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Abstract. In this paper we introduce the concept of sparse sets in a metric space

as a generalization of sets having density zero. 
'We 

then generate a topology with the

help of these sets called sparse set topology, and investigate certain properties of this

topology.

l-. Introduction

The idea of sparse sets was first introduced by Sarkhel and De [13] in the real

number space as a generalization of sets having upper outer density zero. Sub-

sequently Chakraborty and Lahiri 13,4] generalized the concept to a topological
group, taking one of the equivalent conditions of sparse sets (see 113, Theorem

3.1]) as the definition of sparse sets. In [4] a topology was also generated with

the help of sparse sets, whose properties were investigated. Now in both the

above cases the density function, to which the notion of sparse sets is closely

related, always lies between 0 and 1.

In this paper we consider the situation in a metric space. In a metric space,

using a specified class of subsets, Eames [5] defined the density function which

happens to exceed 1 sometimes. In fact his density function Iies between 0 and

oo. Recently Lahiri and Das [8] studied the properties of this density function

and the corresponding density topology. Here we first study the feasibility of

certain definitions of sparse sets, valid for a topological group, in a metric space

and consequently introduce a suitable definition of sparse set so that it general-

izes the notion of sets having density zero, which we do in Sec. 3 of the paper.

In Sec. 4 we prove certain properties of the sparse sets. Finally, in sec. 5, we

introduce the concept of sparse set topology with the help of these sets and

investigate various properties of this topology. Our nature of study does not

appear to be analogous to the known methods because of the uncertain nature

of the density function and our sparse set topology appears to be different from

that of [4] in many respects.
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2. Preliminaries

Le t  (X ,p )  beamet r i cspace .  Le t  Cbea  c lasso f  c l osedse ts f rom (X ,p )and r
a non-negative real valued function on C. we assume that the empty set / and
all the singleton sets are in C, finite union of members of C is in C and that
r(I) : 0 if and only if 1 contains at most one point. For each A C X,let p(,4),
0 3 p(A) ( oo, be defined by

u(A) : nm {inr i '(rf,rlt },  
c - o *  |  u _ t  t  ,  , / )

where the infimum is taken over all possible countable collections of sets .I(n)
from C such that A c UL, f(n) and the diameter of .I(n), diam (/(rz)) < e foi
all n. As in Eames [5] we assume that such a countable collection of sets from C
exists for each set A and every 6 > 0. Then p is an outer measure function |'11.
p.35]. A set ,4, is measurable it p(B) : p(A)B)+ p(A.aB) for every set B e C
where c stands for the complement. AII Borel sets of (x,p) are measurable (cf.
11, pp. 102-106). For every set .4 there is a measurable set B called a measurable
cover of A such that A c B and p(A) : p,(B) l11, pp. 102-108] and so p is a
regular outer measure function.

Definit ion A. [5] Let A C X and p € X. Then the number D(A,p), 0 <
D(A,p) 1 oo, called the densi,ty of A at p, is def,ned by

D(A,, p): .l]T. { "0 q;l },
where the suprernurn 'is taken ouer all sets I from C such that p € I and, the
di ,am(I)  < e.  Also when r ( I )  :0  or  @, u)e take p, (An l ) l r ( l  :  a .

In [5] it is proved that if the sets in C satisfy certain regularity conditions
and p(A) is finite, then
(i) D(A,p): 1 for almost all points of A,

(ii) D(A,p) : 0 for almost all points of A' if.and only if A is measurable.
Throughout we assume that the regularity conditions .as given in [5] are

satisfied so that (i) and (ii) hold.

Def in i t ion B. l8 l  Let  n:  {U c X;  D(U' , r )  :0  for  a l l  r  e  U}.  Then D is  a
topology on X called the densi,ty topology (d-topology for short) and thus (X, D)
is a topological space. Sets'in D are called d-open.

We quote below the results from [8] which will be needed in future.

Lemma A. The set function D(. ,p) for a fi,xed p € X i,s rnonotone nondecreas-
'ing and finitely subadd,itiae.

Lernma B. If E, F are measurable and EOF : $, then D(EUF,p) : D(E,p)+
D(F,p) for almost all p € X.

Theorem A. p(E) :0 i.f and only i,f E i,s d-closed and d,iscrete.
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By sets we shall always mean subsets of X unless otherwise mentioned and
as in [8], in our discussions, we treat only sets having finite measure.

3. Sparse Sets in a Metric Space

In this section our aim is to find a suitable definition of sparse set in a metric
space so that it generalizes the notion of sets having density zero.

We first consider the definition of sparse sets in a topological group as given
by Chakraborty and Lahiri [3,4].

Definition C. A set E c G is said to be sparse at r Q G if for euery set F C G
uithD- (F,r) ( 1, we haueD'p u F,r) 1 I, where G i,s a compact Hausdorff
topologi,cal group with regular Haar measure m and outer rneasure n1,* as def,ned
i,n 11,3,41. The details of the definlt'ion and propert'ies of the upper and lower

outer d,ensity funct'ionsD* and, D* in G can be found inlll, atso to some ertent
i,n 13,41.

Now the ab.ove definition of sparse sets does not seem to be suitable for a
metric space, because unlike a topological group (where D-(C,r) : I for all
r e G), the highest value of the density function at any point of a metric space
is not necessarily 1. In fact it can be any number from 0 to oo.

We shall next consider another equivalent definition of sparse sets in a topo-
logical group which will be established in Lemma 2.

We shall make use of the following results of Chakraborty and Lahiri [4] in
Lemmas 1 and 2.

Lemma C. If E is a measurable couer of a set Ac G, then for any r e G

D*  (E , r )  :D*  (A , t )  and  D*  (E , r )  :  D*  (A , r ) .

Lemma D. I f  E ' is  measurable then for  any r  e G,D'(n, r )  + D*(E", r ) :  ! .

Also as in [4] we assume that every set in G has measurable cover, where the
sense of measurable cover is to be interpreted in accordance with ([4], see also

[12 ] ) .
We now prove the following two results.

Lemma L, E c G is sparse at r € G i'f and only if for any rneasurable set
F c G uithD* (F,r) < 1 we haaeD- (' lu F,r) 1! where A is ang measurable
coaer of E.

Proof. Let E be sparse at r and Iet F be a measurable set with D'(F,r) < 1.

Then from Definit ion C,D*18 uF,r) < 1. Let A be any measurable cover

of E. Then AU F is also a measurable cover of .E U I' and so by Lemma C,
D - ( A u 4 r ) :  D - ( E u  4 " )  <  1 .

Conversely let the given condition hold. Let Fr C G be such that D* (fi,r) <
1. Let F be a measurable cover of Fl . Then by Lemma C, D'(F,r1 :
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D*(Fr,n) < 1. Let A be a measurable cover of E. Now by the given condi-

t ion,  D*(Au4r)  < 1.  Since.4uF is  a measurable cover  of  EuFr,  byLemma

C,D*18  u  F r , r )  :D* (Au4 r )  (  1 .  Hence  E  i s  spa rse  a t  r .

Lemma 2.  E CG' is  sparse at r  €G i , f  andonly i f  for  angmeasurable setF C G
ulith D" (F',o) > 0 we haue D* ((AUF)', t) > 0 where A is any measurable coaer
of E.

The proof immediately follows from Lemma 1 and Lemma D.

Now in accordance with Lemma 2, we consider the following definition of
sparse set in a metric space.

Definition L. A subset E of X is said to be sparse at r if for euery measurable
set F C X with D(F' ,n) > 0 we haue D((AuF)' , r)  )  0,  where A' is any
measurable couer of E.

The following property of the density function will be used in our next result.

Lemma 3. If A'is a measurable couer of E c X then for ang r e X, D(E,r):
D ( A , r ) .

The proof is omitted.

Theorem L. E c X 'is sparse at r if and only il D(E,r) : 0'

Proof. First let D(E,n):0 and let F c X be a measurable set such that
D(F',r) > 0. If possible let D((AU F)",o) : 0 for a measurable cover A of. E'
Then by Lemma ,4,

D(F" , t ) :  D l ( ' tu  F) "  u  (A-  F) 'n )

S  D ( ( A u  F ) " ,  r )  +  D ( A -  F , r )

s D((Au F)" ,  n)  + D(A,x)
: 0 + 0 : 0 ,

(Since by Lemma 3, D(E,r) :  D(A,r)) ,  i .e '  D(F' ,r)  :0,  a contradict ion.
Hence D((AuF)",t) > 0 for any measurablecover Aof E and so E is sparse
at n.

Conversely let E be sparse at n. If possible let D(E,tr) > 0. Let A be a
measurable cover of ,8.  Then by Lemma 3, D(E,r) :  D(A,r) :  D((A)",")  >
0. Now since E is sparse at r, from Definition l, D((AU A')",r) : D(6,o) > 0
which is impossible. Hence D(E,r) : Q.

Remark -1. Theorem 1 shows that the above definition of sparse sets (Definition
1) does not at all generalize the concept of a set with density zero, which is our
main purpose. However we have the following interesting result which gives a
new characterisation of the density topology in a metric space.
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Theorem 2. A set U c X 'is d-open i,f and only if for all po'ints r e U, Uc
satisfi,es the condit'ion of Def.niti,on 1.

Let us again consider the earlier definition of sparse sets, i.e, Definition C.
We note that in view of Lemma A, D(X,r) is the highest value of the density
function at any point r, though it may be any number from 0 to oo. With this
in mind we now define a sparse set in a metric space as follows.

D e f i n i t i o n  2 .  A s e t . E  C  X  i s s a i d t o b e s p a r s e a t a p o i n t  r  €  X  w h e r e
D(X,r) I 0 if for every set F c X with D(fl r) < D(X,z) we have D(Eu F,r)
< D(X,x) .  I f  r  €  X is  such that  D(X, t ) :0 ,  then any set  E c X is  sa id to
be sparse at r. The collection of all sparse sets at r will be denoted by ^9(r).

Note 1. In particular if the density function for a metric space is bounded in

[0, 1] and D(X, r) : 1 for all r € X, then Definition 2 coincides with Definition
C .

In the remaining part of this paper, by sparse sets we shall always mean sets
satisfying the conditions of Definition 2.

4. Properties of Sparse Sets

The following lemma shows that the notion of sparse sets is a generalization of
the notion of sets having density zero.

Lemma 4 .  I f  D (E , r ) : 0  t hen  E  e  S ( r ) .

Proof. Let F c X be such that D(F, r) < D(X,r). Then by Lemma A,

D(Eu F , r )  S  D(E, r )  +  D(F, r )  <  D(x ,n ) .

So .E e S(r).

Lemma 5. I f  AC E and E e S(r) ,  then A e S(r) .

Lernrna 6. If 81,82 e S(x) then EtU E2 e S(r).

The proofs of Lemmas 5 and 6 run parallel to those of Lemmas 4 and 5 in

[ ] and so are omitted.

Lemma 7. S(x) is a ring.

The proof follows from Lemmas 5 and 6.

Lemma 8. I I  E e S(r)  and A' is ameasurable coaer of E then Ae S(r) .

Proof. If. D(X,r):0 then there is nothing to prove. Let F C X be such that
D(F,r)  < D(X,r)  where D(X,r)  I  0.  Since E e S(r) ,  D(EO F,r)  < D(X,r) .
Let Fr be a measurable cover of F. Then clearly Al n is a measurable cover
o f  E U F  a n d  s o  b y  L e m m a S ,  D ( A u F y , r ) :  D ( E u F , r )  <  D ( X , r ) .  S i n c e
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Au F c .4 u Fr, by Lemma A, D(Au F,r) < D(Au F1,n) < D(X,r). This
proves the lemma.

Theorem 3. (.f. [4, Theorem tD A n e S(r) and F C X is such that
D ( F , r ) : 0  t h e n  D ( ( E U  F ) " , * )  :  D ( X , r ) .

Proo!. If D(X,r): 0 then there is nothing to prove. So let D(X, r) I 0. By
Lemma A.

D(X, r )  <  D(F, r )  +  D(F" , r ) :  D(F ' , r )  <  D(X,x )

i 'e '  
D(F" , r ) :  D(x , r ) '

Now
D(E u (E u F)" , r) : D(n u F", r) : D(X, r)

(by Lemma A and since D(F'", r): D(X,r)).
Then D( (Eut r ' ) " , r ) :  D(x , r )  fo r  i f  D( (E  UF)" , r )  <  o1x ,c )  then,

because E e S(r), D(EU (Eu F)",r) < D(X,r) which is not the case. Hence
the theorem.

Corol lary L. I f  E e S(r)  then D(E ,r) :  D(X,r) .

Proof. Since D(Q,r): 0, by Theorem 1,

D ( 8  , x ) :  D ( ( E u 6 ) , r ) :  D ( X , r ) .

5. Sparse Set Topology

D e f i n i t i o n 3 .  L e t r : { E ; E C X  a n d E  e  S ( r )  f o r a l l r e E } .

Theorem 4. (X,r) is a topolog'ical space.

Proof. Obviously /, X e r. Let E6 € r for i € A where A is an index set. Let
E:  U, , .a  Eaandre  E.  Thenr  €  E t fo r  somei€  A.  S ince  E i€ r ,  E f  e  S( r ) .
Since -8" c E:, by Lemma 4, E" e S(r). Since r € E is arbitrary, E e r.
Final ly let  .o1, E2€.r andr € E1ltE2. Sincer €Ei andEi €r,  Ef e ,5(c) for
j : I,2. Then by Lemma 5, (E1 o Ez)" : Eiu E3 e S(r). Since r € .Er l^l ,Ez is
arbitrary, Et lt Ez € r. Hence z is a topology on X and (X, r) is a topological
space.

The topology thus obtained will be called the sparse set topology (s-topology
for short). The sets open (closed) in r are called s-open (s-closed).

Theorem 5. The s-topology 'is finer than the d-topology.

Proof . Let [/ be d-open. Then D(U',r) : 0 for all r € U and so by Lemma 4,
U" e S(r) for all r €U and so [/ is s-open.
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Theorern 6. (cf. [4, Lemma 9]) A E 'is s-open and r e E. Then D(E,r) :
D(X, r ) .

Proof.  Since E er and r € E, E e S(r)  andsobyCorol lary I ,  D(E,r) :
D ( ( E  ) " , n ) :  D ( X , r ) .

Theorem 7. ("f. 14. Lemma 8)) If for sorne n € X with D(X,r) I 0,
D(8",r) < D(X,r) then r is a s-limit poi'nt of E.

Proof. Suppose c is not a s-limit point of .8. Then there is a s-open set V
c o n t a i n i n g r s u c h  t h a t V  n ( E - { " } )  :  Q , i . e .  V  c  ( E -  { " i ) " :  E  U { x } .
Since p({r})  :0,  by Lemma A,

D(V, r )  <  D(E u  { " } ,  r )  <  D1E ,c )+  D( i r } ,  r )  - -  D(E , r ) .

Again from Theoremi, D(V,r) : D(X,z) and so D(X, r) : D(V,r) < D(E ,r),
a contradiction. Hence r is a s-limit point of ,8.

Theorem 8. For arneasurable set E, p(E):0 if and only if E is closed and
di,screte i,n s-topology.

Prool. First assume that p'(E) : 0' Then by Theorem A, 'E is discrete and
closed in d-topology. Since s-topology is finer than d-topology, .E is closed and
discrete in s-topology.

Conversely let .E be closed and discrete in s-topology' Then by Theorem 8,
D(8",x):  D(X,r)  for al l  r  e X. Now by Lemma B,

D(E, r)  + D(E", r)  :  D(X, r)

f o r a l l  n e X  - N w h d r e p ( N )  : 0 .  T h u s  D ( E , t ) : 0 f o r a l l r € X - N .  L e t
E1: {r  e E; D(E,r)  :  1} and E2 - E - .81. Then by ( i ) '  p(Ez):0. Also we
must have E1 c N, i .e.  p '(81):0'  Since E: ErU E2, p'(E):0. This proves
the theorem.

Theorem 9. (cf. [4, Theorem 7l) (X,r) is not first countable i! i't conta'ins at
least one point x ulith D(X,t) > 0.

Proof. First assume that there is a point t € X with D(X, r) > 0. We
shall show that there is no countable base at c. On the contrary assume that

{Bt,Bz,Bz,...} is a countable base at r' We note that each Bi is uncountable
for if B,i is countable then p(Bi) :0 and so D(Ba,r):0 + D(X,r) which is
impossible in view of Theorem 6.

We select u,  *  n from 81 ,  rz I  r , r1 from 82 etc '  Let A: {r t , rz,rr ,  . . . } .
Then pt(A) :0 and so ,4 is s-closed by Theorem 8.

Let U be any s-open set containing r. Then [/ - -4 is also a s-open set
containing r. Clearly no B; is contained inU -,4. This shows that {BuBz...}
is not a countable base at r. Hence (X, r) is not first countable.

We shall show that the above mentioned condition is essential. If. D(X,r) : 0
for all r e X, then D({r}',r) :0 for all n e X by Lemma A which implies
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that {r} is d-open and so s-open (by Theorem 5) for all r € x. Then evidentry
(X, r) is first countable.

Theorem 10. (cf. [4, Theorem S]) tf p,@) :0, then E is nowhere d,ense'in the
s-topology provided E d,oes not conta'in any po,int r with D(X,r): g.

Proof. If E does not contain any point r with D(X,r): 0, then the proof runs
parallel to that of Theorem 8 in [a]. We shall only show that the given condition
is essential. If D(X,u) : 0 for some r e E, then as in Theorem 9, {"} is s-open
and so s-interior of ,E is not empty which implies that -E is not nowhere dense.

Theorern L1-. Compact sets 'in the s-topology are finite.

Proof. Let A be a countably infinite set. Since p({r}) : 0 for all r € X,
l t (A):0. Now for any A e A, p,(A- {y})  :0 and so by Theorem 8, A- {a}
is s-closed which implies that A'U {A} is s-open. Thus {A" U {g}; y e A} is
o-open cover of ,4 which has no finite subcover. Hence A is not s-compact.
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