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Abstract. Introducing the notion of widely approximate continuous functions we

study some basic properties of such functions.

1. Introduction and Definitions

Let IR be the real line and m* A , mA denote respectively the outer Lebesgue

measure and Lebesgue measure of a set A c R. We denote by d+(A,r) :

s e t A a t r € l R .
If these four extreme densities are equal to one another, their common value

is the density of the set A at c and is denoted by d(A,x).

Sarkhel and Dey [2] introduced the following definition'

Definition L, A set E c IR. i,s said to be sparse at a point c € IR on the right if

there erists, for euery e ) 0, a k > 0 such that euery interual (a,b) c (r,r * k)

ui,th a- r < k(b- r), contains at least one point y such thatm*{E n ("'C)} <

e (a  -  r ) .

The family of sets sparse at c on the right is denoted by ,S(r+) and anal-

ogously we define S(t-). A set .E is called sparse at z if E e ^9(c) where

,S(r) : S(r+) n S(r-). we Put
,9s(r+) : {E: E c IR. and d+(E,r) :0},

So(" - )  :  {E:  E c  IR.  and d-(E,r )  :0} ,
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and 
^9e(r) : ^9e(r+)n ̂ 9e(c-).

Clearly ̂ 9s(r+) c S(o*), ,50(r-) c ^9(r-) and .ge(c) c ^g(r) for every r € IR.
Also it is shown in [2] that these inclusions are proper.

We set
S"("+) :  {E: E c IR and d., . (E,c) :0},

So("-)  :  {E : .8 c IR and d-(E, r)  :  0},
and 

^9s(z) :  &("+)n so(c+).

By 12, Corollary 3.1.1] it follows that,9(c+) c ^90(r*),S("-) c Ss(r_) and
s(r) c &(").

The following example and its left analogue show that the above inclusions
are proper.

Erarnple /. Since the outer Lebesgue measure is translation invariant, we mav
choose, without loss of generality, r : 0. Let

a , - :  4 - ^ ,  b n :  I  - ,  f o r n : 1 , 2 , g , . . .
nexp(n' + rJ expln" )

and.E: ULr(o,,b.).Let e > 0 be given. We fix a positive integer m > !
such that Il* < e. Since bn+r/an-- nf exp(2n) r 0 as n ---+ oo, there exists a
positive integer N such that mbnal 1 an for n ) N.

Now for n, ) N and for y € lmbna1,o,] we get

m*{En (0, y)}  :  m'(En (0, b,"+r))  < !(*b,-*r)  < ,y.

This shows that da(8,0) : O.
Aga in  * * (E  n  (0 ,b" ) )  >  bn  -  an :  (L  -  l lne)bn  fo r  n  :  1 ,2 ,8 , . . .  and  so

d.*(E,o) :  t .
Since for a set E1 e S(r+) we get d*(Et,r) < 1 (cf. 12, Corollary 3.1.1]), it

follows that .E / S(0+).

Sinharoy [3] considered the following classes and their left analogues:

,9a(r+) :  {E: E c IR and da(E,c) :0 and d+(.8,r)  < 1},
Sz(x+) :  {E : .8 e,S3(c+) and .EU F € S3(c*) for ai l  F e,9s(r+)},

and 
^9r(o) :  &(r+)n Sr(r-)  for i :2,8.

Evident ly Sr(r+) c 36(r+),  &(r-)  c S_o("-)  and ,S;(r)  c &(")  for i :2,J.
Example 1 shows that these inclusions are proper.

Let f be a real valued function defined on / : [0, 1]. The following definition
was introduced in [2].

F o r a n y 0 € [ 0 , 1 )

P* f(r) :  inf{r  :  r  € lR and {s :  f (d >r} e S(r+)}
and

P+f (") :  sup{r:  r  € lR and {y t  f  (u) < r}  e S(r+)}
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are called respectively the upper right hand proximal Iimit and lower right hand

proximal limit of f at x. P--f (") and P-l(r) are defined analogously and are

called respectively the upper and lower left hand proximal limits of f at t'

If P+ f (r):-f (r):-P+f (r), / is said to be proximally continuous from the

right at 
".'Si*ii"itv 

t e:i1r1 : f@): P-f(r), / is said to-be proximallv

"Jrrtinrorrs 
from the left at r.'When / is proximally continuous from both sides

at r,it is called proximally continuous at c ( with obvious modifications at the

end points of 1).

Usingg0(r+)andS9(r_)wedef ineinthepapertheupperandloweruni la t .
eral limits and then 

" 
t;; of continuity which is wider than the ideas of approx-

imate continuity and proximal continuity. we investigate some basic properties

of functions which are continuous in this wide sense'

2. Wide Approximate Limit and Continuity

We start this section with the following definition'

Deffnit ion 2. For € € [0,7) we Put

u+(/,{)  :  inf{K :  {r  :  f (x) > K} e 5"(€+)i '

l+(/ , {)  :  suP{K :  {r  :  f (r)  < K} eso(€+)} '

Similarly we define u-(f ,0 and I-(/,O for { e (0,"1]'

Proposit ion 1..  P+/(€) < u+(/ ,€) S P+/(€) and Paf $) < l*( / '€) <

P*/(€).

proof. since ̂ 9({+) c g0(€+), it follows from the definition that P"''/({) <.

t+(/,€) und r+ii,g) < pfiiCj. We claim that A/(€) < u+(/'()'

Assume on the 
"orrtru.y 

ihat u+(/,€) < P+/({)' Now we choose a number

f *"n that u+(/, e) < i < p*/(€) Then there exist two numbers Kr,Kz

with Kr < K <Kz zuch that {r'i it i l, Kr} € 5o(€+) and {r ' f (') < Xz} e

s(€+).' " L e t  
A :  { r :  f ( " ) >  K }  a n d  3 :  / \ A '  T h e n  ' 4  C  { r :  f ( ' ) >  - K r } . . a n d

B c {r , / (")  < Nri  
"o 

that A e gr(€+) and B € s({+J.(cf '  [2 '  Corol lary

3.1.11i.  $ by Tteorem 3.1 in [2]  we cet d+(Au B,€) :  0 i 'e ' '  da(/ '€) :  0 '

whicii is a contradiction. Hence P+/(€) < u+(/,€)' Similarly we can prove

l+(/,€) < P+/(€). This completes the proof. I

Propositio n z. P- f (€) < u- (/, €) S P-t(€) and' P- f ({) S'-(/' €) S P- f G)'

The proof is omitted.

The following example shows that in some cases we may have u+(/'€) <

l+(/ ,  €) .

Erample 2. Let E be the set considered in Example 1 and
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( 0  i f  x € E
r t c / : I t  i f r € / \ . 8 .

Since E € g0(0+) and I\E e,S0(0+), it follows that u+ (/, 0) S O < 1 < l+(/, 0).

So we introduce the following definition.

Definition 3. The nurnbers

w+  f  ( € ) :  *a * { r+ ( . / , € ) , 1+ ( / , € ) }

and 
w+f  (€) :  min{u+(" f ,€) , ,+( / ,€)}

are called respect'iaely the upper and lower uide approrimate lim'its of f at ( e

10,1) lrom the ri7ht.

Likewise we define W- f (€) and l{z-l((), the upper and lower wide appro'
ximate limits of f at ( e (0, 1] from the left

ff A+f G)@-/({)) and A+/(O(/-/(€)) denote respectively the lower and
upper approximate limits of / at { from the right (left) then in view of Propo-
sitions 1 and 2 we get

.a+/(€) < P+/(O sw+f (€) 3w+ f (€) s P+/({) s A+/(€)

and
A-f (€) < p-l(€) <w-f (€) sw- f (€) s P-l(€) s A- f (€).

Definition 4. A function f is called uidely approximate cont'inuous ot € € [0' 1)
(€ e (0,t|) from the risht A"il rf W+f (€): /(€) :W+f (€)(W-l({) : /({)
: W- f GD. The funct'ion f i's said to be widely approti'mate continuous at {
i.f i,t i,s so from both the s'ides at (. The function f is called' uidelg approrimate
continuous on I if it is so at euery poi'nt of I (with the obttious rnodificat'ions at

the end poi,nts of I ).

We use WAC as the abbreviation of "widely approximate continuous" ' AIso
tta.e.tt stands for t'almost evervwheret'.

3. Lernrnas

In this section we present three lemmas which will be needed in the sequel.

Lemma 1. [2]
(i) An arbitrary set E has densi'ty 0 or I a.e. on R.

(i i) .I/ a subset E of ameasurable set Mhas density} a.e. on M\E then Eis

measurable.

The following lemmas give a convenient form of the unilateral wide appro-

ximate limits of a measurable function.
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Lernrna 2. If f is measurable then /or { e [0,1)
(i) u+(/,€) : inf{,lim*s"pof @): A c I is measurable and d+('4,O : 1},

(ii) ,+(/,€) : sup{,]ifrin[r/(r) : A c I is measurable and d+(a,g; : 11.

Proof. Let U+(f ,{) denote the right hand side of (i). Now we consider the
following cases.
Case I: -oo < U*U,€) < +co.
Let e > 0 be arbitrary. Then there exists a measurable set A c f with d+ (A,t) :

l such that limsup f(") <U+U,Q *e. So there exists a d > 0 such that
t - f ] - , c€A

f(") < U*(f,() + e for all o € An (€,€ + d). Therefore

An {x  z  f ( r )  >  U+$, i l  *  e ,  x  > { }  c  CIAn({ ,€  + d) l  n  ( { ,m)
: ICAn ({, oo)l u [{ + d, oo),

where C,A denotes the complement of .4. Since

{ r :  r  € . I  and / ( l r )  >  U* ( f  ,€ )  +  € ,  
"  

>  { }
:  [An  { r  :  x  €1  and / ( r )  >  rJ* ( f ,€ )  +  6 ,  

"  
>  € } ]

u lcA i  { r  :  x  €  - I  and f ( r )  >  U+(1 ,0*  e ,  r  >  { } l
c t{C An (€, m)} u [{ + d, m)] u C.4
:  CAU [{  + d,m),

the lower density from right of {r : c € / and /(c) > U+(f,€) * €, x > €} at €
is zero. So u+(/, 0 < U+(f ,{) + e and so

u+( f  ,€ )  <  u+( / ,€ ) .  (1 )

Let K be a real number such that {t : a € I and f(r) > K, n > €}
has lower density (from right) zero at {' Let B : C{r : r € I and /(o) >
K , n )  € ) n / .  T h e n d + ( 8 , € )  :  f  a n d f o r a l l r  €  B w e g e t  / ( " )  <  K '  S o
U+(f ,€) < Iimsup /(") < K and since K is arbitrary, it follows that

s+ { f , a€B

u+(f  ,€)  < 
"+(/ , { ) .

(2)

In this case (i) follows from (1) and (2).

Case I I :  U*(f  , {)  :  +m.
Claim: u+("f ,€):  *oo.
Assume on the contrary that u+(/,{) < +oo. Then there exists K ( *oo such
that {r : r € I,l@) > K,r ) {} has lower density (from right) zero at {.
L e t  D : C { r : r €  I  a n d / ( c )  )  K , r  >  € } n / .  T h e n d + ( D , € )  : 1 a n d

limsup f(x) 3 K so that U*U,e) < K < *oo, a contradiction' Hence
r+ f t , a€D

u+( / '€ ) :  *oo '

Case I I I :  U+(f  , {)  :  -m.

Then for arbitrary M(> 0) there exists a measurable set ,4 C .I with d+ (A,11 : 1
such that limsup /(r) < -M. So there exists a d > 0 such that /(r) < -M

a+ f l , r eA
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for al l  c € .4n(€,€+d). Since An{r, f  (r) > -M, r > €} c lCAn(€,oo)lU(€+
d, *) - CAUI{+ d, m) , the lower density (from right) of {r : r e .I and f (r) >-M, r > €) ut { is zero , Hence u+(f ,€) < -M and so u+(1,€): -oo.

Flom the above analysis the following cases are clear .
Case IV: If u+(/,{) : *oo then t/+(/,O : +oo.
Case V: I f  u+(f  , ()  :  -*  then t /+(/ ,€) :  -m.

Case VI:  I f  -oo <-u*(f  ,€) < +* then -oo < t /+(/ ,€) (  *oo and u+(/ ,6):
u+(f  ,€) .

(ii) can be proved in a similar manner. This proves the lemma. I

Lemma 3. If f is measurable then /or ( e (0,1].
(i) 

"-(/,€) 
: inf{,lim_supo/(") : A c I is rneasurable and d-(4,() : 1}.

( i i )  J - ( / ,€ )  : .up{ " IP in t  
o f  @) :  Ac  I  i s  measurab le  and d- (A ,€) : I } .

The proof is omitted.

4. Theorerns

Theorem L, II f is WAC from right(left) a.e. on I then f is measurable.

Let / be WAC from right on P c I where rn,(/\P) : 0 . For r € R we

A : { r : x € P a n d / ( r )  < r } ,

B n :  { x  :  x  €  P  a n d  / ( r )  >  ,  + : }  f o r  n :  L , 2 , 1 , .  . .

Since / is WAC from right on P, it follows that d1(8,,, r) : 0 for all r € ,4
and n :1,2,3, . . .  So by Lemma l  we see lhat  d(Bn,o)  :  0  for  a l l  r  e  An,s,
whe re  rn ( .4 \ , 4 . , e )  :  0  f o r  n :1 ,2 ,3 , . .  .

Let  B :  U*r  B,  and C:  l ' ] [ r .4 , ,s .  Then rn(A\C):0 and d(B,x)  :  g
for all x € C. Since P\A : B, P is measurable and has density zero a.e. on
P\.B, it follows by Lemma I that B is measurable and so ,4. is measurable.

Le t  As  -  
{ r , o  €  l and  f ( r )  < r } .  S ince  Ao  :  Au { r :  r  €  / \Pand / ( r )  <

r) and rn(/\P) : 0, it follows that .40 is measurable. So / is measurable. This
proves the theorem. r

Corollary L. f is WAC from right (left) a,.e. on I if and onlg if f ,is approxi-
mately cont'inuous a.e. on L

Proof. The "if' part is obvious. If / is WAC from right (left) a.e. on / then /
is measurable and so it is approximately continuous a.e. on 1.

Corollary 2. f is WAC Jrom right(Ieft) a.e. on I if and only if f is measurable.

Rernarlc l. Considering Example 6.1 [2] vre see that at a point a function may
be WAC without being approximately continuous.

Proof.
put
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In [2] it is proved that if / is proximally continuous on .I then /(1) is

connected and so / possesses the intermediate value property. Also as a con-

sequence of a result in [3] it follows that a proximally continuous function is

of Baire type 1. In the next two theorems we show that a WAC function also

possesses these properties.

Theorem 2. Let f be WAC on l.Then f (I) it connected and so f possesses

the'intermed'iate ualue property.

Prooj Let / be non constant because otherwise the case is trivial. Let a,b e I

be such that /(a) < /(b). Without Ioss of generality we may choose o:0 and

b : 1. Let k be a number such that /(0) < k < /(1). We show that J@): Ix

for some r € -I. Suppose on the contrary that /(r) I k fot any r e. I-

Let  A -  
{ r  t  x  € I  and f ( t )  < k} ,  B :  { r  :  r  €1 and / ( r )  > k} .  Then

I : A U B. Since / is WAC on 1, it follows that d1(8, t) : d-(B,r) : 0 for

all c € A and da(A,r) : d-(A,r) : 0 for all r € B' This implies byLemma 1

that d(B,s) : 0 for all r € Asc A and d(A,r): 0 for all r € Bo C B where

rn(A\,Ae) : rn(B\Bo) : 0' Also by Theorem 1, '4' and B are measurable'

Since 0 e A, i t  fo l lows that  da(8,0)  :0  and so d+( ,4,0)  :1 .  This  shows

that mA > 0. Again since 1 €. B,it follows similarly that rnB > 0.

Let ro € As. Then at least one of [rs,1] f l Bs and [O,rs] nBs is non void'

We suppose that [rs, l)n Bo + 0'
If rs is a limit point of .86 from the right then we can choose !s € Be such

that (
m1B i  ( to ,  t ) )  1 t  -  rs  for  a l l  t  €  [ ro,  go] ,

because d(B,xs) :  g .

If rs is not a Iimit point of 86 from the right, there exists ps > r0 such that

(rs,p6) n Bs @ but (re, a) n Bo I S fot every y > Po. We choose Uo € Bo

s u c h t h a t  0 (  o - p o < - p o - n o . L e t t  €  [ r o , g o ] .  I f  t  < p s  t h e n

m { B n ( " 0 , r ) }  < m { B o n  ( s o , p o ) }  + r n { ( B \ B 6 n  ( c o , p o ) } : 0  (  t - t o ,

and if | > ps then

m{B n ("0,  t ) }  < m{Bo n (16,  t ) }  + rn{(B\Be) n ( rs '  t ) }

<m{Bon  ( so ,po ) }  1 - rn {Bsn  (po , t ) }

1 t - po 1 Ao - Po 1 po - ro 1 t - ro.

So for all t e lro,aol we get m{B n ("0't)} 1t - rs-

If ys is a limit point of .Ae from the left then we choose nt € Ao O (ro,gro)

such that 1
{A.  ( t ,yg)}  < 

} (uo 
-  t )  for  a l l  t  €  lx1,ss l ,

because d(A,gs) : g.

Let, ys be not a limit point of A6 from the left. Then rn{.As O (rs, gs)} > 0.

For, otherwise m{B a (rs,s)} : s - so for any s € (rs,9o), which contradicts

the fact that d(B,ro):0. Since grs is a Iimit point of .46 from the left, there

exis ts  q1 (  y6 such that  (g1,  Ao)nAo:  /  but  ( r ,yo)nAo# /  for  any r  1qt .

We choose rr € Aosuch that 0 . gt - rr 1 (Ll2)(ao- q1). Let t € lq,gg]' If

t ) 91 then



278 Indrajit Lahiri,

m{A n (t,uo)} < m{Ao n (cr, yo)} + rn{ (,a\,ae) n (qr, so)}
: o < * ( s / o - r ) ,

and if f < q1 then

m{An (t,ao)} < m{Ao n (r, y0)} + rn{(.4\,4s) n (r, yo)}
< m{Ao n (t, sr)} * rn{As n (cr, go)}

( q, - t 1 q, - *, . i@o- sr) < r5tu, - A.

So for al l  t  e lq,aol we get m{An (t ,yo)} < ( I l2)(yo-t) .
If c1 is a limit point of Bs from the right then we can choose h € Bs n

(ot,Ao) such that

m { B  n  ( q , t ) }  . I A  - r 1 )  f o r  a l l  r  e  l x r , a t l ,

because d,(B,r) : g.

Let o1 be not a limit point of Bs from the right. Then m{Bsn(q,yo)} > 0,
because otherwise m{An (",g0)} : Uo - s for any s € (r1,gs) whicL is a
contradiction to the fact that d(A,ao):0. Since c1 is not a limit point of Be
from the right, there existspl ) sr such that BeO(c1 ,pr) : / but Bsfl(r r,A) #
{  fo r  any  A)  h .We choose h€  Bo suchtha t  0  (  y ,  -p r  1 ( t lZ ) ( r1 -  r r ) .
Then for al l  t  € l r t ,yr lwe get m{B n("r , t )}  < ( I l2)( t  -  r) .

If 3r1 is a limit point of .4e from the left then we can choose 12 € Asn(q,y)
such that I

m{An(t,ar)} < i(ut 
- t) for all r e lrz,arl,

because d(A,x1) : g.

If 91 is not a limit point of ,4.s from the left then rn{.Ae O (rr, gr)} ) 0 and
there exists ez th such that (qz,ar) O,4,s:  {  but (r ,AL)nAol gfor any
u 1qz .  We choose x2€ As  suchtha t  0  a  q" - rz  1 ( I l3 ) (U-g2) .  Then fo r
any t € lrz,arl we set m{An (t,ar)} < (tl3)(at - t).

Continuing this process we obtain two sequences {c,} t in .40 and {g,} J
in .86 such that rn < yn f .or n:0,1,2,.  .  .  and

l x o , A o l  >  [ s r , y o ]  r  l r r , y r ]  ) I r z , y r l > l r z , A z ) > . . .

Also for all t e lrn,anl,

m{B n (* . , t ) } .  
# f r  

-  rn) ,

and for all t € lrn+t,ynl,

m{An (t,a*)} . fi{o^ 
- 11,

f o r n : 0 , 1 , 2 , . . .
Now from (3) and (4) we get

(3)

(4)
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Un* r  -  r n+ r  S  m{Aa  ( xn+ t ,a .+ t ) }  +  m{B  O(xn+ t ,a *+ r ) }
1

< - i  ^(a^*r -  rn+r) + m{B ) (rn+t,an)}
n + z

. f i{{r*+r 
- rn+r) * (vn -t '+r)}

a L  ^ - o a s r r - - + o o .-  n + 2

So there exists a point c € (0, 1) such that 
" : , l*r ' : , l !5g' .  

AIso

c  e  f rn ,y , l  and  c  e  l rnq l ,An l  fo t  n :0 ,1 ,2 , . ' .  S ince  (3 )  and (  )  ho ld  fo r
t :  c  a n d  f o r  n : 0 , L , 2 , . . . ,  i t  f o l l o w s  t h a t  d - ( B , c ) :  d + ( A , c )  : 0  a n d  s o
d - ( A , c ) :  d + ( B , c )  : 1 .

If [rs,1]nB0 
- @ then [0,re]t^t Bo * 6 and applying a similar process to

the left of cs we can find a point c € (0,1) such that d1(.B, c): d-(A,c) :0

so  tha t  d+(A,c ) :  d , - (B ,c )  :  1 .
Hence by Theorem 1, Lemmas 2 and 3 it follows that u-(f, c) < k < l+(f ,c)

or u+ (/, c) < k a l- (f ,c). Since / is WAC at r : c, bilateral wide approximate
I i m i t  e x i s t s  a t  t r :  c  a n d  s o  W - f ( c ) : W - f ( c ) :  W + f ( c ) : W + f  ( c ) :  k .
Since /(c) I k, this implies a contradiction and the theorem is proved. r

Theorern 3. If f is WAC from the right (left) on I then f is of Baire type 1.

Proof . We extend / to the right of 1 and to the left of 0 by setting

(  f ( I )  f o r r > 1
J \ r ) :  

l r t o l  f o r r < 0 .

We now consider an open interval 11 : (a,B) where o < 0 < 1 < p and we

construct an interval function F converging to .f in .Ir which by a result of

Gleyzal (cf. [1,p.151]) proves the theorem.
Now for any interval J : (ar,br) c /r for which 2b1- a1 < B, let F(J)

denote the infimum of the number k for which there exists a d > 0 such that

rn*{r :  x '  €  (a1, t )  and / ( " )  S k}  > 6( t  -  a1)  (5)

for all t € (2h - ar,A) and for some f1 e (2b1 - ay B)

m * { r :  r  e  ( a 1 , t 1 )  a n d  f  ( " )  S  k }  >  ( 1 -  d ) ( t 1  -  a 1 ) . (6)

Lei c € .I1 and 6(> 0) be given . We set

E1: {r  ;  r  € (c,  P) and f(r)  > /(")  -  e},

E2 : {r : r e (c, B) and /(r) < /(c) + e},

and let Ai : (c,B)\$ for i : t,2. Since / is WAC from right at c, we get
u+( f  , c ) :  / (c )  >  lG)  -  e  and l+ ( f  , c ) :  f  (c )  <  / ( " ) *  e  and so  da(A i ,c )  :0

f o r  i :  7 , 2 .
Claim: d+(A,c) < L
Assume (on the contrary) that d+(A1,c):1. Since / is WAC from the right,
it follows from Lemma 2 that f(") : u+(f ,c) ( Iimsup"*c*,a€Atl(c) S
f (c)- e, which is a contradiction. So d+(A1,c) < 1. Similarly we can prove
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that d+(A2,c) < 1. Since / is measurable, it follows that da(Ea,c) > 0 and
d*(En,c) :  l  for  i :  L ,2.  Then there ex is ts  r  e (0,1/2)  such that  for  a l l
t  e  (c ,p )

** {Et n (c, t)} > r(t - c) for i : 1,2

and there exist c1, c2 e (c, B) such that

* ' {E. in (c,cr)}  > (1 -  rr)(q -  c) for i  :  1,2,
where 4r1 - r.
Now we choose a number h such that

o < h < * 6 { r r _ ( c r _  
c )  r r ( c z - c )  1

(  I  -  Z r1- '  
- t  

-  2 r ,  I '

We cons ider  any  J :  (o r ,b r )  c  (c -  h ,c+h)  w i th  c€  J .  Then fo r  i :1 ,2

2b1 - a1 < c* 3h < 
" 

+3' ](q 
-  

")  < 
" 'l - 2 r 1  

\  v 2

because 3r1l$ - 2r1) < L
AIso for i: L,2 we get, because h < rr(ct - c)lG - 2rr),

** {Et o (a1, ca)} ) rn* {Ei n (c, ci)} > (1 - r1)(ci - c)

>  (1  -  2 r r ) (c i -c+h)  >  (1  -  2 r1) (c i -a1) .  (7 )

Again for t € (2h - at,0), it follows that for i: L,2

** {E.i O (o1, t)} ) m* {Ei n (c, t)} > r(t - c)
r .  -  T .: r ( t - a r ) +  

r ( t - 2 c * a )
, ;A -  ar)  + r(br -  c) > 2r1(t  -  a).  (8)

Considering (7) and (8) for Ez wg see that F(J) < f (") + e. Claim: f (c) -
e < F(J). Assume (on the contrary) that F(J) < /(c) - e. Then for some
k < f (c) - e there exists a d > 0 such that (5) and (6) hold. Now putting t : c1
in (5) we see that

d(. t  -  a1) < m*{x: x e. (a1,c1) and /(c) < k}
<m*{x :  x  €  (a1 ,c1)  and f  ( " )  <  / (c )  - . }

: (cr - a1) - m* {\ f i  (o1, c1)}

< (rt - ar) - (1 -2r1)(q - a1)

:2rr(q - ar)

i .e .
6  1 2 1 1 .  ( 9 )

Also from (6) and (8) we get for t : t1

(1  -  d ) ( t r  -  o t )  <  m* {x :  r  €  (a1 , i 1 )  and  / ( " )  <  k }

1 m* {r : n €. (a1,t1) and f (") < /(") - .}

:  ( t r  -  a )  -m* {E1 f t  ( a1 , t1 ) }

< (tr - a1) - 2q(t1 - a1)
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i .e .

2r1 < 6.

Since (9) and (10) imply a contradiction, we get f(") - e < f'(J). Thus
lF (J )  -  f ( " )  l (  e  f o r  a l l J  c  ( " -h , c+h )  w i t h  c  €  J .  The re fo re fo reve ry
c€. 11, F(J) - /(") * mJ - 0 with c € J. Hence the extended / is of Baire
type 1 on I and so the given function / is of Baire type 1 on .[. This proves
the theorem. I

As an application of Theorem 3 we prove the following result.

Theorem 4. If f i,s WAC from the ri,ght on I then for each a € R, Eo - 
{r :

r € I andl(") < a\ and Eo : {r : r € I and f(r) ) a} are of type Fo and,
for each rs € Ea(or E. ) d+ (8", ro) : L (or d+ (E.,ro) : l).

Proof. Since by Theorem 3 / is of Baire type 1, Eo and Eo areof type f|.
Let 16 € .Eo. Since / is WAC from the right at re, it follows that /(16) :

in f {K:  { r :  f ( r )  > K}  e &("0+)} .  S ince / ( rs)  (  o  and /  is  measurable,
it follows that {z : r e I and /(r) > @} € {o(ro+) and so d+({r : x e
I  and  / ( r )  (  a ) , r o )  :  1 .

We  no te  t ha t  Ed :  UBr { r  :  x  €  I  and  / ( r )  <  a -L ln } :  U l r i l
c  € 1 and f ( " )  S a-  l ln j .  S ince r  € Eo, i t  fo l lows that  cs € {c  :  f ( * )  <
a - Tlnsj for some positive integer rz6. So by the preceding paragraph we

Since when / is WAC from the right on .I, so is -/ and for each a € R,
Eo:  {x :  r  €  I  and -  f  ( r )  < -o} ,  i t  fo l lows by above that  d+(Eo,ro) :  I
for each rs e Es. This proves the theorem. I

Note 1. In a similar manner the Ieft analogue of Theorem 4 can be proved.

The next theorem follows as a consequence of Theorem 1 and Theorem 4.

Theorem 5. Let f be wAC on I. Then f is strictly'increas'ing and so cont'inuous
on I i,f and onlg if for euery € e [0, 1)
( i )  { z s  a l i m i t p o i n t o f  { r : f ( r )  > / ( € ) }  f r o m r i s h t ,

(i i) {r : f (x): /(€)} zr a finite set.

Prool. Since the "only if' part is straight forward, we prove the ,,if' part. Let
n1,r2 be any two points such that 0 ( or 1 12 1 1. By condition (ii) there
exis ts  a point  c ,  11 1a 1rz ,  such that  f  ( r r ) :  / (o)  and f  ( * )  *  / ( r1)  for
a < r < n2. Let J : lo,x2l and

A :  {n  :  r  €  J  and  / ( r )  <  / ( " ) } ,
B :  { r  :  r  e  J  and / (c)  > / ( " ) i .

Then AUBU {o} U {xz} : J. By conditions (i) and (i i) B +@. Claim: A : A.
Assume (on the contrary) that A I /. Since / is WAC on .[, by Theorem 4 we
g e t d + ( A , n ) : I  f o r a l l  r e  A a n d d + ( B , r ) : I f o r a l l  n € B  ( i n v i e w o f  N o t e

281
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1 we can consider for the point 12 the left hand upper density) and so mA> 0,

mB > 0. Since by Theorem 1 / is measurable, it follows that d..(B,r) : 0 for

all c € A and da(A,r):0 for all r € B (for the point 12 we consider d-(A,r2)

or  d-(8,c2)) .  So by Lemma 1we see that  d(B,r )  :0  for  a l l  r  €  As C A and

d (A , r ) : 0  f o r  a l l  r  €  Boc  B  where  rn (A \ ,40 ) :  r n (B \Bo )  : 0 .

Now proceeding in the line of Theorem 2 we can find a point c, Q 1 c 1 12

s u c h t h a t  d - ( A , c ) : d + ( B , c )  : 1  o r  d + ( A , c ) : d - ( B , c ) : 1  '  S o  b y T h e o r e m

1, Lemmas 2 and 3 we get  u-( f ,c)  < / (a)  < l * ( f ,c)  or  u+( / ,c)  S / (a)  S
l- (f ,c). Since / is WAC at tr : c, we get /(c) : /(a), which is a contradiction.

Therefore A:6 and so either /(r2): /(o) : 
"f(nr) or f (r2) > /(") : f (nr).

Claim: f@il # f @). Assume on the contrary that f (r2) : f (rL). Then bv

the condition (ii) we can find 03 such that 11 < n3 < nz and, f (rs) # /("r).
Now by the above argument we see that /(r1) < /(ts) and /(r3) < f (*z),

which is a contradiction. So f (rz) * /(r1). Hence / is strictly increasing and

so continuous on 1. This proves the "if' part and the theorem. I

Remark 2. The wide approximate continuity of / is necessary in Theorem 5 as

we see in the following example.

Erample 3. Let (  r  i f . r e I  and r i s i r r a t i ona l
J \ & / - \  r  i f . x € I  a n d c i s r a t i o n a l .

Then / is not WAC on I and it is not strictly increasing on .I but the conditions

(i) and (ii) of Theorem 5 are clearly satisfied-
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