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Abstract. We deal with linear inhomogeneous differential equations of the form

dx/dt = Ax(t) + f(t) in a Banach space X, where A is the generator of a C0-

semigroup on X and f is a periodic function. In this paper, we present a Massera type

theorem, a method to show the existence of bounded solutions and their structure

of them. As results, we obtain criteria for the existence of quasi-periodic, periodic,

asymptotically periodic solutions.

1. Introduction

Let X be a Banach space and R the real line. In this paper, we investigate
criteria for the existence of bounded solutions and periodic solutions to linear
inhomogeneous differential equations of the form

d

dt
u(t) = Au(t) + f(t). (1)

Throughout the present paper we make the following assumption.
Assumption : A : D(A) ⊂ X → X is the generator of C0-semigroup U(t),

and f : R → X is a τ -periodic function.
If x(t) is a continuous function which satisfies the following equation

x(t) = U(t)x(0) +

∫ t

0

U(t− s)f(s)ds, t ∈ R+ := [0,∞), (2)

it is called a (mild) solution to Equation (1).
The purpose of this paper is to give a survey of the Massera type theorem, cri-

teria for the existence of bounded solutions and a structure of bounded solutions
to Equation (1). As results, we can obtain criteria for the existence of quasi-
periodic, periodic, asymptotically periodic solutions. The relationship between
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the existence of bounded solutions and the existence of τ -periodic solutions is
characterized by the Massera type theorem.

2. A Survey of the Massera Type Theorem

In this section we give a survey of the Massera type theorem for the following
linear equation in X

d

dt
u(t) = A(t)u(t) + f(t), (3)

where A(t) is a (unbounded) linear operator such that A(t + τ) = A(t), t ∈ R.
Assume that its solution is expressed as follows

u(t) = U(t, 0)u(0) +

∫ t

0

U(t, s)f(s)ds, (4)

where U(t, s) is a τ -periodic strongly continuous evolutionary process.
In 1950, Massera [16] showed the following result on the existence of periodic

solutions to Equation (3) in Rn.

Theorem 2.1. If Equation (3) has a bounded solution on R+, then it has a
τ-periodic solution.

This result has been extended to various periodic linear equations in Rn or
infinite dimensional Banach spaces, cf. [1, 4, 7, 9, 10, 15].

In 2000, Naito, Minh, Miyazaki and Shin [20] investigated the Massera type
theorem and a structure of a bounded uniformly continuous solution on R to
Equation (4) in Banach spaces and gave the following result. Let BUC(R,X)
stand for the set of all bounded uniformly continuous functions from R to a
Banach space X. A function u ∈ BUC(R,X) is said to be a solution on R of
Equation (4) if

u(t) = U(t, s)u(s) +

∫ t

s

U(t, s)f(s)ds

as long as −∞ < s ≤ t < ∞.

Theorem 2.2. Assume that the monodromy operator U(1, 0) is compact. Then
the following hold:
(1) If there is a solution u ∈ BUC(R,X) on R of Equation (4), then Equation

(4) has a τ-periodic solution.
(2) If u ∈ BUC(R,X) is a solution on R to Equation (4), then it is expressed

as

u(t) = u0(t) +

N
∑

k=1

eiλktuk(t),

where λk (k = 1, 2, · · · , N) is a certain number, u0 is a τ-periodic so-
lution to Equation (4), uk is a τ-periodic solution to Equation (4) with
f = −iλkuk.
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Also refer to [21]. If the monodromy operator P (t) := U(t, t − τ) is norm
continuous with respect to t and is compact for every t ∈ R, then a bounded
solution on R implies a bounded uniformly continuous solution on R. However,
if P (t) is not compact, then this fact does not hold, in general.

For functional differential equations refer to [7, 9, 10]. In particular, Hatvani
and Krisztin [8] obtained a necessary and sufficient condition for the existence
of periodic solutions to a special equation.

More recently, interesting results on the existence of periodic or almost
periodic solutions to functional differential equations have been given in Hino,
Murakami and Minh [11] by using a decomposition technique of variation of
constants formula on the phase space.

On the other hand, the method using fixed point theorems is effective in
showing the Massera type theorem for various equations. For the Massera type
theorems based on Schauder’s fixed point theorems, refer to [2, 12, 13].

In 1974, Chow and Hale [3] obtained the following simple fixed point theo-
rem on an affine linear map from X to X.

Theorem 2.3. Let T be a bounded linear operator on X and b(6= 0) ∈ X be
fixed. Put V x = Tx+ b, x ∈ X. Assume that the range R(I − T ), I being the
identity, is closed and that there is an x0 ∈ X such that {V nx0}

∞

n=0 is bounded.
Then V has a fixed point in X; that is, the equation (I−T )x = b has a solution.

Applying this fixed point theorem to functional differential equations with
finite delay in Rn, they obtained the Massera type theorem. The above fixed
point theorem is very useful in the infinite dimensional case, because the com-
pactness condition on T is not contained in it. However, it requires the closed-
ness of the range R(I − T ). This fact suggests the possibility of extending the
Massera type theorem for noncompact periodic processes. In fact, the following
result is obtained.

Theorem 2.4. Assume that R(I − U(τ, 0)) is closed. If Equation (4) has a
bounded solution on R+, then it has a τ-periodic solution.

The theory (perturbation theory) of semi-Fredholm operators is useful in
showing the closedness of the range for functional differential equations. There-
fore, combining Theorem 2.4 and the theory of semi-Fredholm operators, many
results on the Massera type theorem for functional differential equations in Ba-
nach spaces have been obtained in Shin and Naito [25] and Shin, Naito and
Minh [27].

To complete the Massera type theorem, it is practically and theoretically
important to show the existence of bounded solutions on R+.

3. The Existence of Bounded Solutions: General Theory

In this section, to obtain criteria for the existence of bounded solutions and
periodic solutions to various equations, we give properties of affine maps. Let
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T : X → X be a bounded linear operator and b(6= 0) ∈ X be fixed. Put

V x = Tx+ b (5)

and

Sn(T ) =

n−1
∑

k=0

T k.

Our manner is based on the following fact : since V nb = Sn+1(T )b, n ∈ N, in
Theorem 2.3, we have that

lim sup
n→∞

‖Sn(T )b‖ < ∞ (6)

if and only if {V nb}∞n=0 is bounded.
In order to obtain criteria for the existence of bounded solutions to Equation

(1) or general equations, we will employ the above relation (6).

3.1. Results on Affine Maps

We give a property of the affine map V defined by (5), which is concerned with
the existence of bounded solutions to Equation (1).

Theorem 3.1. Let Z be a subset of X. Assume that for any x ∈ Z there exists
an αx > 0 such that ‖T nx‖ ≤ αx for all n ∈ N. Then the following statements
are equivalent.
1) There is an x0 ∈ Z such that the sequence {V nx0}∞n=0 is bounded.
2) For any x ∈ Z, the sequence {V nx}∞n=0 is bounded.
3) lim sup

n→∞

‖Sn(T )b‖ < ∞. (7)

Proof. 1) ⇒ 3). Since V nx0 = T nx0 + Sn(T )b, x0 ∈ Z, we have

‖Sn(T )b‖ ≤ ‖T nx0 + Sn(T )b‖+ ‖T nx0‖ ≤ ‖V nx0‖+ αx0
< ∞.

This implies that lim supn→∞
‖Sn(T )b‖ < ∞.

3) ⇒ 2). Since

‖V nx‖ ≤ ‖T nx‖+ ‖Sn(T )b‖ ≤ αx + ‖Sn(T )b‖

for every x ∈ Z, the proof is obvious.
2) ⇒ 1). It is obvious.
Therefore, the proof of the theorem is complete. �

The following result is directly derived from the proof of Theorem 3.1.

Corollary 3.2. Assume that there is a positive number α > 0 such that ‖T n‖ ≤
α < ∞ (∀n ∈ N) holds. Then the following statements are equivalent.
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1) There is an x0 ∈ X such that the sequence {V nx0}∞n=0 is bounded.
2) For any x ∈ X, the sequence {V nx}∞n=0 is bounded.
3) The relation (7) holds.

3.2. General Criteria

In this subsection, we will apply Theorem 3.1 to Equation (1). Put

bf =

∫ τ

0

U(τ − s)f(s)ds.

Theorem 3.3. Let Z be a subset of X. Assume that for any x ∈ Z there exists
an αx > 0 such that ‖U(nτ)x‖ ≤ αx for all n ∈ N. Then the following four
statements are equivalent;
1) Equation (1) has a bounded solution x(t) on R+ with the initial condition

x(0) ∈ Z.

2) lim sup
n→∞

‖
n−1
∑

k=0

U(kτ)bf‖ < ∞.

3) lim sup
n→∞

‖
nτ
∫

0

U(s)f(−s)ds‖ < ∞.

4) lim sup
t→∞

‖
t
∫

0

U(t− s)f(s)ds‖ < ∞.

Proof. Since Sn(U(τ)) =
∑n−1

k=0 U(kτ), the equivalence of the conditions 1) and
2) is proved by Theorem 3.1. The equivalence of the two conditions 1) and 4)
is easily proved. Indeed, the solution x(t) of Equation (1) with the condition
x(0) ∈ Z is expressed as

x(t) = U(t)x(0) +

∫ t

0

U(t− s)f(s)ds,

and ‖U(nτ)x(0)‖ ≤ αx(0) holds, which implies the equivalence of the two condi-
tions 1) and 4).

Now we will prove the equivalence of the two conditions 2) and 3). Since

∫ τ

0

U(mτ − s)f(s)ds =

∫ mτ

(m−1)τ

U(r)f(mτ − r)dr

=

∫ mτ

(m−1)τ

U(s)f(−s)ds,

we have

n−1
∑

k=0

U(kτ)

∫ τ

0

U(τ − s)f(s)ds =
n
∑

m=1

∫ τ

0

U(mτ − s)f(s)ds

=

∫ nτ

0

U(s)f(−s)ds
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This implies the equivalence of the conditions 2) and 3). �

Slightly modifying the condition 1) in Theorem 3.3, we obtain the following
result.

Corollary 3.4. The following two statements are equivalent.
1) Equation (1) has a bounded solution x(t) on R+ with the initial condition

x(0) = 0 or bf .
2) The condition 2) in Theorem 3.3 holds true.

Corollary 3.5. Assume that C0-semigroup U(t) is bounded. Then the following
two statements are equivalent.
1) Equation (1) has a bounded solution on R+.
2) All solutions of Equation (1) are bounded on R+.

Proof. The proof follows from Corollary 3.2 and Theorem 3.3. �

Finally, we see that in the case where A in Equation (1) is the generator of
a bounded C0-group U(t), t ∈ R, a bounded solution on R+ of Equation (1) is
extended to a bounded solution on R of Equation (1).

Proposition 3.6. Assume that A in Equation (1) is the generator of a bounded
C0-group U(t), t ∈ R. If Equation (1) has a bounded solution on R+, whose
range is relatively compact, then Equation (1) has a bounded solution on R.

4. The Existence of Bounded Solutions

In this section, we give criteria for the existence of bounded solutions to Equation
(1). We consider the condition 2) in Theorem 3.3 from the point of view of the
spectrum of A in Equation (1).

First, we will check it for the case where X = Cm, A = (aij), an m × m
matrix. Let the characteristic polynomial of A be factorized as follows:

Φ(λ) := det(λI −A) = (λ − λ1)
m1 · · · (λ− λℓ)

mℓ ,

where λ1, · · · , λℓ are the distinct roots of Φ(λ), andm1+· · ·+mℓ = m. Put λj =:
aj + ibj, aj , bj ∈ R. Denote by Pj : Cm → Mj the projection corresponding to
the direct sum decomposition Cm = M1⊕· · ·⊕Mℓ, whereMj := N ((A−λjI)

nj )
is the generalized eigenspace corresponding to λj .

Proposition 4.1. For τ > 0, b ∈ Cm, the vector sequence {Sn}, given as

Sn := Sn(e
τA)b =

n−1
∑

k=0

ekτAb,

is bounded if and only if for every p = 1, · · · , ℓ, the following conditions hold:
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(i) If aj > 0, then Pjb = 0.
(ii) The case where aj = 0:

(a) if τbj ∈ 2πZ, then Pjb = 0.
(b) if τbj 6∈ 2πZ, then Pjb ∈ N (A − λjI).

(iii) If aj < 0, then Pjb is arbitrary.

To prove the proposition, the following lemma is needed.

Lemma 4.2. Let Q(t) be a vector in Cn, whose component is a polynomial of
t, and λ = a+ ib ∈ C, a, b ∈ R. The vector sequence {Rn}, given as

Rn =

n
∑

j=1

ejλQ(j),

is bounded if an only if the following conditions hold:
(i) In the case where a > 0, Q(t) ≡ 0.
(ii) In the case where a = 0, if b ∈ 2πZ, then Q(t) ≡ 0: if b 6∈ 2πZ, then

Q(t) = c (a constant vector).
(iii) In the case where a < 0, Q(t) is arbitrary.

Proof. Set z = eλ. Then Rn =
∑n

j=1 z
jQ(j). If a < 0, {Rn} is always bounded.

Consider the case where a ≥ 0. If {Rn} is bounded, the sequence {Rn−Rn−1}∞n=2

is also bounded and ‖Rn − Rn−1‖ = ‖znQ(n)‖ = ena‖Q(n)‖. Hence in the case
where a > 0, Q(t) ≡ 0 if and only if {Rn} is bounded. So, we see the case where
a = 0. We note that ‖Rn − Rn−1‖ = ‖Q(n)‖. From the definition of Q(t) it
follows that {Q(n)} is bounded if and only if Q(t) = c (a constant vector). If
b ∈ 2πZ, then z = 1, and so, Rn = nc. Namely, c = 0 if and only if {Rn} is
bounded. If b 6∈ 2πZ, then z 6= 1. Hence we have

‖Rn‖ = ‖
1− zn+1

1− z
c‖ ≤

2

1− z
‖c‖,

which implies that {Rn} is bounded. Therefore the proof of the lemma is fin-
ished. �

The proof of Proposition 4.1. Cm is decomposed as

C
m = M1 ⊕ · · · ⊕Mℓ.

Take a circle Cp centered at λp, whose radius is sufficiently small and its disk
does not contain the other points λq, q 6= p. Then the projection Pp is expressed
as

Pp =
1

2π

∫

Cp

(λI −A)−1dλ. (8)

Then Pp is a bounded operator having the following properties:

PpC
m = Mp, APp = PpA, PpPq = 0 (p 6= q), P 2

p = Pp, P1+P2+· · ·+Pℓ = I.

Furthermore, etA is decomposed as follows:
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etA =

ℓ
∑

p=1

eλptQp(t)Pp, Qp(t) =

np−1
∑

k=0

tk

k!
(A− λpI)

k.

Using those facts, we have

Sn(e
τA) =

n−1
∑

j=0

ejτA =
n−1
∑

j=0

ℓ
∑

p=1

ejτλpQp(jτ)Pp =
ℓ

∑

p=1

n−1
∑

j=0

ejτλpQp(jτ)Pp.

Since PpPq = 0(p 6= q), P 2
p = Pp, it follows that

PpSn(e
τA)b =

n−1
∑

j=0

ejτλpQp(jτ)Ppb := Rp
n.

Hence, the sequence {Sn(e
τA)b}n∈N is bounded if and only if for every p =

1, · · · , ℓ, the sequence {Rp
n}n∈N is bounded. Since

Qp(jτ)Ppb =

np−1
∑

k=0

jk
τk

k!
(A− λpI)

kPpb, p ∈ {1, 2, · · · , ℓ},

we have, by Lemma 4.2, the following facts.
i) If ap > 0, then Qp(jτ)Ppb ≡ 0, from which we have Ppb = 0.
ii) If ap < 0, then Qp(jτ)Ppb is arbitrary; that is, Ppb is also arbitrary.
iii) Let ap = 0. If τbp ∈ 2πZ, then Qp(jτ)Ppb ≡ 0 ; that is, Ppb = 0. If τbp 6∈

2πZ, then Qp(jτ)Ppb = c(a constant vector). Notice that (A− λpI)Ppb = 0
if and only if Qp(jτ)Ppb = Ppb. This means that c = Ppb ; namely, Ppb ∈
N (A− λpI). Hence we obtain the conclusion of the proposition. �

Lemma 4.3.

lim sup
n→∞

‖enτAz‖ < ∞

if and only if the z ∈ Cm satisfies the following conditions: for every r ∈
{1, · · · , ℓ},
(i) if ar < 0, then Prz is arbitrary;
(ii) if ar > 0, then Prz = 0;
(iii) if ar = 0, then Prz ∈ N (A− λrI).

Proof. Since

enτAPrz = enτλr

nr−1
∑

k=0

nk τ
k

k!
(A− λrI)

kPrz

for every r ∈ {1, · · · , ℓ}, the proof of the lemma is obvious. �

The following theorem is an immediate result of Lemma 4.3.

Theorem 4.4. Assume that lim supn→∞
‖Sn(e

τA)b‖ < ∞. Then,

lim sup
n→∞

‖enτAz + Sn(e
τA)b‖ < ∞
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if and only if the z ∈ Cm satisfies the following conditions: for every r ∈
{1, · · · , ℓ}
i) if ar < 0, then Prz is arbitrary;
ii) if ar > 0, then Prz = 0;
iii) if ar = 0, then Prz ∈ N (A− λrI).

Next, we give criteria for the existence of bounded solutions to Equation (1)
in an infinite dimensional Banach space.

Suppose that ωe(U) := limt→∞ t−1 logα(U(t)) < 0, where α(U(t)) stands
for the Kuratowski measure of U(t) (cf. [29]). Then exp(tωe(U)) < 1, (t > 0).
This implies that there exists a γ > 0 such that σ(U(t)) ∩ {z : |z| ≥ e−γt}
and σ(A) ∩ {z : ℜz ≥ −γ} consist of finite number of normal eigenvalues and
that σ(A) ∩ {z : −γ < ℜz < 0} = ∅ (cf. [17, 18]). Hence σ(A) ∩ {z : ℜz >
−γ} consists of finite number of normal eigenvalues λj , j = 1, 2, · · · , r, with
nonnegative real parts. Set aj = ℜλj , bj = ℑλj . Assume that aj = 0 for
1 ≤ j ≤ q (≤ r) and that aj > 0 for q < j ≤ r. Thus 1 is a normal eigenvalue
of U(τ). Set σ0(A) = {λj : 1 ≤ j ≤ q} and σ+(A) = {λj : q + 1 ≤ j ≤ r}.
We understand that σ+(A) = ∅ provided q = r. Let Mj be the generalized
eigenspace of A corresponding to λj . Since λj is a normal eigenvalue of A,
nj := dim Mj is finite and there exists a positive integer mj such that Mj =
N ((λj −A)mj ). The space X is decomposed as follows:

X = Y⊕ Z, Z = M0 ⊕M+, Y =

r
⋃

j=1

R((λjI −A)mj ),

M0 = M1 ⊕ · · · ⊕Mq, M+ = Mq+1 ⊕ · · · ⊕Mr.

The subspaces Y and Mj are closed in X and dim Z = n1 + n2 + · · · + nr =:
d. If we define Pj as in (8), where (λI − A)−1 is understood as the resolvent
operator R(λ,A), then Pj : X → Mj are projections such that PjPk = δjkPj

and APjx = PjAx for x ∈ D(A). If we set P = P1 + P2 + · · ·+ Pr, P0 = I − P ,
then P : X → Z and P0 : X → Y are projections. Y,Mj and Z are invariant
subspaces of U(t). Since U(t)x = U(t)P0x+ U(t)Px, we have

‖Sn(U(τ))x‖ ≤ ‖Sn(U(τ))P0x‖+ ‖Sn(U(τ))Px‖.

It follows from [1, Proposition 4.15] that there are an ε0 > 0 and a constant
K ≥ 1 such that

‖U(t)P0x‖ ≤ Ke−ε0t‖P0x‖ for all x ∈ X, t ≥ 0.

Hence we have

‖Sn(U(τ))P0x‖ ≤ K
n−1
∑

k=0

e−ε0τk‖P0x‖ ≤
K

1− e−ε0τk
‖P0x‖ < ∞.

As a result, {‖Sn(U(τ))x‖} is bounded if and only if {‖Sn(U(τ))Px‖} is bounded.
Since d = dim Z < ∞, AZ, the restriction of A to Z, is regarded as a d× d

matrix with eigenvalues λj , 1 ≤ j ≤ r, and U(t)Px = exp(tAZ)Px for all x ∈ X.
Thus we have the following result from Proposition 4.1.
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Theorem 4.5. Assume that σ(U(t)) and σ(A) are as in the above. Then
Sn(U(τ))x, n = 1, 2, · · · , are bounded if and only if the following conditions
hold:
(i) For q < j ≤ r, Pjx = 0.
(ii) For 1 ≤ j ≤ q,

(a) if τbj ∈ 2πZ, Pjx = 0:
(b) if τbj 6∈ 2πZ, Pjx ∈ N (AZ − λjI).

Corollary 4.6. Assume that σ(U(t)) and σ(A) are as in the above. Then the
solution x(t) of Equation (1) such that x(0) = bf is bounded if and only if the
following conditions hold:
(i) For q < j ≤ r, Pjbf = 0.
(ii) For 1 ≤ j ≤ q,

(a) if τbj ∈ 2πZ, Pjbf = 0:
(b) if τbj 6∈ 2πZ, Pjbf ∈ N (AZ − λjI).

Combining Theorem 4.5 with Theorem 3.3, we obtain the following result.

Corollary 4.7. Suppose U(t) is a bounded C0-semigroup such that ωe(U) <
0. Then every solution of Equation (1) is bounded on R+ if and only if for
j = 1, · · · , q the following conditions hold:
(a) If τbj ∈ 2πZ, then Pjbf = 0;
(b) If τbj 6∈ 2πZ, then Pjbf ∈ N (AZ − λjI).

Using Corollary 4.6, we obtain the following result on the existence of a
τ -periodic solution to Equation (1).

Theorem 4.8. Assume that ωe(U) < 0 and that bf satisfies the conditions (i,
ii) in Corollary 4.6. Then Equation (1) has a τ-periodic solution.

Proof. Since {Sn(U(τ))bf}n is bounded, it follows from Corollary 4.6 that the
solution x(t) of Equation (1) such that x(0) = bf is bounded. Since 1 is a normal
point of U(τ), we see that R(I − U(τ)) is a closed subspace of X. Therefore
Theorem 2.4 implies that Equation (1) has a τ -periodic solution. �

5. A Structure of Bounded Solutions

In this section we will give a structure of bounded solutions obtained in Sec. 4.
Throughout this section, we assume the following conditions:
1) ωe(U) < 0,
2) 1 is a normal eigenvalue of U(τ),
3) lim sup

n→∞

‖Sn(U(τ))bf ‖ < ∞.

We denote by λj := aj + ibj, j = 1, · · · , r, the points in σ(A) ∩ {z : ℜz ≥ 0}
as in Sec. 4. Moreover, denote by SP and SPX the set of all τ -periodic solutions
of Equation (1) and the set of all solutions of the equation (I − U(τ))x = bf ,
respectively. They are affine spaces. If we take a vector x0 ∈ SPX, then SPX =
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x0 +N (I − U(τ)). Let σ(A) ∩ {z : ℜz = 0} = {ib1, · · · , ibq}, and suppose that
τbj ∈ 2πZ for 1 ≤ j ≤ p(≤ q) and that τbj 6∈ 2πZ for p+ 1 ≤ j ≤ q. Set

N0 = Np ⊕ Nq ⊂ M0

where

Np = N (A−ib1I)⊕· · ·⊕N (A−ibpI), Nq = N (A−ibp+1I)⊕· · ·⊕N (A−ibqI).

Since 1 is a normal eigenvalue of U(τ), it follows that, p ≥ 1 and

N (I − U(τ)) = Np ⊂ N0,

cf. [29, Proposition 4.13]. Hence SPX = x0 +Np.

Proposition 5.1. The following results hold.
1) U(t)x is bounded for t ≥ 0 if and only if x ∈ Y⊕N0; that is,

(i) Pjx ∈ N (A − λjI) for 1 ≤ j ≤ q.
(ii) Pjx = 0 for q + 1 ≤ j ≤ r.

2) U(t)x is τ-periodic if and only if x ∈ Np; that is,
(iii) P0x = 0
(iv) Pjx ∈ N (A − ibjI) for 1 ≤ j ≤ p.
(v) Pjx = 0 for p+ 1 ≤ j ≤ r.

Proof. U(t)x is bounded if and only if P0U(t)x = U(t)P0x and PU(t)x = U(t)Px
are bounded. Since P0U(t)x is bounded for all x ∈ X, it suffices to check the
boundedness of U(t)Px. Since P = P1 + · · · + Pr, {U(nτ)Px}n is bounded if
and only if {U(nτ)Pjx}n, j = 1, 2, · · · , r, are bounded. On the other hand, since

‖U(t)Pjx‖ =
∥

∥e(aj+ibj)t

mj−1
∑

m=0

tm

m!
(A− λjI)

mPjx
∥

∥

= eajt
∥

∥

mj−1
∑

m=0

tm

m!
(A− λjI)

mPjx
∥

∥

for 1 ≤ j ≤ r, the assertion 1) is easily derived from this relation. Similarly,
U(t)x is τ -periodic if and only if P0U(t)x = U(t)P0x and PU(t)x = U(t)Px
are τ -periodic. If U(t)P0x is τ -periodic, we have P0x = U(nτ)P0x for all n =
1, 2, · · · . Since U(t)P0x → 0 as t → ∞, we have P0x = 0.

If U(t)Px is τ -periodic, U(t)Pjx is τ -periodic for 1 ≤ j ≤ r. It follows at
first that Pjx ∈ N (A − ibjI) for 1 ≤ j ≤ q and that Pjx = 0 for q + 1 ≤ j ≤ r.
If p + 1 ≤ j ≤ q, and if Pjx 6= 0, then U(t)Pjx = eibj tPjx is not τ -periodic.
Consequently, x ∈ Np. Clearly, if x ∈ Np, U(t)x is τ -periodic. �

Theorem 5.2. A solution x(t) of Equation (1) is bounded on R+ if and only if
x(0) ∈ Y⊕N0.

Proof. The solution x(t) is written as Equation (2) in Introduction. Notice that
the integral in this equation is bounded if and only if the condition 3) holds.
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Hence x(t) is bounded if and only if U(t)x(0) is bounded. From Proposition 5.1
we have the result in the theorem. �

The following result follows from the condition 3) and Theorem 5.2.

Corollary 5.3. The following assertions hold true.

(1) SPX 6= ∅,SPX = x0 +Np ⊂ Y⊕N0.

(2) M(bf ) ⊂ Y⊕N0, where M(bf ) is the linear space generated by {U(nτ)bf}∞n=0.

In the assertion (1) in Corollary 5.3, x0 can be taken in Y⊕Nq. Hence, it
is a unique solution of the equation (I − U(τ))x = bf . Then x0 is expressed as

x0 = (I − U(τ))−1bf ∈ Y⊕Nq.

Therefore, the following result holds.

Proposition 5.4.

SPX = (I − U(τ))−1bf +Np ⊂ Y⊕N0, (I − U(τ))−1bf ∈ Y⊕Nq.

We are now in a position to state the main result in this section.

Theorem 5.5. Take a τ-periodic solution u0(t) of Equation (1). Then the
following statements are valid.

(1) Any bounded solution x(t) of Equation (1) on R+ is written as

x(t) = u0(t) +

p
∑

j=1

eibjtxj +

q
∑

j=p+1

eibj txj + UY(t)y0,

with some vectors xj ∈ N (A− ibjI), 1 ≤ j ≤ q, and y0 ∈ Y.

(2) Any τ-periodic solution u(t) of Equation (1) is written as

u(t) = u0(t) +

p
∑

j=1

eibj tuj,

with some vectors uj ∈ N (A− ibjI), 1 ≤ j ≤ p.

Proof. Since u0(t) is the τ -periodic solution of Equation (1), u0(0) ∈ SPX ⊂
Y⊕N0. Let x(t) be a bounded solution on R+ of Equation (1). Then it follows
from Theorem 5.2 that x(0) ∈ Y⊕N0. Therefore x(0)− u0(0) ∈ Y⊕N0 ; it is
expressed as

x(0)− u0(0) =

q
∑

j=1

xj + y0,

where xj ∈ N (A − ibjI) and y0 ∈ Y. Since x(t) − u0(t) is a solution of the
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homogeneous equation, we have

x(t)− u0(t) = U(t)[x(0) − u0(0)]

= U(t)

p
∑

j=1

xj + U(t)

q
∑

j=p+1

xj + UY(t)y0

=

p
∑

j=1

eibjtxj +

q
∑

j=p+1

eibj txj + UY(t)y0,

as required. The remainder is obvious. Therefore the proof of the theorem is
complete. �

Corollary 5.6. The following statements are valid.
(1) There is a τ-periodic solution to Equation (1); dim SP = p.
(2) There is an asymptotically τ-periodic solution to Equation (1).
(3) If p < q, there is an asymptotically quasi-periodic solution to Equation (1).
(4) If p = q, every bounded solution is an asymptotically τ-periodic solution to

Equation (1).

(5) If p = q = r, and if R(λ,A) := (λI − A)−1 has a pole of order 1 at λ =
λj , 1 ≤ j ≤ p, then all τ-periodic solutions of Equation (1) are stable.

Proof. Statements (1) - (4) are trivial. Assume that the conditions in (5) hold.
Then we have X = Y ⊕ N0. Hence there is a positive constant H such that
‖U(t)x‖ ≤ H‖x‖ for t ≥ 0, x ∈ X. Let u0(t) be any τ -periodic solution of
Equation (1). Then for every solution u(t), u(t) − u0(t) is a solution of the
homogeneous equation. Hence u(t)− u0(t) = U(t)(u(0) − u0(0)), which implies
‖u(t)− u0(t)‖ ≤ H‖u(0)− u0(0)‖ for t ≥ 0. Therefore the assertion (5) is valid.

�

In a subsequent paper, we will consider the case where

lim sup
n→∞

‖Sn(U(τ))bf‖ = ∞

and the cases of Equation (3) with (4) as well as functional differential equations.
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