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Abstract. In this paper we introduce the concept of sparse sets in a metric space
as a generalization of sets having density zero. We then generate a topology with the
help of these sets called sparse set topology, and investigate certain properties of this
topology.

1. Introduction

The idea of sparse sets was first introduced by Sarkhel and De [13] in the real
number space as a generalization of sets having upper outer density zero. Sub-
sequently Chakraborty and Lahiri 3, 4] generalized the concept to a topological
group, taking one of the equivalent conditions of sparse sets (see [13, Theorem
3.1]) as the definition of sparse sets. In [4] a topology was also generated with
the help of sparse sets, whose properties were investigated. Now in both the
above cases the density function, to which the notion of sparse sets is closely
related, always lies between 0 and 1.

In this paper we consider the situation in a metric space. In a metric space,
using a specified class of subsets, Eames [5] defined the density function which
happens to exceed 1 sometimes. In fact his density function lies between 0 and
oo. Recently Lahiri and Das (8] studied the properties of this density function
and the corresponding density topology. Here we first study the feasibility of
certain definitions of sparse sets, valid for a topological group, in a metric space
and consequently introduce a suitable definition of sparse set so that it general-
izes the notion of sets having density zero, which we do in Sec. 3 of the paper.
In Sec. 4 we prove certain properties of the sparse sets. Finally, in Sec. 5, we
introduce the concept of sparse set topology with the help of these sets and
investigate various properties of this topology. Our nature of study does not
appear to be analogous to the known methods because of the uncertain nature
of the density function and our sparse set topology appears to be different from
that of [4] in many respects.
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2. Preliminaries

Let (X, p) be a metric space. Let C be a class of closed sets from (X, p) and 7
a non-negative real valued function on C. We assume that the empty set ¢ and
all the singleton sets are in C, finite union of members of C is in C and that
7(I) = 0 if and only if I contains at most one point. For each A C X, let p(A),
0 < u(A) < oo, be defined by

)=t {it 31}

where the infimum is taken over all possible countable collections of sets I(n)
from C such that A C |72, I(n) and the diameter of I(n), diam (I(n)) < ¢ for
all n. As in Eames [5] we assume that such a countable collection of sets from C
exists for each set A and every € > 0. Then u is an outer measure function [11,
p-35]. A set A is measurable if 4(B) = u(ANB)+ u(A°NB) for every set B € C
where c stands for the complement. All Borel sets of (X, p) are measurable (cf.
11, pp. 102-106). For every set A there is a measurable set B called a measurable
cover of A such that A C B and p(A) = w(B) [11, pp. 107-108] and so y is a
regular outer measure function.

Definition A. [5] Let A C X and p € X. Then the number D(4,p), 0 <
D(A,p) < o0, called the density of A at p, is defined by

R T p(ANT)
D(A,p) = lim { sup T}

where the supremum is taken over all sets I from C such that p € I and the
diam (I) < e. Also when 7(I) =0 or oo, we take u(ANI)/7(I) = 0.

In [5] it is proved that if the sets in C' satisfy certain regularity conditions
and p(A) is finite, then
(i) D(A,p) = 1 for almost all points of A,
(ii) D(A,p) = 0 for almost all points of A° if and only if A4 is measurable.
Throughout we assume that the regularity conditions as given in [5] are
satisfied so that (i) and (ii) hold.

Definition B. [8] Let D = {U C X; D(U¢,z) =0 for allz € U}. Then D is a
topology on X called the density topology (d-topology for short) and thus (X, D)
s a topological space. Sets in D are called d-open.

We quote below the results from [8] which will be needed in future.

Lemma A. The set function D(.,p) for a fited p € X is monotone nondecreas-
ing and finitely subadditive.

Lemma B. IfE, F are measurable and ENF = ¢, then D(EUF, p) = D(E, p)+
D(F,p) for almost all pe X.

Theorem A. u(F) =0 if and only if E is d-closed and discrete.
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By sets we shall always mean subsets of X unless otherwise mentioned and
as in [8], in our discussions, we treat only sets having finite measure.

3. Sparse Sets in a Metric Space

In this section our aim is to find a suitable definition of sparse set in a metric
space so that it generalizes the notion of sets having density zero.

We first consider the definition of sparse sets in a topological group as given
by Chakraborty and Lahiri (3, 4].

Definition C. A set E C G is said to be sparse at x € G if for every set F C G
with D" (F,z) < 1, we have D (EUF,z) < 1, where G is a compact Hausdorff
topological group with reqular Haar measure m and outer measure m* as defined
in [1,3,4]. The details of the definition and properties of the upper and lower
outer density functions D' and D* in G can be found in [1], also to some extent
in [3,4].

Now the above definition of sparse sets does not seem to be suitable for a
metric space, because unlike a topological group (where 3*(G,x) = 1 for all
z € G), the highest value of the density function at any point of a metric space
is not necessarily 1. In fact it can be any number from 0 to co.

We shall next consider another equivalent definition of sparse sets in a topo-
logical group which will be established in Lemma 2.

We shall make use of the following results of Chakraborty and Lahiri [4] in
Lemmas 1 and 2.

Lemma C. If E is a measurable cover of a set A C G, then for any x € G

D'(E,z) = D"(A,z) and D*(E,z) = D*(A, z).

Lemma D. If E is measurable then for any z € G, D'(E,z) + D*(E¢,z)=1.

Also as in [4] we assume that every set in G has measurable cover, where the
sense of measurable cover is to be interpreted in accordance with ([4], see also

[12)).

We now prove the following two results.

Lemma 1. E C G is sparse at T € G if and only if for any measurable set
F C G with D' (F,z) < 1 we have D" (AU F, ) < 1 where A is any measurable
cover of E.

Proof. Let E be sparse at = and let F' be a measurable set with D'(F,z) < 1.
Then from Definition C, D' (E U F,z) < 1. Let A be any measurable cover
of E. Then AU F is also a measurable cover of £ U F' and so by Lemma C,
D'(AUF,z)=D (EUF,z) < 1.

Conversely let the given condition hold. Let F; C G be such that D'(F,z) <
1. Let F be a measurable cover of F;. Then by Lemma C, 5*(F, =



116 Pratulananda Das and Md Mamun Ar Rashid

D (F1,z) < 1. Let A be a measurable cover of E. Now by the given condi-
tion, 5*(A UF,z) < 1. Since AU F is a measurable cover of EU Fy, by Lemma
C,D(EUF;,z) =D (AUF,z) < 1. Hence E is sparse at z.

Lemma 2. E C G is sparse at x € G if and only if for any measurable set F C G
with D*(F°,z) > 0 we have D*((AUF)¢,z) > 0 where A is any measurable cover
of E.

The proof immediately follows from Lemma 1 and Lemma D.

Now in accordance with Lemma 2, we consider the following definition of
sparse set in a metric space.

Definition 1. A subset E of X is said to be sparse at z if for every measurable
set F C X with D(F¢,z) > 0 we have D((AU F)%,z) > 0, where A is any
measurable cover of E.

The following property of the density function will be used in our next result.

Lemma 3. If A is a measurable cover of E C X then for anyxz € X, D(E,x) =
D(A, ).

The proof is omitted.

Theorem 1. E C X is sparse at = if and only if D(E,z) = 0.

Proof. First let D(E,z) = 0 and let F C X be a measurable set such that
D(F¢, ) > 0. If possible let D((AU F)¢,z) = 0 for a measurable cover A of E.
Then by Lemma A,

D[(AUF)°U(A— F),z]
D((AUF)%,z) + D(A - F,x)
D((Au F)*,z) + D(A,z)

(Since by Lemma 3, D(E,z) = D(A,z)), i.e. D(F¢z) = 0, a contradiction.
Hence D((AU F)¢,z) > 0 for any measurable cover A of E and so E is sparse
at x.

Conversely let E be sparse at z. If possible let D(E,z) > 0. Let A be a
measurable cover of E. Then by Lemma 3, D(E,z) = D(A,z) = D((4°)°,z) >
0. Now since E is sparse at z, from Definition 1, D((AU A°)¢,z) = D(¢,z) > 0
which is impossible. Hence D(E, z) = 0.

Remark 1. Theorem 1 shows that the above definition of sparse sets (Definition
1) does not at all generalize the concept of a set with density zero, which is our
main purpose. However we have the following interesting result which gives a
new characterisation of the density topology in a metric space.
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Theorem 2. A set U C X is d-open if and only if for all points x € U, U¢
satisfies the condition of Definition 1.

Let us again consider the earlier definition of sparse sets, i.e, Definition C.
We note that in view of Lemma A, D(X, z) is the highest value of the density
function at any point z, though it may be any number from 0 to co. With this
in mind we now define a sparse set in a metric space as follows.

Definition 2. A set E C X is said to be sparse at a point x € X where
D(X,z) # 0if for every set F C X with D(F,z) < D(X,z) we have D(EUF,x)
< D(X,z). If € X is such that D(X,z) = 0, then any set £ C X is said to
be sparse at z. The collection of all sparse sets at = will be denoted by S(z).

Note 1. In particular if the density function for a metric space is bounded in
[0,1] and D(X,z) =1 for all z € X, then Definition 2 coincides with Definition
C.

In the remaining part of this paper, by sparse sets we shall always mean sets
satisfying the conditions of Definition 2.

4. Properties of Sparse Sets

The following lemma shows that the notion of sparse sets is a generalization of
the notion of sets having density zero.

Lemma 4. If D(E,z) = 0 then E € S(z).
Proof. Let F C X be such that D(F,z) < D(X,z). Then by Lemma A,

D(EUF,z) < D(E,z)+ D(F,z) < D(X,z).
So E € S(z).

Lemma 5. If AC E and E € S(z), then A € S(x).
Lemma 6. If E;, E; € S(z) then Ey U E; € S(x).

The proofs of Lemmas 5 and 6 run parallel to those of Lemmas 4 and 5 in
[4] and so are omitted.

Lemma 7. S(z) is a ring.
The proof follows from Lemmas 5 and 6.

Lemma 8. If E € S(z) and A is a measurable cover of E then A € S(z).

Proof. If D(X,z) = 0 then there is nothing to prove. Let ' C X be such that
D(F,z) < D(X,z) where D(X,z) # 0. Since E € S(z), D(EUF,z) < D(X, z).
Let F; be a measurable cover of F. Then clearly AU F} is a measurable cover
of EUF and so by Lemma 3, D(AU F1,z) = D(EU F,z) < D(X,z). Since
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AUF C AU F, by Lemma A, D(AU F,z) < D(AU Fi,z) < D(X,z). This
proves the lemma.

Theorem 3. (cf. [4, Theorem 1) If E € S(z) and F C X is such that
D(F,z) =0 then D((EU F)°,z) = D(X, ).

Proof. If D(X,z) = 0 then there is nothing to prove. So let D(X,z) # 0. By
Lemma A,

D(X,z) < D(F,z) + D(F¢,z) = D(F°,z) < D(X, 1)

i.e.

D(F°,z) = D(X,z).

Now
D(EU(EUF),z) = D(EUF* z) = D(X, 1)

(by Lemma A and since D(F¢,z) = D(X,z)).

Then D((E U F)¢,z) = D(X,z) for if D((E U F)*,z) < D(X,z) then,
because E € S(z), D(EU (EUF)°,z) < D(X,z) which is not the case. Hence
the theorem.

Corollary 1. If E € S(z) then D(E°,z) = D(X, z).
Proof. Since D(¢,z) = 0, by Theorem 1,
D(E°,z) = D((EU¢)°,z) = D(X, z).

5. Sparse Set Topology
Definition 3. Let 1 = {E; E C X and E° € S(z) for all z € E}.

Theorem 4. (X, ) is a topological space.

Proof. Obviously ¢, X € 7. Let E; € 7 for i € A where A is an index set. Let
E=J;cp Eiand z € E. Then z € E; for some i € A. Since E; € 7, Ef € S(x).
Since E° C Ef, by Lemma 4, E¢ € S(z). Since z € E is arbitrary, F € 7.
Finally let Ey, E; € 7 and z € E1 N E,. Since z € E; and E; € 7, ES € S(z) for
7 =1,2. Then by Lemma 5, (E; N E)¢ = Ef UES € S(z). Sincez € E1NE;y is
arbitrary, E1 N E; € 7. Hence 7 is a topology on X and (X, ) is a topological
space.

The topology thus obtained will be called the sparse set topology (s-topology
for short). The sets open (closed) in 7 are called s-open (s-closed).

Theorem 5. The s-topology is finer than the d-topology.

Proof. Let U be d-open. Then D(U¢,z) =0 for all z € U and so by Lemma 4,
U¢ € S(z) for all z € U and so U is s-open.
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Theorem 6. (cf. [4, Lemma 9]) If E is s-open and z € E. Then D(E,z) =
D(X,z).

Proof. Since E € 7 and z € E, E° € S(z) and so by Corollary 1, D(E,z) =
D((E°)*,z) = D(X,x).

Theorem 7. (cf. [4. Lemma 8]) If for some x € X with D(X,z) # 0,
D(E*,z) < D(X,x) then z is a s-limit point of E.

Proof. Suppose z is not a s-limit point of E. Then there is a s-open set V
containing z such that VN (E — {z}) = ¢, i.e. V C (E — {z})° = E°U {z}.
Since p({z}) = 0, by Lemma A,

D(V,z) < D(E°U{z},z) < D(E®,z) + D({z},z) = D(E*, z).

Again from Theorem 6, D(V,z) = D(X, z) and so D(X,z) = D(V,z) < D(E*, z),
a contradiction. Hence z is a s-limit point of E.

Theorem 8. For a measurable set E, u(E) = 0 if and only if E is closed and
discrete in s-topology.

Proof. First assume that u(E) = 0. Then by Theorem A, E is discrete and
closed in d-topology. Since s-topology is finer than d-topology, E is closed and
discrete in s-topology.

Conversely let E be closed and discrete in s-topology. Then by Theorem 8,
D(E®,z) = D(X,z) for all z € X. Now by Lemma B,

D(E,z) + D(E°,z) = D(X, z)

for all z € X — N where u(N) = 0. Thus D(E,z) =0 for allz € X — N. Let
E, = {z € E; D(E,z) = 1} and E; = E — E;. Then by (i), u(E2) = 0. Also we
must have E; C N, i.e. u(E;) =0. Since E = E; U E3, u(E) = 0. This proves
the theorem.

Theorem 9. (cf. [4, Theorem 7]) (X, ) is not first countable if it contains at
least one point x with D(X,z) > 0.

Proof. First assume that there is a point z € X with D(X,z) > 0. We
shall show that there is no countable base at . On the contrary assume that
{B1, B3, B3, ...} is a countable base at z. We note that each B; is uncountable
for if B; is countable then u(B;) = 0 and so D(B;,z) = 0 # D(X,z) which is
impossible in view of Theorem 6.

We select z1 # = from By, z2 # ¢, z1 from By etc. Let A = {z1,%2,23,...}.
Then u(A) = 0 and so A is s-closed by Theorem 8.

Let U be any s-open set containing x. Then U — A is also a s-open set
containing z. Clearly no B; is contained in U — A. This shows that {By, Ba...}
is not a countable base at z. Hence (X, 7) is not first countable.

We shall show that the above mentioned condition is essential. If D(X,z) =0
for all x € X, then D({a:}c,a:) = 0 for all z € X by Lemma A which implies
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that {z} is d-open and so s-open (by Theorem 5) for all z € X. Then evidently
(X, ) is first countable.

Theorem 10. (cf. [4, Theorem 8]) If u(E) = 0, then E is nowhere dense in the
s-topology provided E does not contain any point ¢ with D(X,z) = 0.

Proof. If E does not contain any point 2 with D(X,z) = 0, then the proof runs
parallel to that of Theorem 8 in [4]. We shall only show that the given condition
is essential. If D(X, z) = 0 for some z € E, then as in Theorem 9, {z} is s-open
and so s-interior of E is not empty which implies that E is not nowhere dense.

Theorem 11. Compact sets in the s-topology are finite.

Proof. Let A be a countably infinite set. Since u({z}) = 0 for all z € X,
#(A) = 0. Now for any y € A, (A — {y}) = 0 and so by Theorem 8, A — {y}
is s-closed which implies that A° U {y} is s-open. Thus {A°U {y}; y € A} is
a-open cover of A which has no finite subcover. Hence A is not s-compact.
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