. The system {PJ} is independent.
3. Every maximal path in N is a combination of paths from {Pj}.

Theorem 17. Every oriented Steiner network N with k boundary points has a
basis of maximal paths consisting of (k − 1) paths.

5.2. Principle of System of Calibrations with Steiner Networks

Let N and N ′ be Steiner networks in Rn with the same boundary points A1,
A2, . . . , Ak. We say that N and N ′ are of the same topological type if there is
a homeomorphism f : Rn −→ Rn such that f(Ai) = Ai, i = 1, 2, . . . , k and
f(N) = N ′.

We have the so-call principle of system of calibrations

Let N be an oriented Steiner network with k boundary points in Rn and a
basis of maximal paths {P1, P2, . . . , Pk}. Suppose that there is a system of closed
differential 1-forms w1, w2, . . . , wk on Rn such that
1. ‖ Σ

j∈Ja

εj(a)wj‖ ≤ 1,

2. Σ
j∈Ja

εj(a)wj( Nx) = 1.
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Here Ja = {j : a ∈ Pj} for any side a ∈ N and Nx is the unit tangent vector
to N at x ∈ a with the same orientation as a. Then N is length-minimizing
network in the class of networks with fixed topological type.

Such a system {wj} is called a system of calibrations on N.

5.3. Length-Minimizing Steiner Network

The classical results show that, every locally length-minimizing Steiner network
has the following properties:
(1) The network consists of straightline segments.
(2) At every vertex the segments meet at angles of 1200.

By using the principle of system of calibrations, we obtain the following
result.

Theorem 18. Every locally length-minimizing Steiner network is also length-
minimizing in the class of Steiner networks with the same topological type.
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