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Abstract. Introducing the notion of widely approximate continuous functions we
study some basic properties of such functions.

1. Introduction and Definitions

Let R be the real line and m*A , mA denote respectively the outer Lebesgue
measure and Lebesgue measure of a set A C R. We denote by d*(4,z) =
limsup m* (A N (z,1))/(y—2), d4 (4,2) = liminf m* (411 (2,9))/ (y—2), d"(A,)

y—z+

= limsupm*(A N (y,z))/(z — y) and d_(A,z) = l;rriluirlgfm* (AN (y,z))/(z —y)

g
resgectively the upper right, lower right, upper left and lower left density of the
set Aatz € R.

If these four extreme densities are equal to one another, their common value
is the density of the set A at = and is denoted by d(A4, r).

Sarkhel and Dey [2] introduced the following definition.

Definition 1. A set E C R is said to be sparse at a point x € R on the right if
there erists, for every € > 0, a k > 0 such that every interval (a,b) C (z,z + k)
with a — z < k(b — z), contains at least one point y such that m*{E N (z,y)} <
e(y — ).

The family of sets sparse at z on the right is denoted by S(z+) and anal-
ogously we define S(z—). A set E is called sparse at z if E € S(z) where
S(z) = S(z+)NS(x—). We put

So(z+) = {E: E CR and d*(E, z) = 0},
So(z—)={E: ECR and d”(E,z) =0},



272 Indrajit Lahiri
and
So(:L') = So(:l:+) n So(.’L‘—).

Clearly Sp(z+) C S(z+), So(z—) C S(z—) and So(z) C S(z) for every z € R.
Also it is shown in [2] that these inclusions are proper.

We set
o Sy(@+) = {E: E C R and dy (B, ) = 0},

Sp(z—)={E: ECR and d_(E,z) = 0},

So(z) = Sp(z+) N Sy(z+).

By [2, Corollary 3.1.1] it follows that S(z+) C Sy(z+),S(z—) C Sy(z—) and
S(z) C Sy(z). -
The following example and its left analogue show that the above inclusions
are proper.

and

Ezample 1. Since the outer Lebesgue measure is translation invariant, we may
choose, without loss of generality, £ = 0. Let

1 1

— - form=1,2,3,...
nexp(n? + 1)’ exp(n?) h g

and E = |J;2,(an,bn). Let € > 0 be given. We fix a positive integer m > 1
such that 1/m < €. Since bpt1/an = n/exp(2n) — 0 as n — oo, there exists a
positive integer N such that mb, 1 < a, for n > N.

Now for n > N and for y € [mby41,a,] we get

m*{EN(0,9)} = m*(EN (0,bas1)) < %(mbnﬂ) -

This shows that d(E,0) = 0.

Again m*(E N (0,b,)) > bn — an = (1 — 1/ne)b, for n = 1,2,3,... and so
d*(E,0) = 1.

Since for a set By € S(z+) we get d*(Ey,z) <1 (cf. [2, Corollary 3.1.1)), it
follows that E & S(0+).

Sinharoy [3] considered the following classes and their left analogues:

S3(z+) ={E: ECRand dy(E,z) =0 and d*(E,z) < 1},
S2(z+) = {E: E € S3(z+) and EU F € S3(z+) for all F € S3(z+)},

and Si(z) = Si(z+) N Si(z—) for i =2,3.
Evidently Si(z+) C Sy(z+), Si(z—) C Sy(z—) and S;(z) C Sy(z) for i = 2, 3.
Example 1 shows that these inclusions are proper.

Let f be a real valued function defined on I = [0, 1]. The following definition
was introduced in [2].

For any = € [0,1)

PYf(z)=inf{r:r € Rand {y: f(y) > r} € S(z+)}

Bitd P, f(z) =sup{r:r €Rand {y: f(y) <t} € S(z+)}
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are called respectively the upper right hand proximal limit and lower right hand
proximal limit of f at z. P~ f(z) and P_f (z) are defined analogously and are
called respectively the upper and lower left hand proximal limits of f at z.

If P+ f(z) = f(z) = P+ f(z), f is said to be proximally continuous from the
right at z. Similarly if P~ f(z) = f(z) = P- f(z), f is said to be proximally
continuous from the left at z. When f is proximally continuous from both sides
at z, it is called proximally continuous at = ( with obvious modifications at the
end points of I).

Using S,(z+) and Sy(z—) we define in the paper the upper and lower unilat-
eral limits and then a type of continuity which is wider than the ideas of approx-
imate continuity and proximal continuity. We investigate some basic properties
of functions which are continuous in this wide sense.

2. Wide Approximate Limit and Continuity
We start this section with the following definition.

Definition 2. For £ € [0,1) we put
ut(f,€) = inf{K : {z: f(z) > K} € So(&+)},
1+(f,€) = sup{K : {z : f(z) < K} € Sg(£+)}-

Similarly we define u~(f,€) and I=(f,§) for £ € 0,1].

IA

Proposition 1. Pyf(§) < ut(f,§) < Ptf(€) and Py f(€) < 1¥(f,€)
BYE(E)-

Proof. Since S(é+) C Sp(é+), it follows from the definition that Py f(§) <
(£, £) and ut(f,€) < P*f(€). We claim that P, f(§) < u*(f,6).

Assume on the contrary that ut(f,€) < Py f(§). Now we choose a number
K such that ut(f,€) < K < P4 f(£). Then there exist two numbers K, K2
with K < K < Ko such that {z : f(z) > K1} € S4(§+) and {z: f(x) < Ka} €
S(&+).

Let A = {z: f(z) > K} and B = I\A. Then Ac {z: f(z) > K1} and
B C {z : f(z) < K2} so that A € Sy({+) and B € S(é+) (cf. {2, Corollary
3.1.1]). So by Theorem 3.1 in [2] we get dy(AU B,§) = 0 ie, d+(I,§) =0,
which is a contradiction. Hence Py f(£) < w*(f,§). Similarly we can prove
I*(f,€) < P*f(€). This completes the proof. |

Proposition 2. P.f(€) < u (f,€) < P f(€) and P-f(§) < U(f,€) < P £(&)-
The proof is omitted.

The following example shows that in some cases we may have ut(f,€) <

*(£,8) -

Ezample 2. Let E be the set considered in Example 1 and
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0 fzeF
f(’”):{l if z € I\E.

Since E € S,(0+) and I\E € S,(0+), it follows that u*(f,0) <0 < 1 < I*(f,0).
So we introduce the following definition.

Definition 3. The numbers

W £(€) = max{u™(£,£),7(f,£)}
W, £ () = min{u™(£,€),1*(f,£)}

are called respectively the upper and lower wide approzimate limits of f at § €
[0,1) from the right.

and

Likewise we define W~ f(£) and W_ f(£), the upper and lower wide appro-
ximate limits of f at £ € (0, 1] from the left.

If Ay fF(E)(A-F(E)) and AT f(§)(A™ f(£)) denote respectively the lower and
upper approximate limits of f at £ from the right (left) then in view of Propo-
sitions 1 and 2 we get

ALf(€) S Prf(€) S W) S WTf() < PTf(€) < ATS(E)

and

A_fE) S P_fE)<W_f(Q) W f(€) <P f(§) S ATf().

Definition 4. A function f is called widely approzimate continuous at £ € [0,1)
(¢ € (0,1]) from the right (left) if Wi f(€) = f(§) = WFF(OW-F(§) = f(£)
= W~ f(€)). The function f is said to be widely approzimate continuous at §
if it is so from both the sides at £. The function fis called widely approzimate
continuous on I if it is so at every point of I (with the obvious modifications at
the end points of I).

We use WAC as the abbreviation of “widely approximate continuous”. Also
“a.e.” stands for “almost everywhere”.

3. Lemmas
In this section we present three lemmas which will be needed in the sequel.

Lemma 1. [2]
(i) An arbitrary set E has density 0 or 1 a.e. on R.
(ii) If a subset E of a measurable set M has density 0 a.e. on M\E then E is
measurable.

The following lemmas give a convenient form of the unilateral wide appro-
ximate limits of a measurable function.
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Lemma 2. If f is measurable then for £ € [0,1)

(i) ut(f,€) = inf{ limsup f(z):A C I is measurable and d*(A,£) = 1},
r—E+,T€EA

(i) 1+(f,€) =sup{ liminf f(z):A C I is measurable and d*(A,&) = 1}.
z—€é+,2z€A

Proof. Let U*(f,€) denote the right hand side of (i). Now we consider the
following cases.

Case I —co < U*(f,£) < +o00.

Let £ > 0 be arbitrary. Then there exists a measurable set A C I with d*(A4,§) =

1 such that limsup f(z) < U*(f,§) + €. So there exists a § > 0 such that
z—é+,2€A
f(@) <UH(f, &) +eforallz € AN(E,€ + ). Therefore

An{z: f(z) > U¥(f,€) +e 2> CCOAN(E+8)N (£ )
=[CAN(§,00)] U [§ + 6, 00),

where C A denotes the complement of A. Since

{z:z€Iand f(z) > UT(f,&) +e, x> &}
=[ANn{z:z€Iand f(z)>Ut(f, &) +¢,z> &}
U[CAN{z:z €Iand f(z) > U'(f,&) +¢, z > &}
c[{CAN(§,00)}U[€+6,00)]UCA
= CAUI[E + §,00),

the lower density from right of {z : z € I and f(z) > U*(f,§)+¢,z > &} at &
is zero. So u™(f,£) K U*(f,€)+¢€ and so

ut(f,€) SU*(f,8). 1)

Let K be a real number such that {z : z € I and f(z) > K,z > &}
has lower density (from right) zero at . Let B = C{z : z € I and f(z) >
K,z > £}nI. Then d*(B,£) =1 and for all z € B we get f(z) < K. So
U*(f,€) < limsup f(z) < K and since K is arbitrary, it follows that

z—{+,2EB
Ut(f,€) < u*(f,6). 2

In this case (i) follows from (1) and (2).

Case ILI: U*(f,£) = +o0.

Claim: u*(f,&) = )

Assume on the contrary that u™(f,£) < +0o0. Then there exists K < 400 such
that {z : z € I, f(z) > K, z > £} has lower density (from right) zero at &.
Let D = C{z : z € I and f(z) > K,z > £} NI. Then d*(D,£) = 1 and

limsup f(z) < K so that Ut(f,§) < K < +o00o, a contradiction. Hence
-'I:—*£+,J:GD

ut(f,6) =
Case III: U+(f, £) = —o0.
Then for arbitrary M (> 0) there exists a measurable set A C I with d*(4,£) =1

such that limsup f(z) < —M. So there exists a § > 0 such that f(z) < —-M
rz—€+,z€EA
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for allz € AN(£,£+6). Since AN{z: f(z) > —M, z > £} C [CAN (£, 00)]U (€ +
d,00) = CAU[{ +0,00) , the lower density (from right) of {z : z € I and f(z) >
~M, z > &} at £ is zero . Hence u™(f,€) < —M and so ut(f,&) = —oo.

From the above analysis the following cases are clear .
Case IV: If u*(f,&) = +oo then U*t(f,£) = +c0.
Case V: If ut(f,£) = —oo then Ut (f,£&) = —oo0.
Case VI If —oo < ut(f,£) < 400 then —o0 < U*(f,£) < 400 and ut(f,£) =
U*(£,6).

(ii) can be proved in a similar manner. This proves the lemma. n

Lemma 3. If f is measurable then for £ € (0, 1].
(i) u~(f,€) = inf{ limsup f(z): A C I is measurable and d~(4,¢) = 1}.
A

r—€—,x€

(ii) I7(f,€) = sup{ lilén ingAf(z:) : A C I is measurable and d= (A, &) = 1}.

The proof is omitted.

4. Theorems

Theorem 1. If fis WAC from right(left) a.e. on I then f is measurable.
Proof. Let f be WAC from right on P C I where m(I\P) =0 . For r € R we
put A={z:zx € Pand f(z) <1},

B,={z:z€ P and f(z) >r+%} forn=1,2,3,...

Since f is WAC from right on P, it follows that d,(B,,z) =0 forallz € A
and n = 1,2,3,... So by Lemma 1 we see that d(B,,z) = 0 for all z € Ay,
where m(A\A, o) =0forn=1,2,3,...

Let B =|J,., Bn and C = (o, Ano. Then m(A\C) =0 and d(B,z) =0
for all £ € . Since P\A = B, P is measurable and has density zero a.e. on
P\B, it follows by Lemma 1 that B is measurable and so A is measurable.

Let Ao = {z:z € I'and f(z) < r}. Since Ag = AU{z : z € I\P and f(z) <
r} and m(I\P) = 0, it follows that Ag is measurable. So f is measurable. This
proves the theorem. |

Corollary 1. fis WAC from right (left) a.e. on I if and only if f is approzi-
mately continuous a.e. on I.

Proof. The “if” part is obvious. If f is WAC from right (left) a.e. on I then f
is measurable and so it is approximately continuous a.e. on I.

Corollary 2. fis WAC from right(left) a.e. on I if and only if f is measurable.

Remark 1. Considering Example 6.1 [2] we see that at a point a function may
be WAC without being approximately continuous.
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In [2] it is proved that if f is proximally continuous on I then f(I) is
connected and so f possesses the intermediate value property. Also as a con-
sequence of a result in [3] it follows that a proximally continuous function is
of Baire type 1. In the next two theorems we show that a WAC function also
possesses these properties.

Theorem 2. Let f be WAC on I.Then f(I) is connected and so f possesses
the intermediate value property.

Proof Let f be non constant because otherwise the case is trivial. Let a,b € I
be such that f(a) < f(b). Without loss of generality we may choose a = 0 and
b = 1. Let k be a number such that f(0) < k < f(1). We show that f(z) =
for some z € I. Suppose on the contrary that f(z) # k for any = € I.

Let A={z:z € Iand f(z) <k}, B={z:z €I and f(z) > k}. Then
I = AUB. Since f is WAC on I, it follows that d;(B,z) = d_(B,z) = 0 for
allz € Aand dy(A,z) =d_(A,z) =0 for all z € B. This implies by Lemma 1
that d(B,z) = 0 for all z € Ag C A and d(A,z) = 0 for all z € Bo C B where

m(A\Ap) = m(B\Bo) = 0. Also by Theorem 1, A and B are measurable.

Since 0 € A, it follows that d4.(B,0) =0 and so dT(A,0) = 1. This shows
that mA > 0. Again since 1 € B, it follows similarly that mB > 0.

Let o € Ag. Then at least one of [zo,1] N By and [0, o) N By is non void.
We suppose that [zg,1] N Bo # ¢.

If z, is a limit point of By from the right then we can choose yo € By such

that m{B N (IL‘O,t)} <t—1xp forall t € [l‘o,yO],

because d(B,zg) = 0.

If zg is not a limit point of By from the right, there exists po > zo such that
(z0,p0) N Bo = ¢ but (zo,y) N Bo # é for every y > pg. We choose yo € By
such that 0 < yo — Po < po — To - Let t € [zo,y0). If t < po then

m{B N (zo,t)} < m{Bo N (z0,p0)} + m{(B\Bo N (0, po)} =0 < t - zo,
and if t > pg then
m{B N (zo,t)} < m{BoN (z0,t)} + m{(B\Bo) N (z0,1)}
< m{BoN (z0,p0)} + m{Bo N (po,t)}
<t—po < Yo—po<po—To<t— ITo.

So for all t € {zo,yo] we get m{B N (zo0,t)} <t — zo.
If yo is a limit point of Ag from the left then we choose z1 € Ao N (2o, o)

such that 1
{AN(t,y0)} < §(y0 —t) for all t € [z1,y0,

because d(A,yo) = 0.

Let yo be not a limit point of Ag from the left. Then m{Ao N (zo,y0)} > 0.
For, otherwise m{B N (zo,s)} = s — zo for any s € (zo, o), which contradicts
the fact that d(B,zo) = 0. Since yp is a limit point of Ag from the left, there
exists g1 < yo such that (g1,0) N Ao = ¢ but (z,30) N Ao # ¢ for any z < q.
We choose z; € Ag such that 0 < g1 — z1 < (1/2)(yo — q1)- Let t € [x1,90]. If
t > ¢ then
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m{AN (t,90)} < m{AoN (q1,%0)} + m{(A\Ao) N (q1,70)}

1
=0< E(yo_t))

and if ¢t < ¢q; then

m{AN (t,50)} <m{AoN (¢, y0)} +m{(A\Ao) N (£,10)}
<m{AoN (¢, q1)} + m{Ao N (g1, )}
Sa-t<q-z1< %(yo—%) < %(yo-—t).
So for all ¢ € [z1,y0] we get m{AN (t,90)} < (1/2)(yo — t).

If 1 is a limit point of By from the right then we can choose y; € By N
(z1,y0) such that

1
m{B N (z1,t)} < §(t —z1) for all t € [z1,y1),

because d(B,z;) = 0.

Let 3 be not a limit point of By from the right. Then m{BoN(z1,0)} > 0,
because otherwise m{A N (s,y0)} = yo — s for any s € (z1,y0) which is a
contradiction to the fact that d(A4,yo) = 0. Since z; is not a limit point of By
from the right, there exists p; > x; such that BoN\(zy,p;) = ¢ but BoN(z1,y) #
¢ for any y > p;. We choose y1 € By such that 0 < y; — p; < (1/2)(p1 — 7).
Then for all t € {z1,y1] we get m{B N (z1,t)} < (1/2)(t — z,).

If ) is a limit point of Ag from the left then we can choose z; € AoN(z1,31)
such that 1
m{AN(t,y1)} < §(y1 —t) for all t € [z2,11],
because d(A,z1) = 0.

If y; is not a limit point of A from the left then m{Ao N (z1,%1)} > 0 and
there exists go < y1 such that (g2,41) N Ao = ¢ but (2,41) N Ay # ¢ for any
z < ga. We choose 22 € Ap such that 0 < g2 — 29 < (1/3)(y; — g2). Then for
any t € [z2,y1] we get m{AN (¢,y1)} < (1/3)(y1 —t).

Continuing this process we obtain two sequences {zn} Tin Ag and {y.} |
in Bg such that z, <y, forn=0,1,2,... and

[z0,%0] D [z1,%0] D [z1,31] D [22,91] D [z2, 2] D ...

Also for all t € [z, yn),

m{B N (zn,t)} < ﬁ%(t — Zn), ®3)
and for all t € [Tp41,¥n),
m{AN (t,yn)} < %H(yn ~t), (4)

forn=0,1,2,...
Now from (3) and (4) we get
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Ynt1 — Znt+1 < M{AN (Tns1,Yns1)} + m{B N (Trnt1,Yn+1)}

1
< oy 2(?Jn+1 — Tny1) + M{B N (Tnt1,Yn)}
1
< n_+2{(yn+1 == $n+1) a5 (yn = $n+1)}
2
< — 0 as n — o0.
n+2
So there exists a point ¢ € (0,1) such that ¢ = lim z, = lim y,. Also
n—00 n—00

¢ € [Zn,Yn) and ¢ € [Tnt1,Yn for n = 0,1,2,... Since (3) and (4) hold for
t=cand forn=0,1,2,..., it follows that d_(B,c) = d+(A4,c) = 0 and so
d=(A,c)=d*(B,c)=1.

If [zo,1] N By = ¢ then [0,z0] N Bo # ¢ and applying a similar process to
the left of 2o we can find a point ¢ € (0,1) such that d;(B,c) =d_(A,c) =0
so that d*(A,c) = d™(B,c) = 1.

Hence by Theorem 1, Lemmas 2 and 3 it follows that u™(f,c) < k < 1% (f,c)
orut(f,c) <k <I17(f,c). Since f is WAC at z = c, bilateral wide approximate
limit exists at z = ¢ and so W_f(c) = W~ f(c) = W4 f(c) = Wtf(c) = k.
Since f(c) # k, this implies a contradiction and the theorem is proved. ]

Theorem 3. If f is WAC from the right (left) on I then fis of Baire type 1.

Proof. We extend f to the right of 1 and to the left of 0 by setting

[ fQQ) forz>1
f(@)= { f(0) for z <O.

We now consider an open interval I; = (a,3) where a < 0 < 1 < § and we
construct an interval function F converging to f in I; which by a result of
Gleyzal (cf. [1,p.151]) proves the theorem.

Now for any interval J = (a1,b1) C I for which 2b; —a; < B, let F(J)
denote the infimum of the number &k for which there exists a § > 0 such that

m*{z: z € (a1,t) and f(z) <k} > é6(t —a1) (5)
for all t € (2b; — a1, 3) and for some t; € (2b1 — a1, )
m*{z : z € (a1,t1) and f(z) <k} > (1 -9)(t1 — ay). (6)

Let ¢ € I and (> 0) be given . We set

Ei={z:2€ (c,f) and f(z) 2 f(c) - ¢},

Ey={z:z € (c,p) and f(z) < f(c) + ¢},
and let A; = (¢, B)\E; for i = 1,2. Since f is WAC from right at ¢, we get
ut(f,c) = f(c) > f(c) —eand IT(f,¢) = f(c) < f(c) + € and so d-(Ai,c) =0
fori=1,2.
Claim: d*(4,¢) < 1.
Assume (on the contrary) that d*(A;,c) = 1. Since f is WAC from the right,
it follows from Lemma 2 that f(c) = u*(f,¢) < limsup, ..y zea, f(2) <
f(c) — €, which is a contradiction. So d*(A1,c) < 1. Similarly we can prove
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that d+*(Az,c) < 1. Since f is measurable, it follows that d.(E;,¢) > 0 and
dt(E;,c) = 1 for i = 1,2. Then there exists r € (0,1/2) such that for all
te (C, ;6)
m*{E;N(c,t)} >r(t—c) fori=1,2
and there exist c1, c2 € (¢, §) such that
m*{E;N(c,c;)} > (1 —m1)(ci —¢) for i=1,2,

where 4r; = 7.
Now we choose a number A such that

. frifea—¢) ri(eca—c)
O<h<mm{ 1—-2r ' 1—2r }

We consider any J = (a1,b1) C (¢ — h,c+ h) with c € J. Then fori = 1,2
37‘1( '—C)

20y —a1<c+3h<c+ ——mmm <
1—-21‘1

because 3ry /(1 — 2rp) < 1.
Also for i = 1,2 we get, becausé h < r1(c; —¢)/(1 - 2ry),
m*{E; N(a1,¢)} >m*{E;N(c,ci)} > (1—r1)(ci —¢)
> (1 -2r)e—c+h)>(1-2r1)(c; —a1). (7)

Again for t € (2b; — a4, 8), it follows that for i = 1,2

m*{E; N (a1,t)} > m*{E;N(c, t)} > r(t—c)

= E(t—a1)+ (t—2c+a1)

.

2

Considering (7) and (8) for E; we see that F(J) < f(c) + e. Claim: f(c) —

€ < F(J). Assume (on the contrary) that F(J) < f(c) — e. Then for some

k < f(c)— e there exists a § > 0 such that (5) and (6) hold. Now putting t = ¢;
in (5) we see that

d(c1 —a1) <m*{z:z € (a1,c1) and f(z) < k}
<m*{z:z € (a1,c1) and f(z) < f(c) — €}
= (c1 —a1) —m*{E1N(a1,c1)}
<f(c1—a1)—(1— 27‘1)(61 o a1)
= 2’!‘1(61 —a1)

(t——al)+r(b1 —C) > 2r1(t—a1) (8)

ie.
§ < 2r1. 9)
Also from (6) and (8) we get for t = t;
(1=98)(t1 —a1) m*{z:z € (a1,t1) and f(z) < k}
<m*{z:z € (a1,t1) and f(z) < f(c) — €}
= (t1 —a1) —m*{E1 N (a1,t1)}
< (t1 —a1) —2ri(t1 — a1)
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ie.
2r < d. (10)

Since (9) and (10) imply a contradiction, we get f(c) — ¢ < F(J). Thus
| F(J) = f(c) |< e for all J C (c— h,c+ h) with ¢ € J. Therefore for every
ce€ I, F(J) — f(c) asmJ — 0 with ¢ € J. Hence the extended f is of Baire
type 1 on I and so the given function f is of Baire type 1 on I. This proves
the theorem. ]

As an application of Theorem 3 we prove the following result.

Theorem 4. If f is WAC from the right on I then for each a« € R, E® = {z:
z€land f(zx) <a} and Ey ={z:z €I and f(z) > a} are of type F, and
for each xo € E*(or Ey ) d¥(E®,z9) =1 (or d¥(Eq,z0) = 1).

Proof. Since by Theorem 3 f is of Baire type 1, E* and E, are of type F,.

Let zo € E*. Since f is WAC from the right at z, it follows that f(zo) =
inf{K : {z : f(z) > K} € Sy(zo+)}. Since f(zo) < a and f is measurable,
it follows that {z : z € I and f(z) > a} € Sy(zo+) and so d*({z : z €
I and f(z) < a},z0) = 1.

We note that E* = U2 {z : z € I and f(z) < a — 1/n} = 2 {z :
z € I and f(z) < o —1/n}. Since z € E*, it follows that zg € {z : f(z) <
@ — 1/no} for some positive integer ng. So by the preceding paragraph we
get d*({z : z € I and f(z) < @ — 1/ng}, 20} = 1 and so d* (U2 {z : = €
I'and f(z) < a—1/n},z¢) =1 ie. dT(E,zp) = 1.

Since when f is WAC from the right on I, so is —f and for each a € R,
Ey ={r:z€land — f(z) < —a}, it follows by above that d*(E,,z¢) = 1
for each zg € E,. This proves the theorem. n

Note 1. In a similar manner the left analogue of Theorem 4 can be proved.
The next theorem follows as a consequence of Theorem 1 and Theorem 4.

Theorem 5. Let f be WAC on I. Then f is strictly increasing and so continuous
on I if and only if for every £ € [0,1)

(i) & is a limit point of {x : f(z) > f(€)} from right ,

(ii) {z: f(z) = f(&)} s a finite set.

Proof. Since the “only if” part is straight forward, we prove the “if’ part. Let
*1,Z2 be any two points such that 0 < z; < 22 < 1. By condition (ii) there
exists a point o, 1 < @ < 12, such that f(z1) = f(a) and f(z) # f(z;) for
a <z <z Let J = [o, 23] and

A={z:z € Jand f(z) < f(a)},

B={z:z€Jand f(z) > f(a)}.
Then AUB U {a} U {z:} = J. By conditions (i) and (ii) B # ¢. Claim: A = 0.
Assume (on the contrary) that A # ¢. Since f is WAC on I, by Theorem 4 we
get dt(A,z) =1for all z € A and d*(B,z) = 1 for all z € B (in view of Note
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1 we can consider for the point s the left hand upper density) and so mA > 0,
mB > 0. Since by Theorem 1 f is measurable, it follows that dy(B,z) = 0 for
all z € A and d;(A,z) = 0 for all z € B (for the point z; we consider d™ (4, z2)
or d~(B,z2)). So by Lemma 1 we see that d(B,z) =0forallz € AgC A and
d(A,z) = 0 for all z € By C B where m(A\Ao) = m(B\Bo) = 0.

Now proceeding in the line of Theorem 2 we can find a point ¢, a < ¢ < z2
such that d=(4,c) = d*(B,c) =1 or d*(A4,c) =d™(B,c) =1 . So by Theorem
1, Lemmas 2 and 3 we get u~(f,c) < f(a) < I*(f,¢) or ut(f,c) < f(a) <
1= (f,c). Since f is WAC at z = ¢, we get f(c) = f(c), which is a contradiction.
Therefore A = ¢ and so either f(z2) = f(a) = f(z1) or f(x2) > f(a) = f(z1)-
Claim: f(z2) # f(x1). Assume on the contrary that f(z2) = f(z1). Then by
the condition (i) we can find z3 such that z; < 23 < z2 and f(z3) # f(z1).
Now by the above argument we see that f(z1) < f(z3) and f(z3) < f(z2),
which is a contradiction. So f(z2) # f(z1). Hence f is strictly increasing and
so continuous on I. This proves the “if” part and the theorem. =

Remark 2. The wide approximate continuity of f is necessary in Theorem 5 as
we see in the following example.

Ezample 3. Let if x € I and z is irrational

@ ={

Then f is not WAC on I and it is not strictly increasing on I but the conditions
(i) and (ii) of Theorem 5 are clearly satisfied.

g 8

if z € I and z is rational.
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