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Abstract. Let R be an associative ring with identity and M a right R-module. M is
called a lifting LE-module, if M is lifting and M = @ie 1 M;, where M; is a module
with local endomorphism ring, for all ¢ € I. The purpose of this paper is to investigate
some properties of these modules. Semiperfect rings such that any direct sum of a
simple and a projective local module is lifting are characterized as semiprimary rings
with Jacobson radical square-zero. Moreover we characterize the class of lifting LE-
modules M such that M @ S is lifting for all semisimple modules S as those modules
that are direct sums of hollow LE-modules which are extensions of a semisimple by a
simple module. Finally we show that this class coincides with the class of semisimple
modules if and only if every extension of two simple modules splits.

1. Introduction and Preliminaries

Throughout this paper all rings are associative with identity and all modules
will be unital right R—modules. Rad(M), Soc(M) and Jac(R) will denote the
Jacobson radical of M, the socle of M and the radical of R, respectively. We
will use the notation ACC (DCC) to indicate that a module M satisfies the
ascending chain condition (descending chain condition).

We refer to [10] for basic terminology on lifting modules. Santa-Clara and
Smith introduced the notion of special extending modules in [11]: Let M be a
module. M is called a special ertending module if M is extending and M =
@D;c; M;, where M; is a module with local endomorphism ring, for all ¢ € I.
Following this idea, in this paper, we introduce lifting LE-modules as a dual
notion to special extending modules: Any module M is called lifting LE if M is
lifting and M is a direct sum of modules M; with local endomorphism rings for
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all i € I (see [5]). Let M be a lifting right R-module. In this paper we prove
that M is a lifting LE-module if one of the following cases is satisfied:

(1) M has ACC on small submodules;

(2) Rad(M) has ACC on direct summands and R is right artinian;

(3) Rad(M) has ACC on direct summands and R is a commutative max ring;
(4) M is finitely generated and R is commutative.

In this paper we also characterize rings for which every direct sum of a lifting
LE-module and a semisimple module is lifting.

Let M1 and M; be modules. M is called small M, -projective if every homo-
morphism f : My — M>/A, where A is a submodule of M and Imf <« My/A,
can be lifted to a homomorphism ¢ : My — M. Let M and N be modules. If
for all modules F, epimorphisms f : M — F and homomorphisms h: N — F
there exists either ¢ : N — M with fo = h or a non-zero direct summand M,
of M and ¢ : My — N with hp = fia, > then N is called almost M -projective.

Let M be a module. M is said to have finite Goldie dimension if M con-
tains a finite independent set of uniform submodules {Ny,...,N,} such that
69?:1 N; < M. In this case n is the Goldie dimension of M and we denote
n by dim(M). The module M is said to have finite dual Goldie dimension if
there exists an epimorphism from M to a finite direct sum of n hollow factor
modules with small kernel. In this case n is the dual Goldie dimension of M
and we denote n by codim(M). Call a function d : R-Mod — N U {cc} a rank
function on R-Mod if for all M, N € R-Mod: (R0) d(M) =0 & M = 0 and
(R1) d(M @ N) = d(M) + d(N) holds. Note that if d is a rank function and
M a module with d(M) = 1, then M is indecomposable. Clearly, dim(M) and
codim(Af) are rank functions.

2. Lifting LE-Modules

By [10, Lemma 4.7 and Corollary 4.9], any lifting LE-module has the decompo-
sition M = @, ; H;, where H; is hollow, for all i € I. It is well-known from [10,
Corollary 5.5] that any indecomposable discrete module has local endomorphism
ring. From this fact, [10, Theorem 4.15, Lemma 4.7], discrete modules are also
lifting LE-modules. The Priifer p-group Z(p®) is an example of a lifting LE-Z-
module that is not discrete. Note that the endomorphism ring of Z(p™) is local
by [8, Theorem 7.2.8] and Z(p™) is not discrete because every nonzero factor
module of Z(p>) is isomorphic to Z(p>). The following lemma is well-known:

Lemma 2.1. ([10, Lemma 5.1]) A quasi-discrete module M is discrete if and
only if every epimorphism M — M with small kernel is an isomorphism.

Recall that a module M is called hopfian if every surjective endomorphism
of M is an isomorphism. Examples of hopfian modules are noetherian modules
(see [2,11.6]) and finitely generated modules over commutative rings (this is due
to Vasconcelos [13]). By the above lemma we get:

Corollary 2.2. Any hopfian quasi-discrete module is discrete. In particular a
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hollow module is discrete if and only if it is hopfian.

Lemma 2.3. Let M be a lifting right R-module. Then the following are equi-
valent:

(a) M is a finite direct sum of hollow modules.

(b) M satisfies the ACC on direct summands.

(c) M satisfies the DCC on direct summands.

(d) There ezists a rank function d such that d(M) is finite.

(e) M has finite dual Goldie dimension.

Proof. The equivalences (b) < (c) < (e) follow from (12, Proposition 4.11] and
the fact that supplements in lifting modules are direct summands (see also [10,
Proposition 4.8]).
(a) = (e) = (d) are obvious.

We shall show (d) = (a) by induction. Let M be a lifting module such that there
exists a rank function d and d(M) = 1. Then M is indecomposable and hence
hollow. Assume now n > 1 and assume that for every lifting module N such
that there exists a rank function d with d(N) < n, N is a direct sum of hollow
modules. Let M be a lifting module and d a rank function with d(M) = n. If
M is indecomposable, then it is hollow and we are done. Otherwise M has a
decomposition M = N & L with N and L non-zero. Thus by (R1), we have
n = d(N) + d(L) and hence d(N) and d(L) are less than n and as N and L are
lifting modules as well, by hypothesis they are finite direct sums of hollows and
so is M. ]

Before stating a general decomposition theorem for lifting modules we need
the following lemma.

Lemma 2.4. ([9,Lemma 4.2.1]) Let M be an R-module with essential radical.
For every direct summands Dy C D2 of M we have Rad(D;) = Rad(D3) if and
only if D1 = Ds. In particular if Rad(M) has ACC or DCC on direct summands,
then so has M.

Proof. Straightforward. [ ]

Theorem 2.5. Any lifting module M has a decomposition M = My & My ® M3
such that

o M, is semisimple;

o M, is a lifting module with Rad(Mz) <« M, and Rad(M;) <. Ma;

o M; is a lifting module with Rad(M3) = M3.
IfRad(M) satisfies the ACC or DCC on direct summands, then My and M3 are
finite direct sums of hollow modules.

Proof. Let M be any lifting module. By [4, Proposition 2.9], we have a decompo-
sition M = M; @ N with M, semisimple and N lifting with Rad(M) = Rad(N)
essential in N. As N is lifting, Rad(M) contains a direct summand M3 such that
N = Mo @ M and Rad(M) N Mz = Rad(Mz) < Mp. Clearly, Rad(M;) <. Ms.
As Mz C Rad(M) and M3 a direct summand of M, we have Rad(M3) = M.
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Assume now that Rad(M) has ACC or DCC on direct summands. By Lemma
2.4, M; and M3 also satisfy those chain conditions and by Lemma 2.3 they are
finite direct sums of hollow modules. n

Recall that a ring R is called a right maz ring if every right R-module has a
maximal submodule.

Corollary 2.6. Let M be a lifting right R-module. Then M is lifting LE in
each of the following cases:

(1) M has ACC on small submodules;

(2) Rad(M) has ACC on direct summands and R is right artinian;

(3) Rad(M) has ACC on direct summands and R is a commutative maz ring;
(4) M is finitely generated and R is commutative.

Proof. The first case follows from [1, Proposition 2], which states that Rad(M)
is noetherian if M has ACC on small submodules, and from [7, Proposition 3.1
which gives a decomposition of M into a semisimple and a noetherian module.
The second case follows from Theorem 2.5 and from the fact that hollow modules
over artinian rings are noetherian and therefore hopfian. The third case follows
from Theorem 2.5 and from the fact that every hollow module H over a max
ring R is local and since R is commutative, H is also hopfian. The last case
follows from Theorem 2.5 and from the fact that finitely generated modules over
commutative rings are hopfian. n

Theorem 2.7. Let R be a right artinian ring or a commutative maz ring. Let
M=M®...® M, be a direct sum of relatively projective quasi-discrete right
R-modules M; (1 <i<n). Then M is a lifting LE-module .

Proof. M is quasi-discrete by [6, Theorem 2.13]. Then we can write M =
;< Hi, where H; is hollow for all 4 € I by [10, Theorem 4.15]. Thus by the
above, M is lifting LE. n

3. A Class of Lifting Modules Satisfying ()

The following property was considered in [6]:
M, & M is a lifting right R-module whenever M; is a simple right R-module
and M, is a lifting right R-module.

Let us say that a lifting LE-module M satisfies (x) if any direct sum of M
and a semisimple module is again a lifting module. Every semisimple module
satisfies (). We shall show that the class of lifting LE-modules that satisfy ()
are exactly the direct sums of semisimple modules and those hollow LE-modules
that are non-split extensions of a semisimple by a simple module.

A family of modules {M;};e; is called locally semi-T-nilpotent (IsTn) if for
any infinitely countable set of non-isomorphisms {f, : M; — M;_,,} with all
in distinct in I, and for any = € M, , there exists a positive integer k (depending
on z) such that fi... fi(z) = 0.
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We have Baba and Harada’s result:

Theorem 3.1. ([3, Theorem 2]) Let M = P, ; M; be an R-module where the
M;’s are local modules with local endomorphism rings. Then the following are
equivalent:

(1) M is lifting.

(2) M; is almost Mj;-projective for all i # j and {M;}ier is IsTn.

Note that any non-zero module is almost S-projective for any simple module
S. We first need a technical lemma regarding locally semi-T-nilpotent (IsTn)
families of modules.

Lemma 3.2: Let {M;}icr be a family of R-modules and {S;}jcs a family of
simple R-modules. If {M;}icr is IsTn, then also the disjoint union {M;}icr U
{Sj}je] s IsTn.

Proof. Let us denote {Li}kex = {Mi}ier U {S;}jes the disjoint union of the
two families, where K is the disjoint union of I and J. Let {f, : L;, — L;,,,} be
a countably infinite family of non-isomorphisms with all 7,, pairwise distinct. We
may also assume that all f,, are non-zero. Consider the chain of homomorphisms
at a position k£ > 1:

.. fr—1 e fr L

Tk—1 Tk Get1 """

If L;, € {S;}jcs then neither L; , nor L;_,, can be simple since otherwise
the map fi_1 respectively fi is zero or an isomorphism. Hence L;, ,, L;, 4 €
{M;}ic1. Moreover the composition fxfx—1 is a non-isomorphism. We refer to
this observation by ().

Let A:={n € N:L;, € {S;}jes}. By (1) we know that N\ A is a (countably)
infinite set. Denote the characteristic function of A by 14, that is 15(n) = 1 if
n € A and otherwise 15(n) = 0. Define a bijection ¢ : N — N\ A recursively by
setting

(1) :=14+15(1) and p(n + 1) := (p(n) + 1) + 1x(p(n) + 1) for all n > 1.

(t) guarantees that ¢ defines a bijection, since the successor of each k € A lies
in N\ A.
7 ._{ fon) fo(n)+1¢A
o} fomy+1fpm) otherwise

By the remark above, property (t) guarantees that we always “jump” cor-
rectly over the modules in {S,};cs, and that all fn are non-isomorphisms. By
construction we get that {f, : L ,-W(n) — Li ..,y } is a countably infinite family
of non-isomorphisms of modules in {M; },e 7. Since {M }ier is 1sTn, for every
element z € L; ,, there exists a k > 1 such that fi . . fi(z) = 0. Hence for all
T € L we also get a k > 1 such that fi... fi(x) = 0. Thus {Li}kek is IsTn.

| |
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With the last lemma and Baba and Harada’s Theorem at hand we easily
deduce now the following criteria for a lifting LE-module to satisfy (*):

Proposition 3.3. Let M = @;; M; be a lifting LE-module with all M;’s local
andlet S := P jed S; be a semisimple module. Then the following are equivalent:
(a) M@ S is lifting.

(b) S; is almost M;-projective for all j € J and i€ I.

Proof. (a) = (b) follows from Baba and Harada’s Theorem 3.1.

(b) = (a) Note that any module M is almost S-projective for all simple modules
S (this is trivial). Since M was lifting, by Theorem 3.1 we have that M; is almost
M;-projective for all i # j. By hypothesis all S; are almost M;-projective, hence
the family {M;} U {S;} is relatively almost-projective. Lemma 3.2 assures that
this family is also IsTn since M was lifting and by Theorem 3.1 the family of
the M;’s is 1sTn. Thus applying once again Baba and Harada’s Theorem we get
that M & S is lifting. =

As an immediate consequence we can state:

Corollary 3.4. Let M = @, M; be a lifting LE-module with all M;’s local.
Then the following statements are equivalent:

(a) M satisfies (*).

(b) M @ S is lifting for any simple module S.

(c) Any simple module S is almost M;-projective foralliel.

Before we characterize when (*) holds for all lifting LE-modules of the above
type, we show that small M-projectivity and almost M-projectivity for some
local module M coincide for simple modules:

Lemma 3.5. Let M be a local right R-module and S a simple right R-module.
Then S is M -projective if and only if S is almost small M -projective.

Proof. Assume S is almost M-projective. Let K C M and f : 5 — M/K
be a non-zero homomorphism such that f(S) is small in M/K. Hence f is
monomorphic, but not epimorphic. By hypothesis, there exists either a map
g: S — M such that f = mgg or a map g : M — S such that fg = 7wk (since
M is indecomposable, M is the only non-zero direct summand). We shall rule
out the second possibility. Assume there exists a g : M — S such that fg = 7,
then g is epimorphic and factors through M/Rad(M), that is there exists an
isomorphism § : M/Rad(M) — S such that g = gm (where 7 := TRad(M))-
Hence we get the following commutative diagram:

M —— M/Rad(M) —— 0
= i
M2, M/K ——0
Thus 7k (Rad(M)) = fgr(Rad(M)) = 0 and as Rad(M) is the unique maximal
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submodule, K = Rad(M). But as M/Rad(M) is simple, fg and hence f must
be isomorphisms contradicting that f(S) was small in M/K. Therefore we can
not have this possibility. Thus S is small M-projective.

Now assume that S is small M-projective and assume we have the following
diagram:

S

|7
ML F 0
where p is an epimorphism and f is non-zero. If f is epimorphic, then f is an
isomorphism and we have g := f~p: M — S a non-zero map from a direct
summand of M to S such that fg = p. If f is not epimorphic, then f(S5)
must be small since F is local. As p factors through M/Kerp, there exists an
isomorphism 5 : M/Kerp — F such that p = pm (where 7 := TKerp). Hence
p~1f is a map from S to M/Kerp with small image and by hypothesis there
exists a map g : § — M such that mg = p~'f. Thus pg = prg =pp~'f = f
shows that g is our desired map. Hence S is almost M-projective. =

Analyzing the proof of {6, Proposition 4.1] we also have:

Proposition 3.6. Let M be a lifting right R-module with local endomorphism
ring such that M @S is lifting for all simple subfactors S of M, then M is simple
or local with Rad(M) = Soc(M).

Let C be the class of semisimple and S the class of simple modules. By
Ext(C,S) we denote the isomorphism classes of extensions of C and S, i.e the
isomorphism classes of all R-modules M such that there exists an exact sequence

0-C—-M-—>S5—-0...(1)

with C € C and § € S. If every exact sequence () splits, we will write
Ext(C,S) = 0.

Corollary 3.7. A non-simple hollow LE-module M satisfies (x) if and only if
M s an extension of a semisimple and a simple module, i.e. M € Ext(C,S).

Proof. The necessity follows from 3.6. Assume that M is a non-simple hollow
LE-module such that there exists a semisimple module C C M with M/C simple.
Since M is hollow and M/C simple, C is the unique maximal submodule of M.
Hence M is local. Let S be a simple module. If S ¢ o[M] then Hom(S, F) =
0 for any factor module F' of M and hence S is almost M-projective. Now
assume S € g[M], then S is a submodule of a factor module M/N of M. Either
M/N = S and hence N = C. Or N C C and there exists a direct summand
L C C such that C = N @ L. In the latter case L ~ C/N = Soc(M/N), as
C/N is maximal in M/N. As § C Soc(M/N), there exists an isomorphism
¢:S — 8§’ C L. Hence either S is a factor module of M or S is isomorphic to
a submodule of M. Thus S is almost M-projective. By 3.4 M satisfies (). m
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Corollary 3.8. A module M is a lifting LE-module satisfying (%) if and only if
M =Co@,; L; with C semisimple, L; hollow LE-modules that are extensions
of a semisimple and a simple module such that L; is almost L;-projective for all

0.

Now we can characterize when (x) holds for all lifting LE-modules that are
direct sums of locals.

Proposition 3.9. Let R be a ring. Then the following are equivalent:

(a) Any lifting LE right R-module M = @;.; M; with all M;’s local satisfies
(*). '

(b) Any finitely generated lifting LE right R-module satisfies (x).

(c) Any direct sum of a simple right R-module and a local right R-module with
local endomorphism ring is lifting.

(d) Any local right R-module M with local endomorphism ring is simple or
Rad(M) = Soc(M).

(e) Any simple right R-module is small M-projective for every local right R-
module M with local endomorphism ring.

(f) Any simple right R-module is almost M -projective for every local Tight R-
module M with local endomorphism ring.

Proof. (a) = (b) = (c) is trivial.

(¢) = (d) follows from Proposition 3.6.

(d) = (e) Let M be a local module with local endomorphism ring and S a simple
module. Assume that there is a non-zero homomorphism f : S — M/K with
f(S) small in M/K and K a submodule of M. Since Rad(M) = Soc(M) is
the unique maximal submodule of M, we have K C Soc(M). Let L be a direct
summand of K in Soc(M), then L = (L@ K)/K = Soc(M)/K = Rad(M)/K =
Rad(M/K). Denote by g : Rad(M/K) — L the natural isomorphism and denote
by mx : M — M/K the canonical projection. Then 7 0 g = tdRad(Mm/K) and
hence h := go f : S — M has the property that nk ch = rg ogo f =
idraa(m/k) © f = f. Hence S is small M-projective.

(e) & (f) follows from Lemma 3.5.

(f) = (a) follows from Corollary 3.4. ™

Recall that a ring R is called semilocal if R/JacR is semisimple. A semilocal
ring with nilpotent Jacobson radical is called semiprimary. It is well-known that
semiprimary rings are right and left perfect.

Theorem 3.10. Let R be a ring. Then the following are equivalent:

(a) Fwvery lifting LE right R-module satisfies (*) and R is right perfect.

(b) Euvery finitely generated lifting LE right R-module satisfies (x) and R is
semiperfect.

(¢) Any direct sum of a simple and a projective local right R-module is lifting
and R is semiperfect.

(d) (JacR)? = 0 and R is semilocal.

(e) The left-version of (a), (b) or (c) hold.
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Proof. (a) = (b) = (c) is trivial.

(c) = (d) As R is semiperfect R = @, e;R with e; primitive idempotents.
Let J denote the Jacobson radical of R. By hypothesis any direct sum of a
simple and e;R is lifting, hence by Proposition 3.6, e; R is simple or Rad(e; R) =
e;J = Soc(e;R). Hence J = @, e;J C Soc(Rr) = l.ann(J) by [2, Proposition
15.17]. Thus J2 = 0.

(d) = (a) Semiprimary rings are right perfect. Moreover any hollow right R-
module over a right perfect ring R is local. So all lifting LE-modules can be
written as a direct sum of locals with local endomorphisms. Let L be a local,
non-simple right R-module with local endomorphism ring. As R is semilocal
Rad(L) = LJ and as J2 = 0 it follows that Rad(L)J = 0. Hence Rad(L) =
Soc(L). By Proposition 3.9, all lifting LE-right R-modules satisfy (x).

Since (d) is left-right independent, we also get the equivalence of left versions
of (a)-{c) with (d). (]

Finally we classify those rings for which every lifting LE-module that satisfies
(x) is semisimple. Let Ext(A4,B) = Ext({A},{B}) denote the isomorphism
classes of module extensions of the module A by the module B. Recall that
Ext(A, B) = 0 means that every extension of A by B splits.

Theorem 3.11. The following statements are equivalent for a ring R:
(a) Every lifting LE-module that satisfies (*) is semisimple.

(b) BEuvery hollow LE-module that satisfies (x) is simple.

(c) Every hollow module is either simple or has infinite length.

(d) Ext(S,T) = 0 for any pair of simples S and T.

Proof. (a) = (b) is obvious.

(b) = (c) Let M be a hollow module having length 2. Then M is hopfian
by [2,11.6] and by 2.2 M is discrete. Thus M has a local endomorphism ring
by [10,5.5]. Since M has length 2, M is non-simple and an extension of two
simple modules. By 3.7, M satisfies (x) and by hypothesis (b) M is simple — a
contradiction to M having length 2. Thus there is no hollow module of length 2.
Any hollow module of finite length > 2 has a hollow factor module of length 2.
Therefore there is also no hollow module of finite length > 2 and every hollow
module is either simple or has infinite length.

(c) = (d) Assume M is an extension of S by T for some simples S and T

0—— 8§ L om2oT 0
We identify S with its image in M under f. If S is small in M, then M is a
local module of length 2 what is impossible by (c). Therefore § is not small in
M and hence a direct summand. Thus f splits and shows Ext(S,T) = 0.
(d) = (a) It is enough to consider local non-simple LE-modules M that satisfy
(). By Corollary 3.7 M is an extension of a semisimple module C by a simple

module T'. Take a simple submodule S of C with C = S @ X. Then we have
an exact sequence:

0 — 8§ —— M/X T 0
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and M/X € Ext(S,T). By (d) this sequence splits contradicting the fact that
M/X is hollow. Hence every local LE-module that satisfies () is simple and
thus every lifting LE-module satisfying (*) is semisimple. ]
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