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Abstract. The aim of the paper is to give a brief survey on some directions of research

in three closely related topics: Random series, Stochastic Integrals and Random map-

pings, which are of our interest and related to our work. The contributions of Prof.

Nguyen Duy Tien on random series are placed into this context.

1. Introduction

It is well- known that the harmonic series
∞∑

k=1

1
k

is divergent and the Leibniz series

1 − 1
2

+
1
3
− · · ·

is convergent. Moreover, it is shown that the series
∞∑

k=1

±1
k
,

where the sign ± is chosen independently with the same probability converges
almost surely (a.s.).

∗This work was supported in part by the National Basic Research Program.
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Historically, the first random series is the series of the form
∞∑

i=1

±cn, (1)

where the real numbers cn are given and the sign ± are random, independent
and equiprobable. The series (1) is called a Rademakher series. Starting from
the Rademakher series, Kolmogorov and Khinchin [13] made a systematic study
of sums of independent random variables. This topic has been the subject of an
extensive research and is essential for many areas of probability and analysis.
We refer to the books [14, 50] for more information on this subject.

As a continuous analogue of random series, the stochastic integral of a func-
tion with respect to a random function was firstly introduced by Wiener [51],
Levy [15] and has been developed by many authors (see [41] for more details).
Several stochastic integrals such as the Ito stochastic integral, the Stratonovic
stochastic integral are central in the modern theory of stochastic analysis and
crucial for many applications in financial mathematics.

The concept of mapping plays a basic role in mathematics. A mapping from
X into Y is a correspondence that associates with each element x ∈ X an element
Φx ∈ Y . In a random environment, however, the image Φx might not be known
exactly. It should be a random variable with values in Y . Hence there arises
the need of introducing a more realistic formulation of the concept of mapping.
It is a concept of random mapping. A random mapping from X into Y is a
rule that assigns to each element x ∈ X a random variable Φx taking values
in Y . The stochactic integral is an example of a random mapping, namely the
correspondence that associates with each function f(x) ∈ L2[0, 1] the random
variable

1∫
0

f(t)dW (t),

where W (t) is a Brownian motion (or the Wiener process). Consequently, ran-
dom mappings can be considered as a natural framework of stochastic integrals.

The purpose of the paper is to give a brief survey on some directions of re-
search in three closely related topics: Random series, Stochastic integrals and
Random mappings. The remainder of the paper consists of three sections, de-
voted respectively to the three topics under consideration. We do not attempt
to present all aspects as well as the comprehensive history of the development of
these topics but rather just some directions of research which are of our interest
and related to our work.

2. Random Series

2.1. Rademakher, Gaussian and stable series

Let E be a Banach space and (xn) be a sequence in E. Let (rn) be a sequence
of independent random variables taking two values ±1 with the probability 1/2



From Random Series to Random Integrals and Random Mappings 307

at each case. Such a sequence is called the Rademakher sequence. Consider the
following random series

∞∑
n=1

±xn =
∞∑

n=1

rnxn. (2)

Now the problem is to investigate the a.s. convergence of the Rademakher series
(2) in the norm topology of E.

Parallel to the Rademakher series, the following series were also considered

∞∑
n=1

ξnxn, (3)

∞∑
n=1

ξ(p)
n xn, (4)

where (ξn) is a standard Gaussian sequence (i.e. a sequence of Gaussian i.i.d. ran-
dom variables with the distribution N(0, 1)) and

(
ξ
(p)
n

)
(0 < p < 2) is a standard

p-stable sequence (i.e. a sequence of p-stable i.i.d. random variable with the unit
lenght).

The series (3) and (4) are called the Gaussian series and p-stable series,
respectively.

In particular, if E is a certain space of functions such as C[0, 1], Lp[0, 1] then
we have the random series of functions. Typical examples of these random series
were the Fourier random series

∞∑
n=1

ξn

√
2 sin(n +

1
2
)πt,

which represents the Brownian motion and the Taylor random series

∞∑
n=0

rnzn.

In the case E is a Hilbert space the following theorem gives a simple criterion
of the a.s. convergence of the series (2), (3) (4).

Theorem 2.1. [5] Let E be a Hilbert space. Then the Gaussian series and the
Rademakher series converge a.s. if and only if

∞∑
n=1

‖xn‖2 < ∞.

The p-stable series (4) converges if and only if

∞∑
n=1

‖xn‖p < ∞.
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For a general Banach space it is rather hopeless to provide a simple character-
ization of the sequence (xn) ∈ E for which the series (2),(3) or (4) converge a.s.
However, a usable necessary and sufficient condition for the a.s. convergence of
the Gaussian and stable series can be obtained in the case E = Lr(T.A, μ).

Theorem 2.2. [14, p. 46] Let 0 < r < ∞ and E = Lr(T.A, μ). Then
(1) The Gaussian series (2) converges a.s. if and only if∫

T

( ∞∑
i=1

|xi(t)|2
)r/2

μ(dt) < ∞.

(2) The p-stable series (3) converges a.s. if and only if
• For r < p ∫

T

( ∞∑
i=1

|xi(t)|p
)r/p

μ(dt) < ∞.

• For r > p
∞∑

i=1

⎛
⎝∫

T

|xi(t)|r
⎞
⎠

p/r

μ(dt) < ∞.

• For r = p

∞∑
i=1

∫
T

|xi(t)|p
⎛
⎝1 + log+ |xi(t)|p

(
∑∞

i=1 |xi(t)|p)
∫
T

|xi(t)|pμ(dt)

⎞
⎠μ(dt) < ∞.

Moreover, the a.s. convergence of the p-stable series implies its convergence
in s-th mean for any s < p.

Theorem 2.2 has a long history. We refer to the book [50] for more informa-
tion on this subject. The most difficult case is the case r = p. The full proof of
it appeared in [2].

The case of E = C(T ), the space of all continuous function on a compact
space T , is especially important since these random series give series represen-
tation of stochastic processes with continuous sample paths. Unfortunately,
this problem is as difficult as the general one because a general Banach space
E can be embedded canonically into the space C(T ) for some compact space
T . However, in the case of Gaussian series, there are some interesting results
characterizing the convergence of the Gaussian series in terms of the entropy.
Let us define a pseudometric d(s, t) on the set T by

d(s, t) =

√√√√ ∞∑
i=1

(
xi(t) − xi(s)

)2
.

The entropy N(ε) is now defined as follows

N(ε) = inf{n ∈ N : ∃t1, . . . , tn ∈ T such that T ⊆
⋃

K(ti, ε)},
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where K(t, ε) = {s ∈ T : d(t, s) < ε}.

Theorem 2.3. [4]
1. If ∫ 1

0

(log N(ε))1/2dε < ∞.

then the Gaussian series (2) converges a.s. in C(T ).
2. If the Gaussian series (3) converges a.s. in C(T ) then

∫ 1

0

(log N(ε))rdε < ∞, ∀r < 1/2.

3. The Gaussian series (3) converges a.s. in C(T ) if and only if there exists a
probability measure m on T such that

lim
h→0

sup
t∈T

h∫
0

(
log

1
m(K(t, ε))

)1/2

dε = 0.

More information on these and related subjects can be found in [16].

2.2. Relationship with Summing Operators

Let T : l2 → E be a linear continuous operator and (en) be the orthogonal basis
in l2. Consider the random series (2), (3) where xn = Ten i.e. the following
random series

∞∑
n=1

ξnTen, (5)

∞∑
n=1

rnTen. (6)

The problem is to give necessary and sufficient conditions on T to ensure the
a.s. convergence of the series (5) or (6).

If E is a Hilbert space, from Theorem 2.1 it follows immediately that the
Gaussian series (5) and the Rademakher series (6) converge a.s. if and only if
T is a Hilbert-Schmidt operator. The extension of this result to Banach spaces
was considered by many authors. The partition of linear operators into classes
of p-summing operators introduced by Piesch [21] and the notion of type and
cotype of Banach spaces turn out to be very helpful to this end.

Theorem 2.4. [18] The following assertions are equivalent:
1. E is of cotype 2
2. The series (5) converges a.s. in E if and only if T is a 2-summing operator.
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Theorem 2.5. [3] The following assertions are equivalent
1. E is of type 2.
2. The series (5) converges a.s. in E if and only if T ∗ : E∗ → l2 is a 2-summing

operator.

Tien [28] obtained the same results for the Rademakher series (6) . He also
remarked that there are results which are true for the Gaussian series but not
true for the Rademakher series, namely if (xn) and (yn) are two sequences in E
such that

∑
n |(yn, x∗)|2 ≤ ∑n |(xn, x∗)|2 for all x∗ ∈ E∗ then the convergence

a.s. of the Gaussian series
∑

n ξnxn in E implies the convergence a.s. of the
Gaussian series

∑
n ξnyn. However, an analogous assertion for the Rademakher

series does not hold.
Analogous results for the stable series were considered by Thang, Tien [29,

31, 32, 35]. Let 1 < p < 2, 1/p + 1/q = 1 , T : lq → E be a linear continuous
operator and (en) be the standard basis in lq. Consider the p-stable series

∞∑
n=1

ξ(p)
n T (en). (7)

Then we get the following

Theorem 2.6. [32] The following assertions are equivalent
1. E is of s-cotype p and of p-stable.
2. The series (7) converges a.s. in E if and only if T is p-summing.

Theorem 2.7. [31] The following assertions are equivalent
1. E is of p-stable type and can be emmedded into some space Lp.
2. The series (7) converges a.s. in E if and only if T ∗ : E∗ → lp is p-summing.

2.3. The Ito-Nisio Theorem and Three Series Theorem

Let (Xn) be a sequence of independent random variables with values in a Banach
space E. Consider the random series

∞∑
n=1

Xn. (8)

Obviously, the random series (2),(3) and (4) are special cases of the series (8).
The following theorem, due to Ito and Nisio,is a pearl of probabilily theory.
It asserts the equivalence of several types of the convergence of the series (8).
Actually, the real line version of it was known from the early work of Levy.

Theorem 2.7. [9] Let (Xn) be a sequence of independent random variables with
values in a Banach space E. Then the following three conditions are equivalent:
1. The series (8) converges a.s.
2. The series (8) converges in probability.
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3. The series (8) converges in distribution. If, additionally, (Xn) are symmetric
then Conditions (1) - (3) are also equivalent to each of the following condition.

4. There exists a E-valued random variable S such that for each x∗ ∈ E∗ the
series

∑∞
i=1(Xi, x

∗) converges a.s. to (S, x∗).
5. There exists a probability measure μ on E such that for each x∗ ∈ E∗ the

distributions of
∑n

i=1(Xi, x
∗) converge weakly to (μ, x∗).

Another pearl of probability theory is the following Three Series Theorem
obtained by Kolmogorov in the real line case. His proof also works in the case
of Hilbert spaces.

Theorem 2.8. Let E be a Hilbert space . Then the series (8) converges a.s. if
and only if for some a > 0 (or, equivalently, for all a > 0) the following three
deterministic series are convergent:
1.
∑∞

i=1 P (‖Xi‖ > a);
2.
∑∞

i=1 EXa
i ;

3.
∑∞

i=1 E‖Xa
i − EXa

i ‖2,
where Xa = XI{‖X‖≤a}.

The extension of the Three Series Theorem to Banach spaces was considered
by Tien [27].

The Ito-Nisio type Theorem is available in the case (Xn) is a martingale
difference. Recall that the sequence (Xn) is a E-valued martingale difference if

E (Xn|X1, . . . , Xn−1) = 0.

It should be noted that if (Xn) is a sequence of E-valued independent random
variables with mean zero then it is a martingale difference. The following result
is a martingale version of the Ito-Nisio Theorem.

Theorem 2.9. [5] Let (Xn) be a sequence of E-valued martingale differences
such that supn E‖Sn‖ < ∞, where Sn =

∑n
i=1 Xi. Then the following statements

are equivalent:
1. The series (8) converges a.s.
2. The series (8) converges in probability.
3. The series (8) converges in distribution.
4. There exists a E-valued random variable S such that for each x∗ ∈ E∗ the

series
∑∞

i=1(Xi, x
∗) converges a.s. to (S, x∗).

5. There exists a probability measure μ on E such that for each x∗ ∈ E∗ the
distributions of

∑n
i=1(Xi, x

∗) converge weakly to (μ, x∗).

The three series-type theorem for martingale difference was due to Szulga
[26].

Theorem 2.10. [26] Let E be a Hilbert space and let (Xn) be a sequence of
E-valued martingale difference such that the following three series converges a.s.
for some a > 0



312 Dang Hung Thang

1.
∑∞

i=1 P
(‖Xi‖ > a|Fi−1

)
;

2.
∑∞

i=1 E (Xa
i |Fi−1);

3.
∑∞

i=1 E
(‖Xa

i − E (Xa
i |Fi−1) ‖2|Fi−1

)
.

Then the series (8) converges a.s.

3. Stochastic Integral

3.1. The Wiener Type Stochastic Integral

In many applications, there arises the need of constructing the stochastic integral
of the form

1∫
0

f(t)dX(t),

where f(t) is a deterministic function and X(t) is a stochastic process with the

independent increaments. Roughly speaking,
1∫
0

f(t)dX(t) can be defined as the

limit in probability of the integral sums of the form

n∑
i=0

f(ti) (X(ti+1) − X(ti))

when the gauge of the partition 0 = t0 < t1 < ... < tn tends to zero. Hence the
stochastic integral can be considered as a continuous analogue of weight sum of
i.i.d. random variables of the form

∑∞
n=1 ξnxn.

Historically, the first stochastic integral of this type introduced by Wiener
[51] for the case X(t) is the Brownian motion. W (t) is called the Wiener stochas-
tic integral. It is shown that f is W -integrable if and only if f belongs to the
space L2[0, 1].

For the case X(t) is a stochastic process with independent increament such
that the distribution of X(t) − X(s) is symmetric and depends only on t − s, it
was shown by Urbanik and Woczynski [49] that the function f is X-integrable if
and only if f belongs to certain Orlicz space LΦ[0, 1], where the Orlicz function
Φ is defined from the Levy-Khinchin representation of the process X(t).

The stochastic integral w.r.t. a stochastic process with independent increa-
ment is a special case of the stochastic integral w.r.t. a random measure. Let
(T,A) be a measurable space. A mapping M : A −→ L0(Ω) is called a random
measure on (T,A) if for every sequence (An) of disjoint sets from A, the r.v.’s
M(An) are independent and

M

( ∞⋃
n=1

An

)
=

∞∑
n=1

M(An) in L0(Ω).

The stochastic integral of real-valued deterministic functions w.r.t. random mea-
sures was defined in the following way. At first, if f : T → R is a simple function,
f =

∑n
i=1 tiIAi then the stochastic integral of f w.r.t. M is defined by
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∫
fdM =

n∑
i=1

tiM(Ai).

Next, a function f is said to be M -integrable if there exists a sequence of simple
functions (fn) such that lim fn(t) = f(t) μ - a.s. and the sequence {∫ fndM}
converges in L0(Ω). If f is M -integrable then we put∫

T

f dM = p-lim
∫
T

fn dM.

It can be shown that the above definition is well-defined, i.e., the limit
∫
T

f dM

does not depend on the choice of a particular approximating sequence (fn). The
set of M -integrable functions is denoted by L(M).

The Wiener-type stochastic integral
∫
T

f dM under various hypotheses on the

random measure has been investigated by many authors (see [49, 20, 23, 24]).
The most general results, due to Rajput and Rosinski [23], were concerned with a
systematic study of the case where M is an arbitrary infinitely divisible random
measure. The deterministic characteristics of M were obtained and a necessary
and sufficient condition for a function to be M -integrable is given in terms of
these deterministic characteristics. Moreover, this stochastic integral is used
to obtain the spectral representation of infinitely divisible processes. Namely,
for any infinitely divisible process X(s) there exist a infinitely divisible random
measure M and a family of functions (fs(t)) such that Xs =

∫
fs(t)dM(t).

Vector random measures arise naturally as a Banach space generalization of
random measures, i.e., for each A ∈ A, M(A) are no longer a real-valued random
variable but a random variable with values in a Banach space E. Some aspects
of vector random measures and the random integral of real-valued functions
with respect to vector random measures were considered by Thang [36–37, 48].
The following theorems are random analogues of the Pettis theorem and the
Vitali-Hahn-Sacks theorem in the theory of vector measures.

Theorem 3.1. [36] Let F be a vector symmetric random measure with values in
a Banach space E and μ be a control measure for F (this means μ is a positive
measure on T such that μ(A) = 0 implies F (A) = 0). Then F is μ-continuous ,
i.e.

lim
μ(A)→0

F (A) = 0 in LE
0 (Ω).

Theorem 3.2. [36] Let (Fn) be a sequence of symmetric random measures with
values in E and μ be a control measure for Fn for all n. Suppose that

lim
n

Fn(A) = F (A) in LE
0 (Ω)

exists for each A ∈ A. Then the mapping A �→ F (A) is also a symmetric random
measure with values in E with the control measure μ .

Let Z be an E-valued symmetric Gaussian random measure with the charac-
teristic measure Q. We notice that there exists a control measure for Z. Indeed,
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by Bartle-Dunford-Schwartz’s theorem(see [6, Corollary 6]) there is a finite non-
negative measure μ such that Q(A) = 0 whenever μ(A) = 0. Clearly, μ is a
control measure for Z.

Theorem 3.3. [48]
1. A function f : T → R is Z-integrable if and only if the function |f |2 is

Q-integrable and ∫
|f |2 dQ

is a Gaussian covariance operator.
2. Suppose that E is a Banach space of type 2. Then the function f is Z-

integrable if and only if |f |2 is Q-integrable.

Let Zp be an E-valued symmetric p-stable random measure with the charac-
teristic measure Qp. It is easy to see that the variation |Qp| of the characteristic
measure Qp of Zp is a control measure for Zp.

Theorem 3.4. [48]
1. A function f : T → R is Zp-integrable if and only if the function |f |p is

Qp-integrable and ∫
|f |p dQp

is a spectral measure on E. In this case,
∫ |f |p dQp is exactly the spectral

measure of the E-valued symmetric p-stable r.v.
∫

fdZp.
2. Suppose that E is of stable type p. Then the function f is Zp-integrable if

and only if the function |f |p is Qp-integrable.

Theorem 3.5. [37] Let F be an E-valued symmetric infinitely divisible random
measure with the characteristic function of F (A) given by

ΦA(x∗) = exp{
∫
E

(cos(x, x∗) − 1)H(A, dx)}

A function f : T → R is F -integrable if and only if the positive measure μ defined
on E by

μ(B) = H {(t, x) ∈ T × E : f(t)x ∈ B}
is a Levy measure on E.

3.2. The Ito-Type Stochastic Integral

In order to provide a powerful method for the explicit construction of the paths
of diffusion processes, Ito [8] introduced a very important generalization of the
Wiener stochastic integral by omitting the restriction that the integrand was a
deterministic function. He constructed the stochastic integral of the form



From Random Series to Random Integrals and Random Mappings 315

1∫
0

u = u(t, ω)dW,

where the integrand u is a random function adapted w.r.t. the Wiener process

such that
1∫
0

u2(t, ω)dt < ∞ a.s. This stochastic integral can be defined as the

limit in probability of Riemann integral sums of the form
n−1∑
i=0

u(ti) (W (ti+1) − W (ti))

when max(ti+1 − ti) of the partition 0 = t0 < t1 < · · · < tn tends to zero.
The Ito stochastic integral is subject to a strange calculus. For example, if

f is a smooth function then we have the Ito formula

f(Wa) − f(Wb) =

b∫
a

f ′(Wt)dW (t) +
1
2

b∫
a

f”(Wt)dt,

often written instead in the differential form

d (f(Wt)) = f ′(Wt)dWt +
1
2
f”(Wt)dt.

The Ito stochastic integral is essential for the theory of stochastic analy-
sis. Equipped with the notion of the Ito stochastic integral one can consider
stochastic differential equations. For example, given smooth functions A, B with
bounded derivatives and a random starting point ξ, the problem is to find a pro-
cess x(t) = x(t, ω) satisfying

dx(t) = A (t, x(t)) dt + B(t, x(t))dW (t), x(0) = ξ.

This is a stochastic differential equation for the process x(t). It should be un-
derstood as an abbreviation for the stochastic integral equation

x(t) = ξ +

t∫
0

A(s, x(s))ds +

t∫
0

B(s, x(s))dW (s).

It is shown that the solution x(t) is a Markov process with continuous sample
paths, in fact a diffusion process. Conversely, every smooth diffusion process
is a solution of a stochastic differential equation of this form. Hence stochastic
differential equations provides an effective mean of constructing the paths of a
diffusion process x(t) from the paths of a Wiener process W (t) and an initial
value ξ.

The Ito stochastic integral w.r.t. Wiener process is insufficient for application
as well as for mathematical questions. It has been generalized in many direc-
tions. Generally speaking, the aim of these generalizations is to define stochastic
integrals so that the class of integrators as well as the class of the integrands
must be as wide as possible and, at the same time, the stochastic integral should
enjoy many good properties. A general stochastic integral in which the inte-
grator is a semimartingale has been developed in [10, 12]. Different definitions
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of stochastic integral in which the random functions to be integrated are not
adapted have been proposed by several authors (see [19] and references therein).

Thang [43] constructed the Ito-type stochastic integral of the form
1∫

0

u(t, ω)dZp

in which Zp is an E-valued symmetric p-stable random measure taking values in
a sufficiently smoothable Banach space. Under the assumption that the Banach
space E is q-smoothable, (where q = 2 if p = 2 and q > p if p < 2) and the
variation |Qp| of the characteristic measure Qp is continuous, it is shown that
the space of Zp-integrable functions is precisely the class of adapted random
functions in Lp (|Qp| × P ) .

4. Random Mappings

Let (X, d) be a complete separable metric space and Y a separable Banach space.
By definition, a deterministic mapping from X into Y is a rule that assigns to
each element x ∈ X a unique element Φx ∈ Y , which is called the image of
x under Φ. Due to errors in the measurements and inherent randomness of
the environment, the image Φx is not known exactly. Therefore, instead of
considering Φx as an element of Y we have to think of it as a random variable
with values in Y .

A family Φ = {Φx}x∈X of Y -valued random variables indexed by the pa-
rameter set X is called a random mapping from X into Y . In other words, a
random mapping Φ from X into Y is a rule that assigns to each element x ∈ X
a random variable Φx taking values in Y , i.e. a mapping Φ : X → LY

0 (Ω), where
LY

0 (Ω) stands for the space of all Y -valued random variables.
Random series and stochastic integral provide a good mechanism to generate

random mappings. Let us start by some examples.

Example 1. (Random series). Let (fn)∞n=1 be a sequence of deterministic measur-
able mappings from X into Y and (αn)∞n=1 be a sequence of real-valued random
variables. Assume that for each x ∈ X the series

∞∑
n=1

αnfnx

converges in probability. Put

Φx =
∞∑

n=1

αnfnx;

we have a random mapping Φ from X into Y .

Example 2. (The stochastic integral). Let (Wt)(0 ≤ t ≤ 1) be the Brownian
motion on [0,1]. For each function x = x(t) ∈ L2[0, 1] we put
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Φx(t) =

t∫
0

x(s)dW (s).

Φx(t) is a continuous random function on [0,1] so it can be regarded as a random
variable with values in C[0, 1]. Hence the correspondence x �→ Φx defines a
random mapping from L2[0, 1] into C[0, 1].

More generally, let (T,A) be a measurable space.Rosinski [22] has con-
structed a stochastic integral of the form∫

T

f(s)dM(s),

where f : T → Y is a Y -valued measurable function and M is a random measure
on (T,A). This stochastic integral is a Y -valued random variable. Now let
{F (s, x)}x∈X be a family of M -integrable Y -valued functions indexed by the
parameter set X . Then the rule that associates to each x ∈ X a Y -valued r.v.
Φx given by

Φx =
∫
S

F (s, x)dM(s),

produces a random mapping from X into Y .

4.1. Random Operators

Let X, Y be separable Banach spaces. A random mapping A from X into Y
is said to be a random operator if the mapping A : X → LY

0 (Ω) is linear and
continuous i.e.

• For each x1, x2 ∈ X, λ1, λ2 ∈ R we have

A(λ1x1 + λ2x2) = λ1A(x1) + λ2A(x2) a. s.

• lim
x→x0

Axn = Ax0 in LY
0 (Ω).

The random operators can be regarded as a random generalization of de-
terministic (linear continuous) operators. From this point of view there arise
naturally the desire for transfering basic notions and theorems of deterministic
operators to random operators.

Theorem 4.1. [33] (The Principle of uniform boundedness for random opera-
tors)
Let (Ai, i ∈ I) be a family of random operators from X into Y such that for each
x ∈ X

lim
t→∞ sup

i∈I
P{‖Aix‖ > t} = 0.

Then we have
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lim
t→∞ sup

‖x‖≤1

sup
i∈I

P{‖Aix‖ > t‖ = 0.

Theorem 4.2. [33] (The Banach-Steinhaus theorem for random operators)
Let (An) be a sequence of random operators from X into Y . Assume that for
each x ∈ X

lim
n→∞ Anx exists in LY

0 (Ω).

Then the random mapping x �→ Ax given by

lim
n

Anx = Ax

is a random operator from X into Y .

Let A be a random operator from X into Y . A random operator B from Y ∗

into X∗ is called the adjoint of A if for every x ∈ X, y∗ ∈ Y ∗ we have

(Ax, y∗) = (x, By∗) a.s.

The adjoint of a random operator, if it exists, is uniquely determined. However, a
random operator need not admit the adjoint. So the problem is to find conditions
ensuring the existence of the adjoint of a random operator.

Theorem 4.3. [40] Let A be a random operator from lp, (p > 1) into Y . Then
A admits the adjoint random operator if and only if for each y∗ ∈ Y ∗

∞∑
n=1

|(Aen, y∗)|q < ∞ a.s.

Theorem 4.4. [40] Let A be a Gaussian random operator from H into H.
Denote αij = (Aei, ej).Then A admits the adjoint random operator if and only
if
1. For each i, j the series ∞∑

i=1

E(αikαij) = rkj

converges,
2. The matrix R = [rkj ] represents a bounded linear operator on H with respect

the basis (en).
In particular the adjoint of A exists if

• The matrix (αij) is symmetric, or
• ∑∑

r2
kj < ∞.

Let X, Y, Z be three Banach spaces, A be a random operator from X into
Y and let U be a deterministic linear operator from Z into X . Define the
composition AU by

(AU)x(ω) = A(Ux)(ω).
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It is easy to check that AU is a random operator from Z into Y and it admits
the adjoint if A does but the converse does not hold. We have

Theorem 4.5. [42]
1. Suppose that for some p > 1 we have E |(Ax, y∗)|p < ∞ for all x ∈ X, y∗ ∈

Y ∗. Then if the adjoint U∗ is a p-summing operator then AU admits the
adjoint.

2. Suppose that E |(Ax, y∗)| < ∞ for all x ∈ X, y∗ ∈ Y ∗. Then if the adjoint
U∗ is a nuclear operator then AU admits the adjoint.

For each fixed sample ω ∈ Ω the mapping Aω : X → Y given by x �→ Ax(ω)
is called a sample path of A. A is called continuous if for almost all ω the sample
Aω is a linear continuous operator. In this case, the random operator A can be
understood as a family {Aω}ω∈Ω of deterministic linear continuous operators
from X into Y .

More generally, let V be a subset of the Banach space L(X, Y ) of all linear
continuous operators from X into Y . The random operator A is called a V -
sample if there exists a mapping T : Ω → V such that for each x ∈ X

P {ω : Ax(ω) = Tω(x)} = 1.

In particular, if V = L(X, Y ) then a L(X, Y )-sample random operator is also
called sample- continuous. Below we present some conditions for V -sample prop-
erty of a random operator.

Theorem 4.6. [39, 44] Let X = lp, (p > 1), q stands for the conjugate number
of p, (1/p) + (1/q) = 1 and (en) the standard basis in lp. Then
1. A random operator A from X into Y is sample continuous if

∞∑
n=1

‖Aen‖q < ∞ a.s.. (9)

2. For A to be sample continuous a necessary condition is that
∞∑

n=1

|(Aen, y∗)|q < ∞, ∀y∗ ∈ Y ∗. (10)

3. If Y is finite dimensional then (9) (and (10)) are both necessary and suffi-
cient. Otherwise, neither (9) nor (10) is necessary and sufficient.

4. In the case Y = Lr where 1 < q < r for r < 2 or 1 < q for r = 2, the
condition (9) is necessary and sufficient for A to be V -sample, where V is
the space of all completely summing from X into Y .

5. Let X = l1. Then A is sample continuous if and only if

sup
n

‖Anen‖ < ∞ a.s.

Theorem 4.7. [39] Assume that two random operators A, B are symmetric and
independent of the sense that for all x1, . . . , xn, x′

1, . . . , x′
m in X, two random

vectors (Ax1, . . . , Axn) and (Bx′
1, . . . , Bx′

m) are symmetric and independent.
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In addition suppose that V is separable. Then the random operator A + B is
V -sample if and only if both A and B are V -sample.

Other results on random operators in Hilbert spaces can be found in [25].

4.2. Regularity and Convergence of Random Mappings

Let Φ be a random mapping from X into Y . By definition, Φ can be identified
as a mapping (x, ω) �→ Φx(ω) from X × Ω → Y such that for each x ∈ X the
mapping ω �→ Φx(ω) is measurable. A random mapping Ψ from X into Y is
said to be a modification of Φ if for each x ∈ X we have

P {ω : Φx(ω) = Ψx(ω)} = 1

Noting that the exceptional set can depend on x.
• For each fixed sample ω ∈ Ω, the mapping x �→ Φx(ω) is called a sample

path (or sample mapping) of Φ. The random mapping Φ is called continuous
if the sample path is continuous for almost all ω, and called measurable if
the mapping (x, ω) �→ Φx(ω) is measurable w.r.t. the product σ-algebra
B(X) ⊗F .

• Φ is stochastically continuous if the mapping Φ : X → LY
0 (Ω) is continuous.

• Φ is sample continuous if Φ has a continuous modification.

Theorem 4.8.[44] Let Φ be a stochastically continuous random mapping. Then
Φ has a measurable modification.

The problem of the existence of continuous modification of stochastic pro-
cesses and random fields has been studied intensively by many authors. On the
basis of Kolmogorov’s continuity theorem we obtain the following sufficient con-
dition ensuring the sample continuity of a Y -valued Gaussian random mapping
on a bounded set X of a finite-dimensional space.

Theorem 4.9. [44] Let Φ be a Y -valued centered Gaussian random mapping on
a bounded set X and X can be isometrically embedded into a finite dimensional
space. Assume that there exist constants C > 0, δ > 0 and r > 0 such that

E‖Φx1 − Φx2‖r ≤ C‖x1 − x2‖δ, ∀x1, x2 ∈ X.

Then Φ is sample continuous.

The above condition is not sufficient if X is the unit ball of the space l1 as
shown by a consequence of the following theorem.

Theorem 4.10. [44] Let (αn) be a sequence of random variables in LY
1 (Ω) such

that supn E‖αn‖ = C < ∞, X the unit ball of the space l1 and let (en) be the
standard basis of l1. Then
1. For each x ∈ X the series
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Φx =
∞∑

n=1

αn(x, en)

converges in LY
1 (Ω) and defines a random mapping Φ from X into Y satisfying

E‖Φx1 − Φx2‖ ≤ C‖x1 − x2‖.
2. Φ is sample continuous if and only if

sup
n

‖αn‖ < ∞.

In particular, if (αn) is a sequence of Gaussian i.i.d. random variables then
Φ is not sample continuous.

The finite dimensional distributions of a random mapping are defined as
follows. Let x1, x2, . . . , xk be elements of X . We define the law of (Φx1, . . . , Φxk)
by

PΦ
x1,...,xk

(A) = P{ω : (Φx1, . . . , Φxk) ∈ A}
for each A ∈ B(Y k). The family of probability measures

(
PΦ

x1,...,xk

)
is called the

finite-dimensional distribution of Φ.
For a sequence {Φn} of random mappings from X into Y we introduce two

types of convergence as follows.
1. The sequence {Φn} is said to converge in probability if for each x ∈ X the

sequence {Φnx} converges in probability. In this case we can define a new
random mapping Φ by

Φx = p- lim
n→∞ Φnx.

Φ is called the limit in probability of {Φnx} and we write

Φ = p- lim
n→∞ Φn.

2. The sequence {Φn} is said to converge in law if for each positive integer k
and for each finite set x1, x2, . . . , xk in X the sequence (PΦn

x1,...,xk
) converges

weakly as n → ∞.In this case, it can be shown that there exists a random
mapping Φ such that for each finite set x1, x2, . . . , xk in X the sequence(
PΦn

x1,...,xk

)
converges weakly to

(
PΦ

x1,...,xk

)
. The random mapping Φ is called

the limit in law of the sequence {Φn} and we write

Φ = L- lim
n→∞Φn.

Now we study the relation between two types of convergence. Clearly, if
the sequence (Φn) converges in probability then it also converges in law. Under
some assumption, the converse is true if the sequence (Φn) is replaced by an
equivalent one.

Theorem 4.11. [46] Let (Φn)∞n=1 be a sequence of stochastically continuous
random mappings converging in law . In addition, the limit in law of the sequence
(Φn) is a stochastical continuous random mapping Φ0. Then there exist random
mappings (Ψn)∞n=1 and Ψ0 such that for each n = 0, 1, . . . , Φn and Ψn have
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the same finite-dimensional distributions and the sequence (Ψn)∞n=1 converges in
probability to Ψ0.

In the case of random operators, it is interesting to note that the asser-
tion of the above theorem holds without the assumption about the stochastical
continuity of Φ0. Namely we have the following

Theorem 4.12. [46] Let (Φn)∞n=1 be a sequence of random operators converging
in law. Then
1. The limit in law of the sequence (Φn)∞n=1 is again a random operator.
2. There exists a sequence of random operators (Ψn)∞n=1 such that for each

positive integer n, Φn and Ψn have the same finite-dimensional distributions
and the sequence (Ψn)∞n=1 converges in probability.

4.3. Series and Integral Representations of Random Mappings

It is well-known that a second order stochastic process can be represented as
the sum of orthogonal random variables (the Karhunen-Loeve expansion) and
a stationary Gaussian stochastic process can be written as a integral of white
noise (the spectral representation). For non-Gaussian processes similar spectral
representations were obtained by several authors (Kuelbs for symmetric stable
processes, Rajput [23] for symmetric semi stable processes and recently Rajput,
Rosinski [24] for infinitely divisible processes). Such representations have proved
exceedingly useful in the statistical analysis of processes under consideration.

In this section we establish some series and spectral representations for ran-
dom mappings from X into Y .

Theorem 4.13. [45] Let Φ be a stochastically continuous symmetric Gaussian
random mapping from X into Y . Then Φ can be expressed as a random series
of the form

Φx =
∞∑

n=1

αnfnx,

where (αn) is a sequence of real-valued Gaussian independent random variables
with distribution N(0,1)and (fn) is a sequence of deterministic continuous map-
pings from X into Y .

Gaussian random mappings belong to the class of stable random mappings.
However the random series are not enough to represent symmetric stable ran-
dom mappings in general. The random integral of Banach space valued functions
w.r.t. random symmetric measure constructed by Rosinski [22]is used in study-
ing the representation problems.

Theorem 4.14. [45] Let Φ be a symmetric p-stable random mapping from
X into Y such that the real process {〈Φx, y∗〉, x ∈ X, y∗ ∈ Y ∗} is separable.
Then there exist a symmetric p-stable random measures M on some measurable
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space (S,A, μ) and a family {g(s, x), x ∈ X} of M -integrable Y -valued functions
indexed by the parameter set X such that

Φx =
∫
S

g(s, x) dM(s).

In particular a symmetric Gaussian random mapping can be also written as a
random integral w.r.t. a white noise.

Let Φ be a symmetric p-stable random mapping and [Φ] be the closed sub-
space of L0 spanned by the random variables {(Φx, y∗)}. It is shown that [Φ] is
a Frechet space and can be isometrically embedded into some space Lp. The fol-
lowing theorem provides a sufficient condition for a symmetric p-stable mapping
to be represented as a random series.

Theorem 4.15. [45] If [Φ] is isometric to lp then Φ can be expressed as a
random series of the form

Φx =
∞∑

n=1

α(p)
n fnx,

where (α(p)
n ) is a sequence of real-valued p-stable i.i.d. random variables and

(fn) is a sequence of deterministic continuous mappings from X into Y .

4.4. Strong Random Mappings

A random mapping Φ from X into Y may be considered as an action which
transforms each deterministic input x ∈ X into a random output Φx. The
notion of strong random mappings arises in the case we have an action which
acts on random outputs.

Definition. Let D(X) be a subset of LX
0 (Ω). The mapping Φ : D(X) → LY

0 (Ω)
is said to be a strong random mapping from D(X) into Y .

The Ito stochastic integral provides a good example of strong random map-
pings. Let X = L2[0, 1] and D(X) be the set of X-valued random variables
u(., ω) such that the random function u(t, ω) is adapted with respect to the
Wiener process W (t). Then the correspondence

u �→
1∫

0

u(t, ω)dW (t),

where the stochastic integral is the Ito stochastic integral defines a strong random
mapping from D(X) into R.

Theorem 4.16. [44] Let Φ be a random mapping from X into Y admitting the
series expansion

Φx =
∞∑

n=1

αnfnx, (11)
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where (αn) is a sequence of real-valued independent random variables, (fn) is
a sequence of deterministic measurable mappings from X into Y and the series
(10) converges in probability for each x ∈ X.
1. Suppose that Y is a Hilbert space, Fn is the σ-algebra generated by α1, . . . , αn

and D(X) denotes the set of X-valued random variables u such that fnu is
Fn−1- measurable for each n > 1. Then for each u ∈ D(X) the series

∞∑
n=1

αnfn(u(ω))

converges in probability and so defines a strong random mapping from D(X)
into Y which is called an extension of Φ.

2. Suppose that Y is a p-smoothable Banach space and the sequence (αn) is
bounded in Lp (i.e. supn E|αn|p < ∞). Let A(X) denote the set of X-valued
random variables u such that fnu is Fn−1- measurable for each n > 1, and
in addition,

∞∑
n=1

‖fnu‖p < ∞ a.s.

Then for each u ∈ A(X) the series
∞∑

n=1

αnfn(u(ω))

converges in probability and so defines a strong random mapping from A(X)
into Y extending Φ.

Theorem 4.17. [44]
1. Let Φ be a random mapping from X into Y and let D(X) denotes the set

of countably-valued random variables. Then Φ can be extended into a strong
random mapping from D(X) into Y by the direct substitution

Φu = Φ(u(ω), ω).

2. Let Φ be a measurable random mapping from X into Y . Then Φ can be
extended into a strong random mapping from LX

0 (Ω) into Y by the direct
substitution

Φu = Φ (u(ω), ω)

for each u ∈ LX
0 (Ω).

In particular a sample continuous random mapping can be extended in this
way.

Theorem 4.18. Let Φ be a strong random mapping from LX
0 (Ω) into Y . Sup-

pose that there exist constants c, k ∈ (0, 1) such that for every two X-valued
random variable u, v, Φu − Φv is (c, k)-dominated by u − v, i.e.,

P{‖Φu − Φv‖ > t} ≤ cP{k‖u− v‖ > t}
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for all t > 0. Then there exists a unique X-valued random variable u satisfying
Φu = u i.e. Φ has a unique random fixed point.

The problem of establishing the existence, the uniqueness of random fixed
point of strong random mappings would be very useful in the theory of random
equations, stochastic differential equations and the study of stochastic approxi-
mation procedures.
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