Vietnam Journal of Mathematics 29:3 (2001) 197-224 Vietnam Journal

of
MATHEMATICS
© NCST 2001

Survey

Non-Linear Approximations
Using Wavelet Decompositions*

Dinh Dung
Institute of Information Technology
Nghia Do, Cau Giay, Hanoi, Vietnam

Received December 8, 2000

Abstract. We give a brief survey on non-linear n-approximations using wavelet de-
compositions. In these approximations, we resolve a target function by linear com-
binations of n free terms of a wavelet series, which constitute a non-linear set. The
wavelets which form wavelet decompositions are B-splines and dyadic scales of de la
Vallée Pussin kernels. The selection of n terms depends on the target function. Cen-
tral questions to be focused are what, if any, the advantages of non-linear n-term
approximations over linear ones, and the differences between univariate and multivari-
ate non-linear n-term approximations. These questions will be discussed mainly in
terms of asymptotic orders of error of the best non-linear n-term approximation and
non-linear n-widths based on optimal continuous algorithms of n-term approximation,
for smoothness classes of functions.

1. Introduction

A typical approximation problem is to resolve a complicated target function by
well-known special approximants such as polynomials, splines and wavelets etc.
The target function is usually assumed to belong to a normed space X. To
approximate f € X we use a set M of approximants which is a small subset of
X and consists of simplier, more appropriate to compute functions. To measure
the error of the approximation to a target function f by an approximant ¢ € M
we use the norm || f — ¢|| of the difference between f and ¢. The quantity

* This paper is a part of a plenary lecture delivered at the Third Asian Mathematical Confer-
ence, Manila, 23-27 October,2000.
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measures the error of the best approximation to f by approximants from M.
In linear approximation, the set M is a linear manifold. While in non-linear
approximation, it is a non-linear set. If W C X is a class of target functions
which is defined by certain common properties, for example, smoothness, the
quantity
EW,M,X) := sup E(f,M, X)
few

measures the worst case error of the approximation to f € W by M.

Increasing the accuracy of approximation to a target function can generally
be achieved by increasing the complexity of the approximants via a so-called
approximation analysis which is defined as an increasing sequence {M,}5° ; of
sets of approximants such that the union U32 ; M,, is dense in X. The parameter
n usually expresses the complexity of the approximants. It can be the linear
dimension of M,, or the logarithm of the capacity of M,, etc. For an approxi-
mation analysis {M,}32; and a target function f, the quantity E(f, M., X) is
increasing as a function of n and E(f, M,,X) — 0 when n tending to co. A
central problem of Approximation Theory is to compute the asymptotic order of
E(f, M,, X) if certain smoothness properties of f are known. It is well-known
that if a 2r-periodic functionf belongs to the Sobolev space Wood £8 .5 ole,
f € Lp(T) =1 is absolutely continuous and (" € L,(T), then the error of
the best approximation of f by trigonometric polynomials has the upper bound:

En(f)p = E(f,Tn, Lp(T)) < Cn",

where 7, is the space of trigonometric polynomials of order at most n.

To understand the advantages of non-linear approximations over linear ones,
let us first discuss the simplest case: approximations in a separable Hilbert space
H. Let {@r}2,; be an orthonormal basis for H. Then, any f € H is decomposed
by the Fourier series with regard to this basis:

F=Y fron,
k=1

where fi 1= (f, k) denotes the kth Fourier coefficient and (-,-) the inner prod-
uct. For linear approximation, we take the linear subspace L, of all linear
combinations of the n first terms i, k = 1,...,n to approximate f. The nth
partial sum

Pnf = ka(pk
k=1

of the Fourier series gives the best approximation to f by approximants from
L, and the approximation error is

oo 1/2
BU b B) = If - Bl = ( X IAR) .

k=n+1
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However, this linear approximation is not practically useful if the n first Fourier
coefficients fx, k=1,...,n are zero or very small.

Let us have freedom in selection of n terms from the g,k = 1,2,... for
approximation to f by their linear combinations. This selection depends on the
target function f. We rearrange the Fourier coefficients f in increasing order
of their absolute values so that

; |Foal = 1 fial = > |y > )
and define the greedy algorithm G, by
Gnf = kaj‘pkj' 2)
j=1

Notice that G,, is a non-linear operator in X. The error of approximation to f
by the approximant Gy, f is

15 =Gafll= (3 1) < 1f = Pufll = BUf. L .

j=n+l

Hence we can see that for any target function f the approximation by the ap-
proximant G, f is always reasonable and appropriate and moreover, better than
by the best approximant P, f for the linear approximation by L.

We have just touched a particular case of non-linear n-term approx1matxon
for which the approximants are the non-linear set M, of all linear combinations
of n free terms from the @i, k£ =1,2,..., that is

n
= {cp = Zakjgokj, kj = 1,2,...}.
j=1

Remarkably, the greedy algorithm G,, gives the best approximant for this non-
linear approximation. More precisely, we have

The next example which more visually shows the advantages of non-linear
approximations over linear ones is uniform approximations to the function

f@) =V

in the interval [0, 1] by piecewise constants (PWCs). For linear approximation,
we use PWCs with fixed breakpoints. Let S, be the n-dimensional linear space
of all PWCs with n—1 equally spaced breakpoints ¢y := k/n, k=1,2,...,n—1.
A simple computation shows that the error of the best uniform approximation
to f by PWCs from S, satisfies '

E(f, 9} Loo[0, 1)) = O(n™1/?),

where Ly [0, 1] is the normed space of bounded functions g on [0, 1], equipped
with the norm

lglloo := Supllg(w)l-

zelo,
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For non-linear approximation, we use the non-linear set ¥, of all PWCs with
n — 1 free breakpoints. It is easy to see that the error of the best uniform
approximation to f by PWCs from Y., satisfies

E(f, %0, Loo[0,1]) = O(n™1),

and the best approximant is a PWC with the breakpoints ¢; :=+/k/n, k =
1,2,...,n — 1. Notice that the selection of the breakpoints of the best approxi-
mant depends on the behavior of f on the interval [0, 1].

Wavelets were discovered and rapidly developed in the 1980’s. The most im-
portant dicoveries in Wavelet Theory are the multiresolution analysis (or shortly
multiresolution) of Mallat and Meyer (see [20]) and the dicovery of Daubechies [2]
of compactly supported orthogonal wavelets with arbitrary smoothness. Wavelets
are appropriate tools for non-linear approximation and numerical computations.
The interested reader can find basic ideas and knowledge on wavelets in the books
of Daubechies [3] and Meyer [23]. Wavelet Theory provides simple and efficient
decompositions of target functions into a series of integer translates of dyadic
dilates of a single function. These decompositions are connected to multireso-
lutions which decompose a function space into a increasing sequence of closed
subspaces called scaling spaces generated from integer translates of a dyadic
level. In linear approximations using wavelet decompositions, approximants are
taken from a linear scaling space. In non-linear n-approximations using wavelet
decompositions, a target function is approximated by linear combinations of n
free terms from different dyadic levels, which constitute a non-linear set.

To have the first look on non-linear n-term approximations using wavelet de-
compositions, let us consider approximations by PWCs with dyadic breakpoints.
We begin with the single PWC called wavelet or scaling function:

( )._{1, 0<z<1
viipli 0, otherwise

Let
Ors = p(2F-—5), s=0,1,...,2° -1, k=0,1,...

be integer translates of dyadic dilates of the wavelet ¢, and for g € C[0, 1]
2k
Pyg = Z 9(27%8)px,s-
k=0

Since ¢(z) = v(2z) + (22 — 1) and Pi(g,z) converges to g(z) uniformly on
[0.1], each g € C|0, 1] can be decomposed into the series:

9=Pog+ > {Per19—Peg} =D Mskys) (3)
k=0 k,s

converging in the space Lo, where Mg s = A s(f) are certain continuous linear
functionals of f. This decomposition is called PWC wavelet decomposition.

Let us now consider approximations to the function f(z) =./x using the
PWC wavelet decomposition (1). Denote by Vi the kth scaling space which is
the linear space of all linear combinations of ¢ s, s = 0,1,..., 2k — 1. Notice
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that Vi, = S, with n = 2*. Therefore, for the linear approximation to f by
approximants from Vj, we have

E(f,Vk, Leo) = O(n™1/3).

For non-linear n-term approximation, we use approximants from the non-linear
set T¥ of all linear combinations of n free terms from the functions ¢y s, s =
0,1,..,25 -1, £ =0,1, ..., that is the linear combinations of the form

Z Ck,sPk,s

k,s
with at most n non-zero coefficients cg s. Clearly, L} is a subset of 3, and
“much smaller” than ¥,,. However, one can easily prove that

E(f, 2%, Lyo[0,1]) = O(n71).

This means that the non-linear n-term approximation as good as the non-linear
approximation by PWCs with free breakpoints from %,,.

Let us give a general concept of n-term approximation in a quasi-normed
space. Let X be a quasi-normed linear space and ® = {px}32; a family of
elements in X (a quasi-norm || - || is defined as a norm except that the triangle
inequality is substituted by: [|f + g|| < C(||f|l + |lg||) with C an absolute con-
stant). Denote by M, (®) the non-linear set of all linear combinations of n free
terms from ® of the form

= akpk,

keQ

where Q is a set of natural numbers with |@| = n. Here and later |Q| denotes
the cardinality of Q. For completeness we put Mo(®) = {0}. We shall assume
that some elements of ® can coincide, in particular, ® can be a finite set, i.e., the
number of distinct elements of ® is finite. The n-term approximation to a target
element f € X with regard to the family ® is called the approximation to f by
approximants from M, (®). The error of the best approximation is measured by

Un(f)‘I)?X) = E(faMﬂ(q))aX) (4)

Let W be a subset in X. Then the worst case error of n-term approximation of
the elements in W with regard to the family @ is given by

on(W,®,X) = fsgvpi/an(f,tb,X) = E(W,M,(®),X). (5)

Notice that if span® is dense in X, then the sequence {M,(®)}22, is an ap-
proximation analysis. Clearly, without loss of generality we can assume that & is
bounded, i.e, there exists an absolute constant C such that {|¢rl| < C, k =1,2...
In what follows, the families ® in the definitions (4)—(5) are conveniently repre-
sented in the form ® = {k}req Where Q is an at most countable set of indices.

The idea of n-term approximation belongs to Schmidt [28]. Multivariate
n-term approximations with regard to splines was first studied by Oskolkov
[25]. There has recently been great interest in both the theoretical and practi-
cal aspects of n-term approximation. There are special applications of n-term
approximation to image and signal processing, numerical methods of PDE and
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statistical estimation. The reader can also consult the paper of DeVore [4] for a
detailed survey of various aspects of non-linear approximation and applications,
especially of n-term approximation.

It is easy to check that if X is separable and @ is dense in the unit ball of X,
then o, (f,®,X) =0 for any f € X. Thus, the definition (4) is not suitable for
dense families in separable spaces. Fortunately, such families are not practical
and for many well-known approximation systems with good properties the n-
term approximation o, (W, ®, X) has reasonable lower bounds for functions sets
with common smoothness. In general, to obtain lower bounds on o, (W, ®, X)
for well-known classes W of functions families, ® should be restricted by some
“minimality properties” which at least well-known approximation systems would
satisfy. This approach was considered by Kashin and Temlyakov [10] and Dinh
Dung [17).

An algorithm of n-term approximation with regard to ®, is represented as
a mapping S from W into M, (®). If S is continuous, then the algorithm is
called continuous. Another way to deal with n-term approximation by M,,(®) is
to impose continuity assumptions on algorithms of n-term approximation. This
assumption which has its origin in the classical Alexandroff n-width is quite nat-
ural: the closer objects are the closer their reconstructions should be. On one
hand, any continuity assumption decreases the possibilities of approximation.
On the other hand, it tends to guarantee a lower bound for n-term approxi-
mation. Moreover, it does not weaken the asymptotic order of the correspond-
ing n-term approximation for many well-known dictionaries ® and functions
classes W. Namely, for many interesting approximation systems ® and classes
of functions with common smoothness W, the asymptotic order of o, (W, ®, X)
is achieved by a continuous algorithm S from W into M,,(®*), where ®* is a
finite subset of ®. This is shown again in our paper for n-term approximation
using wavelet decompostions.

The idea of n-width as an approximation characteristic was first introduced
by Kolmogorov [19]. He defined the n-width d,(W, X) as a quantity character-
izing the best approximation of W by linear manifolds of dimension at most n.
The earlier Alexandroff non-linear n-width a, (W, X') [1] which now is well-known
in Approximation Theory, comes from Topology. It is defined as follows

an(W, X) := g}g ;g@llf—G(f)ll, (6)

where the infimum is taken over all complexes K C X of dimension < n and all
continuous mappings G from W into K. See, e.g., [6, 15, 32] for details regarding
G-

Just as the continuity assumption on the algorithms of approximation by
complexes leads to the Alexandroff n-width, the continuity assumption on the
algorithms of n-term approximation leads to various continuous non-linear n-
widths. Let us introduce some of them.

We can restrict the approximations by elements of M,(®) only to those
using continuous algorithms and in addition only from families ® from F(X),
which we define as the set of all bounded ® whose intersection ® N L with any
finite-dimensional subspace L in X, is a finite set. The n-term approximation
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with these restrictions leads to the non-linear n-width 7,,(W, X) [11] which is
given by

(W, X) = nf sup |1 = S| ™)

where the infimum is taken over all continuous mappings S from W into M, (®)
and all families ® € F(X). Observe that the condition & € F(X) is quite mild
for well-known approximation systems. Similar to 7,(W, X) is the non-linear
n-width 7/ (W, X) [11] which is defined by formula (7), but where the infimum
taken over all continuous mappings S from W into a finite-dimensional subset
of M,,(®), or equivalently, over all continuous mappings S from W into M,.(®)
and all finite families ® in X. Note that the restrictions on the families ® in
the definitions of 7, and 7/, are quite natural. All well-known approximation
systems satisfy them.

Another non-linear n-width, introduced in [10}, is based on restrictions by a
special class of continuous algorithms of n-term approximation. Before recalling
this notion let us motivate it. Let lo be the normed linear space of all bounded
sequences of numbers z = {z¢}32;, equipped with the norm

zlloo == sup |zxl,
1<k< 00

and M, the subset in /s of all z € ly for which zx = 0,k ¢ @, for some set
of natural numbers @Q with |Q| = n. Consider the mapping R from the metric
space M, into M, (®) defined by

Re(z) = ) zxer,

keQ

ifr = {zx}, and zx = 0,k ¢ Q, for some Q with |@| = n. From the definitions
we can easily see that if the family ® is bounded, then Ry is a continuous
mapping from M,, into X and M, (®) = Rs(M,). Thus, in this sense, M, (®)
is a non-linear set in X, parametrized continuously by M,. On the other hand,
any algorithm S of n-term approximation with regard to ® of the elements in
W is of the following form

S(f) =Y M(Few, (8)
k=1

where \y(f) are coefficient functionals of f such that at most n of Ag(f) are
non-zero. This means that S can be treated as a composition § = Rg o G for
some mapping G from W into M,,. Therefore, if G is required to be continuous,
then the algorithm S will also be continuous. This requirement means the uni-
form continuity of the coefficient functionals Ag(f) in the representation (8) of
S. Although the class of continuous algorithms of the form S = Rg o G does not
exhaust the continuous algorithms of n-term approximation with regard to &,
in many cases one can construct such a continuous algorithm § which is asymp-
totically optimal even for o, (W, ®, X), i.e., there holds the following inequality

sup ||f — S(f)” < CUH(VVa ®, X),
few
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with some absolute constant C, where § = Rg o G for some mapping G from W
into My,. On the other hand, continuous algorithms of the form (8) are easier to
construct and to be applied in practical problems. Finally, as mentioned above,
the boundedness assumption on ® does not lose generality. These preliminary
remarks are a basis for the notion of the non-linear n-width a, (W, X) [10] which
is given by

an(W, X) = (il,r}(f; Jfélvg, Ilf — Ra (G 9)

where the infimum is taken over all continuous mappings G from W into M,
and all bounded families ® in X.

There are other notions of non-linear n-widths. We would like to recall some
of these which are based on continuous algorithms of non-linear approximations
different from m-term approximation, and related to problems discussed in the
present paper.

The non-linear manifold n-width 6,(W, X) introduced by DeVore, Howard
and Micchelli [5] and with a modification by Mathé [22], is defined by

(W, X) = jnf sup |1/ ~ RG()I, (10)

where the infimum is taken over all continuous mappings G from W into R™ and
R from R™ into X . The interested reader is referred to [15], [6] for brief surveys
on the non-linear n-widths a,, and §,, and others of the classical Sobolev and

Besov classes.
The non-linear n-width 3,(W, X) is defined by

Bn(W, X) := inf sup [|f — R(G(f))I), (11)
R,G few

where the infimum is taken over all continuous mappings G from W into M,
and R from M, into X. This non-linear n-width has been introduced in [10].

The non-linear n-widths introduced in (6), (7) and (9)-(11) are different.
However, they possess some common properties and are closely related. Let
W be a compact subset of a quasi-normed linear space X. Then the following
inequalities hold

an(W, X) < Bn(W, X) < an(W, X),

62n+1(VVy X) S an(VVa X) S /Bn(WvX) S 5n(VV, X))

and
Tn1(W, X) <7, (W, X) < an(W, X) < 1 (W, X),

and in addition
an(W, X) = 1,(W, X) =1, (W, X)

for finite dimensional X (see [11]).

Our attention is primarily focused on n-term approximation via the quantity
on, and continuous algorithms of n-term approximation and the relevant non-
linear n-widths a,, 7, 7, for Sobolev and Besov smoothness classes of functions.
Because of the close relationship between oy, T, 7o, Br, 0n and a,, and because
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in many important cases they are asymptotically equivalent, it is quite useful
and natural to study them together.

Interesting ideas concerning non-linear n-widths, which are not based on
continuous algorithms, have been recently introduced by Ratsaby and Maiorov
[26] and Temlyakov [30]. In particular, a notion of non-linear width p, based
on optimal non-linear approximation by sets of finite pseudo-dimension, was
introduced and studied by Ratsaby and Maiorov [26, 27] for traditional Sobolev
classes. The asymptotic order of p,, for Sobolev and Besov classes of functions
with mixed smoothness have been recently obtained by Dinh Dung [12]. In
addition, in establishing the upper bound of p, a n-term approximation with
regard to the mixed wavelet family V¢ formed from the integer translates of
the mixed dyadic scales of the tensor product multivariate de la Vallée Poussin
kernel (see Sec. 3 for definition), was employed as a preliminary approximation.
For other notions of non-linear n-widths, see (6, 32].

In Sec. 2 we discuss univariate n-term approximations using wavelet decom-
positions, the asymptotic order of o, and the above introduced non-linear n-
widths for smoothness classes of functions, and again show their advantages
over well-known linear approximation methods. Section 3 is devoted to the same
problems for classes multivariate periodic functions with mixed smoothness. In
addition we wish to understand the differences between the univariate and mul-
tivariate n-term approximations. In Sec. 4 we show how to employ so-called
“dual” inequalities to reduce lower bounds of ¢, and non-linear n-widths of
function classes to problems of ¢, and non-linear n-widths in finite-dimensional
spaces.

2. Univariate n-Term Approximations

To understand the advantages of non-linear approximations over the established
linear approximation let us first study univariate approximations using wavelet
decompositions and classical linear methods. We will consider univariate approx-
imations of non-periodic and periodic functions in the space Ly(G), 1 < ¢ < oo
equipped with the usual p-integral norm, where G is either the interval I := [0, 1]
(non-periodic case) or the one-dimensional torus T := [—m, 7] (periodic case).
We will assume that target functions are from the Sobolev class SW; (G) and
the Besov classes SB] 4(G) and SB} 4(G). For 0 < p < co and natural number
7, the Sobolev class SW; (G) is the unit ball of the Sobolev space Wy (G) of all

functions f € L,(G) for which f("1) is absolute continuous and f(") € L,(G).
The Sobolev semi-quasi-norm and semi-quasi-norm of W = Wy (G) are

[flwg =1l [y = 1 fllp + [ Flw

where || f||p := || fllz,(c)- For the case G = T, the definition of Sobolev space can

be extended to a positive r using fractional derivative in the sense of Weyl. We

will give a generalized definition for multivariate functions in the next section.
Let

wi(f,t)p = sup |ALFliL, i)
|hl<t
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is the Ith modulus of smoothness of f, where Gy, ;= T if G = T and Gy, :=
[lh,1 —1h] if G =1 and the Ith difference Al f is defined inductively by

Al i=ALAL
starting from
ALf = f(-+h/2) = f(- — h/2).

We introduce the class MS; of functions w of modulus of smoothness type as
follows. It consists of all non-negative functions w on [0, o0) such that:
(i) w(0) =0,
(i) w(t) <w(t)ift <,
(iii) w(kt) < Klw(t), for k=1,2, ..,
(iv) w satisfies Condition Z;, that is, there exist a positive number a < I and
positive constant C; such that

w(t)t™® > Cth™%w(h), 0 <t < h,
(v) w satisfies Condition BS, that is, there exist a positive number b and a
positive constant C such that
wt)t™® < Ch7%w(h), 0<t<h< 1.

Let 0 < p,0 < 0o and w € MS,;. The Besov class SBy ;(G) is the unit ball of
the Besov space By = By 4(G) of all functions f € L (G) for which the Besov
semi-quasi-norm |f | By, is ﬁmte The Besov semi-quasi-norm |f |B“9 is given by

|flBw, = { (o~ il t)P/w(t)}odt/t)l/o’ I eo; (12)
7e SUpP;~q wl(f’ t)P/w(t)7 0 = oo.
Similarly, the Besov quasi-norm is defined by
113, = 1£llo+fl5s, - (13)

For 1 < p < oo, the definition of By, does not depend on [, i. e., for a given
w, (12)—(13) determine equivalent quasi-norms for all [ such that w € M.S;. The
function ™ belongs to the class M.S; for any [ > r. The space B} (G) := By 4(G)
with w(t) = 7, r > 0, is the classical Besov space (for more details about Besov
spaces, see [24]). In linear and non-linear approximation, the smoothness of
functions to be approximated is more conveniently and, maybe more naturally
given by boundedness of Besov quasi-norms. Thus, the Besov smoothness char-
acterize the asymptotic order of approximation in terms of direct and inverse
theorems of approximation completely for the linear trigonometric approxima-
tion (see [24]), and in some special cases for non-linear n-term approximation
using wavelet decompositions (see [4]).

Let us now give a concept of wavelet decompositions for L,(R). Let ¢ be a
bounded function on R. Denote by ® the family of functions

k,s ‘= So(2k = _3)7 k,S € Z,
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which are integer translates of dyadic dilates of ¢. Under certain conditions on
©, a general function f on R can be decomposed into the series

f = Z)\k,sﬂok,s, (14)
k,s

where Ay s 1= A, s(f) are certain coeflicient functionals of f. This decomposition
is called wavelet decomposition (WD) of f and the function ¢ wavelet or scaling
function.

WDs are quite appropriate to both linear and non-linear approximations, in
particular, n-term approximation because of their good approximation proper-
ties. Firstly, they provide a simultaneous time and frequency localization. This
allows us to select different numbers of terms ¢y , at each kth dyadic scale for
n-term approximation, depending on a given target function. Secondly, WDs
give discrete descriptions of equivalent norms and semi-norms for Sobolev and
Besov spaces in terms of coefficient functionals Ak s(f). Using these discrete
characterizations, we can process a quantization or discretization of our approx-
imation problems. In the discrete form, they are more convenient for study and
numerical computation.

For 0 < p < o0, and @ an at most countable set, denote by [,(Q) the space of
all sequences z = {zx }req of (complex) numbers, equipped with the quasi-norm

1/p
nwmm=wm@=(§]u@

keQ

with the change to the max norm when p = oo. We sometimes use the notation
I =1,(Q) if Q] = m.

WDs are closely related to multiresolutions. A sequence {V}xez of closed
subspaces in L,(R) is called a multiresolution of L,(R) if it satisfies the following
conditions:

MRl Vk C Vk+1.

MR2. Nkez Vi = {0} and Ukez Vi, is dense in Ly(R).

MR3. f € Vi < f(2) S Vk+1.

MR4. f € V= f(-—27%s) € Vi for all s €€ Z.

MR5. There exists a function ¢ € Vy such that {¢o(- — s)}sez is a Riesz basis
for Vy, i.e., there are positive constants C and C’ such that

Cl{as}l, < | ZGS‘P(' = s)llp < C'{as}l,

SEZ

for all {as}sez € I,(Z).

The case p = 2 is particularly interesting because Lo(R) is a Hilbert space.
Let W, be the orthogonal complement of Vi in V1. Then Ly(R) can be de-
composed as an orthogonal sum of Wy, k € Z. Furthermore, one can construct
a function ¢ € Ly(R) called wavelet such that {4 s}secz forms an orthonormal
basis for W. Hence the family {1 s}k sez is an orthonormal wavelet basis for

Ly(R). This construction of wavelets from a multiresolution is due to Mallat
[20].
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Let ¢ be a function on R such that the 1-periodic function

o= Ylot- =)

S€EZ

belongs to L,(I). If ¢ satisfies a refinement equation

=) bep(2-—s)

s€Z
with the mask {bs}scz € l1(Z), and

sup |@(€ + 2wk)| > 0 for all € € R,

kEZ
where ¢ denotes the Fourier transform of ¢. Then it was proved by Jia and
Micchelli [16] that the family {Vi}rez is a multiresolution of L,(R) with the
scaling function ¢, where V, is the closure of the span of the functions ¢ ,, s €
Z. If {Vi}rez is a multiresolution of L,(R) with the scaling function ¢, then
every function f € L,(R) has a WD (14) with the convergence in L,(R).

Let p(z) := Ni(z) (I > r), be the B-spline of order [ with knots at the integer
points 0,1,...,1, and V be the closure of the span of the functions ¢ ,, s € Z.
Then {Vi}rez is a multiresolution of L,(R).

Let us give a B-spline WD and discrete characterization for the Besov space
B 4(I) of functions on I. Tt is proved by DeVore and Popov [7] that each function
f € Ly(I) has a WD

f = P(f) -+ Z Z )\Ic,s‘Pk,s, (15)

k=0 s€l

with the convergence in Ly(I), where

ririls
P(f)= Z)‘kxkv
k=0

is an algebraic polynomial of degree < [, Ij is the set of those integers s such
that ¢i,s does not vanish identically on I, and Ag s := Ak s(f) and g := A (f)
are certain coefficient functionals of f.

Every function f € B y(I) has a WD (15) with convergence in By ,(I).
Moreover, the Besov space B;),e(]l) can be characterized by the discrete semi-
quasi-norm

o, = (U0}l 24Pz )2,
k=0

The quasi-norm
! = ]
1, = £l + 11,

is equivalent to the Besov quasi-norm given in (12)-(13). These equivalences
of semi-norms and quasi-norms were proved in [6] for the case w(t) = t". The
general case can be obtained similarly.
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In constructing continuous algorithms of n-term approximation using a WD
(15) we will need the continuity of coefficient functionals Az s and Az on f. We
say that w satisfies Condition R(p, q) if w(t)t~(/P~1/+ satisfies Condition BS.
Here and later we denote ay := max{a,0}. For the case w(t) = t" Condition
R(p, ) is equivalent to the inequality r > (1/p — 1/¢)4. If w satisfies Condition
R(p, q), the coefficient functionals Ay, and A can be chosen to depend con-
tinuously on f € By 4(I) in the norm of Ly(I). A construction of continuous
coefficient functionals g s was given in [6] for the case w(t) = t". In the general
case, they can be constructed similarly.

There are periodic analogues of WDs and multiresolutions for Lq(T). Pe-
riodic scaling functions and wavelets can be constructed by periodizing scaling
functions and wavelets of L,(R) (see, e.g., [18]). However, one can construct
periodic scaling functions and wavelets immediately from well-known trigono-
metric kernels. We will construct a periodic WD and multiresolution from the
de la Vallée Poussin kernel of order m:

2m~-1 __ sin(mt/2) sin(3mt/2)

1
Vin(t) := Y kZ: Dy(t) = 3m2sin?(t/2)

where

D, (t) := Z ekt

Ikl<m
is the univariate Dirichlet kernel of order m. Let
Upst =1 oms/2¥), s =0,1,.. 4251,
be the integer translates of the dyadic scaling functions
v =1, wg:= Vo1, k=1,2,..
Since for each function f € L4(T), the convolution gi := 3 x 2¥ f*Voi—1 converges
to f in Ly(T), and being a trigonometric polynomial of order Pl Thigg s

represented in the form
ok+1_3

GE= Y G5Uktis
s=0

f has a WD

0o 281

f T Z Z )‘k,svk,s (16)

k=0 s=0

with the convergence in Lq(T).
Let Vj, be of the span of the functions v s, s =0,1,...,2%1 — 1. Then the
family {V}%2, possesses the following properties:
MR1. Vi, C V. for k < k.
MR2. Ugez Vi is dense in Ly(T).
MR3. For k = 0,1, ..., dim Vi = 2F and the functions vy s := v (- —27s/2¥), s =
0,1....,2¥—1—1, form a Riesz basis for Vy, i.e., there are positive constants
C and C’ such that
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2k_1

Cl{asHlg < I Y asvr(- = s)llg < C'll{as}llq (17)
=0

for all {a,}2 5 € lzk.

A sequence {Vk},;";o of subspaces in L, (T) is called a multiresolution of L,(T)
if there exist scaling functions vg such that there hold MR1-MR3. Notice that in
contrast to the non-periodic case, in general, there is not a single scaling function
for periodic multiresolution and the periodic scaling functions vy depend on k.

For the case p = 2, Ly(T) is a Hilbert space. Koh, Lee and Tan [18] gave suffi-
cient conditions for a sequence of scaling functions to generate a multiresolution,
and constructed an orthogonal wavelet basis for Ly(T) from scaling functions of
a multiresolution.

Let us give a WD and discrete characterization for the Besov space By (T)
of functions on T. Let 1 < p < oo and 0 < § < oo. A function f € L,(T) belongs
to the Besov space By 4(T) if and only if f has a WD (16) with the convergence
in the space By 4(T), and in addition the quasi-norm of the Besov space By, (T)

given in (17), is equivalent to the discrete quasi-norm
o0

1£e, == (1A s}lp/247(2 ™))%, (18)
k=0
Moreover, if 1 < ¢ < 0o and w satisfies Condition R(p, ¢), then the space By o(T)
is compactly embedded into the space L,(T) and the coefficient functionals g,
can be chosen to depend continuously on f € By, in the norm of L,(T). For
the space B;e(’]l‘), a proof of the equivalence of quasi-norms and a construction
of continuous coefficient functionals Mg, were given in [10]. In the general case
they can be obtained similarly.
We now consider univariate approximations of periodic functions using WDs.
For n-term approximation of the functions from SBy ,(T) and SW; (T), we take
the family of wavelets:

Vi={u,: s=0,1,...,2° -1, k=0,1,2,..}.
We use the notation F < FFif FK Fland FF <« F,and F < F'if F < CF’
with C an absolute constant.
Theorem 1. Let1 < g< o0, 0 < p,f < and w satisfies Condition R(p, q).
Then we have
Ou(SBE5(T), V, Ly(T)) < m(SBE(T), Lo(T)) < w(1/n).  (19)

To establish the upper bounds of (19) we explicitly construct a finite subset
V* of V and a positive homogeneous (continuous) mapping G*: By o(T) — M,
such that

sup ||f Sp(Nllg < w(1/n), (20)
fesBy

where S¥ := Ry+ o G*. This means that the (continuous) algorithm S;; of n-
term approximation with regard to V, is asymptotically optimal for o, and ,.
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Theorem 1 and (20) was proved in [10] for the class SB] 4(T). The general case
has been proved recently by Mai Xuan Thao.

Let 1 <g< oo, 0<p,b<ooandr>(1l/p—1/q)+. Denote by K either
SB] 4(T) or SW;(T). As a consequence of (19), we have

(K, V, Lg(T)) < (K, L(T)) < n". (21)

Let us now discuss in details the periodic case. Firstly, we wish to show again
the advantage of non-linear n-term approximation with regard to V under the
linear approximation by trigonometric polynomials. For a subset W in Lg(T),
let

En(W)q := E(W, T, L,(T))

be the worst case error of the best approximation to f by trigonometric poly-
nomials of order at most n. Observe that 7,, C Vi C T2, n = 2¥. Hence and
from a well known result on trigonometric approximation (see, e.g., [24, 32]), we
have for r > 1

En(SB] oo(T))oo < E(SB] o(T), Vi, Leo(T)) x n~"=1),
While the n-term approximation with regard to V gives
on(SB] (T), V, Loo(T) =xn™".

Next, we will briefly show how to construct an asymptotically optimal (con-
tinuous) algorithm S} satisfying (20). Notice that from embedding theorems (see
[24]) it follows that the space B ,(T) can be considered as a subspace of the
largest space B;, . (T). Hence, it is sufficient to construct S; for H := SBy _(T).

We will use greedy algorithms in each scaling space V. A general definition
of greedy algorithm is as follows. Let @ = {px}32; a family of elements in
a quasi-normed linear finite dimensional or separable space X such that each
element f € X can be decomposed by a series

f= Z APk
k=1

with convergence in X, where m is the dimension of X or infinity. Then we can
define the greedy algorithm G, f of n-term approximation with regard to the
family ® by (1)-(2) by replacing fi by Ax. For convenience we put Gof := 0.
Although the greedy algorithm G, f is not always optimal for the n-term ap-
proximation, it is quite useful in constructing asymptotically optimal algorithms.
Using the WD (16), we will preliminarly decompose a target function f into
functions fi belonging to the dyadic scaling space Vi, and then apply greedy
algorithms to each component f.

By use of the equivalent quasi-norm (18) for H, from (16) we can see that a
function f € Lp(T) belongs to the class H if and only if f can be decomposed

into functions fr by a series -
f = Z fka
k=0
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where the functions

2k—1
fk = Z )\k,svk,s
5=0
are from Vi and satisfy the condition
I kllp = 275721 { ks Hlp < Cw(27%), k=0,1,... (22)
In addition, for each function. n
2k 1
g= z TsVk,s (23)
s=0
from Vi, we have
lglle < 27%/9|I{as}lq. (24)

For a non-negative number n, let {nx}7°, be a sequence of non-negative
integers such that

an <n. (25)
k=0

Of course, such a sequence contains only a finite number of non-zero ny. We
will construct an asymptotically optimal algorithm S} in the form

S:;,(f) ari ZG"k(fk)?
k=0

where G, are the greedy algorithms in the scaling subspaces Vi, k = 0,1,...,
equipped with the norm of Ly(T), with regard to the family vk s, s = 0,1,...,
2k — 1. For reaching asymptotical optimality of S, we will select an appropriate
sequence {ny}3>, such that there holds the following estimate

1 =85(Hlla < D e — Gri(fi)llg < Cw(1/n). (26)

k=—1

We now use an idea of discretization for the greedy algorithm Gy, of ng-term
approximation. It has origin in discretization methods which was first used for
the well known Kolmogorov width by Maiorov [21].

Let us preliminarly consider n-term approximations in the finite-dimensional
space I;*. Let £ = {e,}7%; be the canonical basis in I, i. e., z = }" zse, for
z = {zs};L; €' We let the set {s;}72; be ordered so that

|Zs,| 2 |2sy| = -+ 25| 2 -+ - |25, ]

Then, the greedy algorithm G,, for the n-term approximation with regard to £
is :

Gr(z) := zn:xsjesj.
j=1

Clearly, G,, is not continuous, However, the mapping
() = Z;=1(953j — |5y Isignzs; Jes,, for p<gq
O Z;'L=1 Zs€s, for p>gq
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defines a continuous algorithm of n-term approximation.
Let 0 < p,q < co. Then we have (see [10,13]) for any possitive integer n < m

sup ||z — Gn(@)ip < sup fl& = GL(@)llin < Apo(m,n), - (27)
z€B z€BM

h
where nl/a-t/p, for p< g

A =
pa(rm, ™) { (m—n)t/a=1P, for p > q.
Observe that the greedy algorithm G, in l:‘;k corresponds to the greedy

algorithm of ni-term approximation in Vj (we denote it again by Gy, ) which
is given by

(28)

T
g) o Z ij vk,Sj
=1

for a function g represented as in (23). Similarly, the continuous algorithm GC

in l2 corresponds to a continuous algorithm of ng-term approximation in Vi, (we
denote it again by GS, ). Because of the norm equivalence (24) for each function
from Vy, we can estimate the errors | fx — Gn,(fi)llq for f € H satisfying the
restriction (22), in the discrete norm 27%/%||{A ;}||, of the space lgk. By (22),
(24), (27) we have for any possitive integer ny < 2*

sup || fe = Gy (fi)llg < sup [|fx — GS, (fe)llq
feH feH

L w(27 k)20 Ptk A (9K ny), (29)

Let us now select a sequence {n}32,. For simplicity consider the case p < g
and w(t) = t". The other cases can be done similarly. We find a number ko
satisfying the inequalities 202 < n < 2k0+3) and a fixed number ¢ satisfying
the inequalities 0 < ¢ < (r — 1/p+ 1/q)/(1/p — 1/q). Then an appropriate
selection of {nk}2, is &

o8 for k < kg
L { [an2=ck=ko)], for k > kq,

with a positive constant a chosen such that there holds the inequality (25).
From (28)—(30) one can derives the estimate (26), which shows the asymptotical
optimality of S} (for a detailed proof see [10]). If in (26) G, are replaced by
G,(fk, then S} is a continuous algorithm of n-term approximation. Moreover,
since ny = 0, k > k* with k* large enough, S} = Ry« o G* where V* :=
{vk,stk<ke, s=0,1...2+—1 is a finite subset of V. This proves (20).

Results similar to (19)—(20) are true for n-term approximation of the func-
tions from SBj ,(I) and SW;(I) using B-spline WDs. We take the family of
algebraic polynomials and wavelets:

&= {{Ps}s<rv {on,s}0§k<oo,s61k} y

with the scaling function ¢(z) := Ny(z) (I > r) and Py(z) := z°.
Let 1 < ¢ < 00, 0 < p,# < 0o and w satisfy Condition R(p,¢). Then we
have

(30)
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on(SBp (1), @, Lq(I)) < 1 (S By (L), Ly(I)) < w(l/n). (31)

The case w(t) = t" of (31) was proved in [10]. The general case has been proved
by Mai Xuan Thao.

3. Multivariate n-Term Approximations

Let us first discuss the smoothness of multivariate target functions. From the
point of view of multivariate approximation the classical multivariate Sobolev
and Besov smoothness classes are rather simple. Almost all results on univariate
linear and non-linear approximations can be extended to them without any dif-
ficulty. More interesting are Sobolev and Besov smoothness classes of functions
with bounded mixed derivative or differences. For multivariate approximations
we are restricted to consider the periodic case for which approximation methods
and tools are more developed. Multivariate periodic functions are considered as
functions defined on the d-torus T¢ := [—=, 7]%.

Let us now introduce a notion of mixed smoothness Sobolev and Besov
spaces. As usual, f(k) denotes the kth Fourier coefficient, in the distribu-
tional sense, of f € L, := Ly(T¢), and z; the jth coordinate of z € RY, i.e.,
z := (z1,...,24). The ath mixed derivative f(®) in the sense of Weil, of f is

defined by
£ = 3 fk) k)2,
kezg
where Z% := {k € Z% 1 k; £ 0, j = 1,...,d}; (ik)™ := (iky)™ -- (zkd)"‘d (tx)¥ :=

Ia:lye(”yS‘g”)/ 2. If a is an integer non—negatlve vector, then f{*) coincides with
the partial mixed derivative of order « of f. Let the semi-quasi-norm |« IWa be

defined by
[flws = 1Fl,,

where || - ||, is the usual p-integral norm in L,,.

Let A be a finite subset of R%. For 0 < p < oo, let W/ denote the Sobolev
space of mixed smoothness A whlch consists of all functlons on the n-dimensional
torus T¢, for which the quasi-norm

Ifllwa = 1£lls+ > |flws

a€A

is finite.
Let us now define Besov spaces of functions with common mixed smoothness.
For | € N¢, we let the multivariate mixed Ith difference operator AL,k € T¢, be

defined by
Al f = H Aﬁ;‘j f,

j€e
where the univariate operator Affj, is applied to the variable z;. Let

U(f,t)p=  sup ||A flp, te Ri,
Ihj|<tj,j:1,.
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be the Ith mixed modulus of smoothness of f. We introduce the class MS; of
functions Q of mixed modulus of smoothness type as follows. It consists of all
non-negative functions on ]R such that 2 € MS;; as a univariate function in
variable z;, j = 1,...,d. Clearly, MS; ¢ MSy if 1 < I'. For Q € MS; and
0<p,0 < oo, let BQ denote the Besov space of all functions on T¢, for which
the quasi-norm

1flss, = I£lls + | fleg, (32)

is finite, and
1/68
1o, = / (U4, 0,/ }"Ht-ldt) o<, (39

(the integral changed to the supremum for § = co). Similarly to the univariate
space By, for 1 < p < oo, the definition of BQG does not depend on [, i. e,
for a given , (32)—(33) determine equivalent quasi-norms for all such that
Qe MS;.

Let A be a given compact subset of R% such that

p(A) := min{max{p; : pje’ € A}: j=1,..,d} >0,

where {e/}4_, is the canonical basis in R%. We define the function {14 on R? by
d

Qa(t) = olzIelf,;l f dell
j=1

It is easy to check that Q4 € MS; for all / such that
l; >max{a; :a € A}, j=1,2,...,d. (34)

Therefore, (32)-(33) define the Besov space B;‘,(, E= Bﬁ’; for any [ satisfying
the condition (34). We say that the space B;:"e consists of the functions with
the common mixed Besov smoothness A. An important case of the Besov space
SB;‘,G is that when A is finite. In the last case, there holds the following quasi-

norms equivalence
1£llsa, = [1£lls+ D 1flpce-
acA

Also, the classical isotropic and anisotropic Besov spaces are special cases
of B;?,o- For r > 0, let A, := {r(e) : e C {1,2,...,d}} where r(e) denotes the
element of R% such that r(e); = r for j € e, and r(e); = 0 for j ¢ e. We use the
abbreviation: By 4 := B:};

We can consider a direct multivariate generalzation of the WD (16) and
the relevant wavelet components v}c,s(m), 5;=0,1,...,2" -1, =1,2,...,d, as
integer vector translates of the dyadic scaling functions

d
V;C(I) = Hvk(mj), keZ,.
j=1
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They are appropriate to n-term approximations of the classical multivariate
Sobolev and Besov smoothness classes, but not to the functions from BAG be-
cause of the complexity of its mixed smoothness structure. In n-term approxi-
mations we need mixed wavelets and mixed WDs which are defined as follows.
Fork € 2§ = {s € Z% : s; > 0,j = 1,...,d}, we let the mixed dyadic scaling
functions

d
) = Hvkj(l'j),

be defined as the tensor product of the univariate scaling functions vk, (z;) in
variable z;, and the mixed wavelets

Vi,s '= Vk(- — 27TS/2k), s € Qk,
as the integer translates of vy, where 2rs/2% = 2m (s, /2%, ... 54/2%¢) and
Qei={se€Z: 0<s;<2%, j=1,. 4}

Similarly to the univariate case, every function f L, has a WD

f= Z Z Ak,sVk,s (35)

keZg s€Qk

with the convergence in L,.
Put |k| := k1 +ko+-- -+ kgfork € Z;’. Let Vy, be of the span of the functions
Vk,s, 8 € Q. Then the family {Vk}kGZi possesses the following properties:

MMRI1. V, C Vy for all pairs k, k' € Z4 such that k < k'.
MMR2. Ugega Vi is dense in L,(R%).

MMR3. Fork € Zi‘ dim V. = 2/¥ and the fum_;tions Vi, = Vk(-—278/2F), s €
Qk, form a Riesz basis for Vi, i.e., there are positive constants C' and
C’ such that

Cl{as}Hle < | Z asVk(- — s)llg < C'{as}lq (36)

S€EQk

for all {as}secq, € 1o(Qk)-
A sequence {V;} kezd of subspaces in Lg is called a mized multiresolution of
q if there exist scaling functions vj, such that there hold MMR1-MMRS3.
Let us give a WD and discrete characterization for the Besov space B? o Of
functions on T¢. A function f € L, belongs to the Besov space B“e 1f and
only if f has a WD (35) with the convergence in the space Bg . Moreover,

the quasi-norm of the Besov space B p.60 Biven in (32)—(33), is eqmvalent to the
following discrete quasi-norm

1flsg, = Q_(H{ ks HIp/2™/20(27%)%)1/9, (37)
k=0

where 27% := (21 2k2 | 92k¢). For Q = Qy, the quasi-norm I fll5a is of the-
p,0

form:
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”f“Bﬂ - (Z 2S(Ak) |l<:|/1’||{)\’c }”p) )1/0

k=0

where S(A, z) := sup{(a, z) : @ € A} is the support function of A.

We say that §) satisfies Condition R(p, q), if 2 satisfies Condition R(p, ) as a
univariate function in variable z; for j = 1,...,d. For the case {} = {24 Condition
R(p,q) is equivalent to the inequality p(A) > (1/p - 1/q)+. If 1 < ¢ < o0
and Q satisfies Condition R(p, ¢), then the space Bg o is compactly embedded
into the space L, and the coefficient functionals Ag s can be chosen to depend
continuously on f € Bﬂe in the norm of L,. A proof of the equivalence of quasi-
norms and a construction of continuous coeﬂiment functionals A , were given in
[14].

We now consider n-term approximations to functions from Bp ¢ and WA
Let

SBps={f €Bpy: lIflsas, <1}, SWy ={f e W : |fllwp <1}

be the unit balls in BAa and W , respectively.

For n-term approximation of the functions from SB o and SW , we take
the family of wavelets:

&= {vgs: ke Z¢4 % 8 € Qkl.

Denote by 7, any one of an, Tn, 75, Bn, Gn and 0p.
For the classes SBQG and SW‘:, the asymptotic order of o, and =, are

closely related to the convex problem in R

(1,z) — sup, z € AT, (38)
where A5 = {z € R* : (o,2) <1, a €4, z; 20, j=1,..,d}, 1:=
(1,1,...,1) € R%. Let 1/r = 1/r(A) be the optimal value of this problem, i. e.,

1/r :=sup{(1,z) : =z € A }.
Further, let v = v(A) be the linear dimension of the set of solutions of (38), i.e
v:=dim{z € A} : (1,z)=1/r},
pw=p(A)=d-1-vand
v(h) == Voly_1{z € A% : (1,z) =1/r — h},

where Vol,,G denotes the m-dimensional volume of G C R¢. It turns out that
we can explicitly construct from the set A a function w = w(4,-) on [0, 00) so
that w is a modulus of continuity if v <d—1,and w=1if v =d — 1 and [8]

v(h) < w*(h) as h — 0.
Notice that
7(A) = min{t > 0 : t1 € coA},

where coA denotes the convex hull of A, and u is the linear dimension of the
minimal extreme subset of co A containing the point r1. The quantity r(A) is,
in some sense a characterization of “average smoothness” of B/,. If the set A
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is finite, then we have [8]
w(h) =h for v <d-1.
We proved the following

Theorem 2. [14] Let 1 < p,q < 00, 1 < 0 < 00. Assume that either p(A) > 1/p
and 0 > p or p(A) > (1/p—1/9)+ and 8 > min{q,2}. Then we have

(SBp 6> ) = Jn(SBp 97 Lq) = n_’r(w“(l/ logn) logd_l n)’r‘+1/2—1/0,
(39)
where 7 = r(A), p = p(A) and w = w(A,-). In addition, we can explicitly
construct a finite subset V* of V¢ and a positive homogeneous (continuous)
mapping G* : BA — M, such that S* = Ry« o G* is an asymptotically

optimal algomthm of n-term approzimation with regard to V¢, i.e.,

sup || = S*(f)llg < " (w*(1/logn) log? ! n)r /2710 (40)
fesSBA ’

214

If in Theorem 2 A is finite, then we have

’yn(SBp 9, Lq) < an(SBp oV Lq) = n""(log n)"(T+1/2_1/9).

Special cases of the last results were proved in [11]. Theorem 2 was proved in
[13] for the Besov class SB7 . For this class, under the assumptions of Theorem
2 there holds the following asymptotic order:

(8B} g, Lg) < 0n(SB] 4, V¥, Ly) < n™"(logn)(d-D(r+1/2-1/6),

p,0>

The asymptotic orders of the n-term approximation o, (W,U?, X) with re-
gard to the family U? formed from the integer translates of the mixed dyadic
scales of the tensor product multivariate Dirichlet kernel for the classes of func-
tions with bounded mixed derivatives or differences, have been obtained by
Temlyakov [31].

If the Besov scale 8 is given, then for different pairs p, g the asymptotic orders
of an(SB;"o, V4 L,) and 'yn(SBp 9> Lg) in Theorem 1 are completely determined
by r(A), #(A) and the concave modulus of continuity w(4, -) which are explicitly
constructed from the smoothness A. Conversely, assume that there are given
any positive number 7, non-negative integer 4 < d — 1 and concave modulus
of continuity w. Then we can explicitly construct a subset A C Ri such that
r =r(A), p = p(A4) and w = w(A4,-). Thus, these quantities and function are
approximation characterizations of the smoothness of SB;"o and the expression

n~"(w*(1/ logn) logd~! n)r+1/2-1/0
in (39) exhausts all the asymptotic orders of o, and 1, for the class SBp ¢- For

details see [14].
For 1 < p,q < oo and p(A) > (1/p — 1/q)+, we have [11,14]

Yn(SW2, Lg) < 0n(SW5, V4, Ly) < n™"(logn)™"".
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Observe that although in both the univariate and multivariate cases the
asymptotic orders of o, and 7, do not depend on p and g, there are some
differences between them. Firstly, in the multivariate case, in addition of the
main term n~" of the asymptotic order, there appear secondary terms such
like (w(1/ logn)log?™* n)™+1/2-1/ or (logn)*("+1/2-1/8) for Besov classes and
(logn)~¥" for Sobolev classes. While, in the univariate approximation this term
is absent. Secondly, asymptotic orders of o5, and 7, are the same n™" for both
the Besov class SBy , and Sobolev class SW7. While in the multivariate case,

they are different for the Besov class SB# .0 and Sobolev class SWA

To construct an asymptotically optlmal (continuous) algorithm S * satisfying
(40), and prove the upper bound of (39) we develop the method employed for the
univariate case. However, a direct generalization of this method and application
of the mixed WD (35) do not work because of the complexity of the multivariate
mixed smoothness of Besov and Sobolev classes. Appropriate are decompositions
which are analogous to those apphed in linear approximations the Besov class
SBAH and Sobolev class SW by trigonometric polynomials with frequences
from hyperbolic crosses (see [8, 29]) Let us briefly consider the case H := SBj ,
which was treated detailedly [13]. In this case, by use of the equivalent qua51—
norm (37), from a mixed WD (35) we form a decomposition of f € H into the
series

o0
F=>_ Fu, (41)
m=0
with
m= O Jo fe= D MesVhs, (42)
[k|=m $€EQu
satisfying the condition
1Fmlis, o < 2720 D [{Aks}p)8 <27 (43)
|k|=m

Denote by D,, the finite-dimensional space of functions g of the form

g= Z Z ak,sVk,s-

|k|=m s€Qx

Due to the well-known Littlewood-Paley Theorem (see, e.g., [24]) there holds
the following estimate

lglle < 27™9( Y IHarsHIDY, g € Dum, (44)
|k|=m

where 7 := min{g, 2}. Thus, a target function f € H is decomposed into a series
(41) with the functions F,, of the form (42) belonging to the space D.,,. We apply
the greedy algorithm and continuous algorithms of n,,-term L,-approximation in
the space D,,, to each component F,, and use discrete quasi-norms to estimate
the error of this approximation. The further construction of asymptotically
optimal algorithm is similar to the univariate case. But here we have to process
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a discretization of our n,,-term approximation problems to reduce them to 7,,-
term approximation problems in finite-dimensional spaces equipped with mixed
discrete quasi-norm.

For 0 < n,{ < o0, denote by b7, the normed space of sequences z =
{{zk,s}scqs }ik|=m equipped with the mixed discrete quasi-norm

lello, = (32 Iz I§YS,

|k|=m

(the sum is changed to supremum when ¢ = c0).

By (43) the sequence of functional coefficients {{\x,s}seq, }kj=m Of Fim is in
the ball C2-(r—1/ P)mS;" with some constant C' > 0, where Sy is the unit ball
in b7y, By virtue of (44) the Lg-approximation error can be estlmated via the
norm of b7.. Asin the unlvanate case, there is a correspondance between n,y,-
term approximations in D, with regard to the families {{vs s}scq, }{k|=mand
Tim-term approximations in bg®, with regard to the canonical basis. This allows
us to consider the correspondlng greedy algorithms and continuous algorithms
in b7 instead in D,,

The greedy algorlthm G, and the continuous algorithm G¢ for the n-term
approximation with regard to the canonical basis in the space b7, , is defined as
follows. For = {{Zx,s}seqQs }|k|=m, We let the set {(k,s) : k € Qx, |k| = m} be
rearranged so that

lxklysll 2 Izkzyszl 2w 'zkj,3j| 2 |$kM,SMl7

where M = 2™m. Then, we define
"
= E -'Bk:,-,s,- ekj,&j?
Jj=1

and the continuous algorithm GS by
n
GS(:E) = Z(mqusj B kan+1,sn+1|Signzkj,sj )ekj,sj’
=1
where {{ex,s}seq, }jkj=m is the canonical basis in b}, .
Let 0 < p,q,0,7 < co. Then for any positive integer n < M, we have [13]

sup ||z = Ga(@)llbz . < sup [z~ GL(@)llbg,
z€S p9 z SPG

< nVPpd/TH1U/p=1/8)4

and if in addition 0 < p<g< oo and 0 < 7 < 6 < oo,

sup ||z — Ga(z)llbg, < sup Iz — GF ()|,
;':9 z S;’:a

< C(p)nt/a=Yppl/p=1/at1/7-1/6

Similarly to (25)—(30), using the last estimates, we can construct an asymp-
totically optimal (continuous) algorithm S* satisfying (40), and prove the upper
bound of (39).
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In the general case all this construction is much more complicated. The
interested reader can see [14] for details.

4. Lower Bounds for the Multivariate Case

The inequality (39) provides that the algorithm S™ gives an upper bound for
the asymptotic order of vn(SBz’:g,Lq) and an(SBﬁo,Vd,Lq). To prove the
asymptotic optimality of S* and the asymptotic order of these quantities we

should establish the lower bounds:
’Yn(SB;io, Lq) > n‘T(wl‘(l/ logn) logd—l n)r+1/2_1/9’

and

on(SBh,, V4, Lg) > n™"(wh(1/ logn) log?=1 p)r+1/2-1/8,

In the univariate case, to establish the lower bound of n-widths 7, or o, in
(19) it is enough to use the Bernstein inequality and the related Bernstein n-
width or “certain minimal properties” of the family V, respectively (see [10,17]).
However, in the multivariate case this approach does not work. The following
“dual” inequalities (see [10], [11], {13]) play a central role in proofs of the lower
bound for multivariate case. Let the linear space L be equipped with two quasi-
norms || - ||x and |} - ||y, and W a subset of L, and SX :={z € L: ||z||x <1}.
If ® is a family of elements in X such that o, (W, ®, X) > 0, we have

Ontm(W,®,Y) < 0,(SX,®,Y)on, (W, ®, X).
If | - |lx and || - ||y are equivalent, W is compact in these quasi-norms and
Ym(W, X) > 0, we have
'Yn+m(W7 Y) < 'Yn(SX, Y)'Ym(vVv X)y
where again, v, denotes any one of an, 7,7y, Bn,an and 6,. From these in-
equalities we derive the following consequence which are used in the proofs of

the lower bound. Let 0 < ¢ < oo and L, be a s-dimensional linear subspace in
I¥ (s < m). Then we have [13] for any positive integer n < s — 1

on(BR N L, E,17") > (m —n — 1)/9, (45)
and for any linear projector P:{7* — L,
an(BZ 0 Ly, 1) 2 [|PI| ™" (m — n)'/2.

We give a draft of the proof of the lower bound for ¢,,(SB}, 5, V¢, L,). The
other cases can be treated similarly. Because of the inclusion SB, , C SBy 4,
it is sufficient to treat the case p = oo.

For 0 < ¢,n < 00, let B¢ , be the space of all f € L¢ which have a WD (35)
and for which the quasi-norm

I£1ls,., = Q_@ ™1 {A )™M

k=0
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(with replacing sum by sup when 7 = o0) is finite. Denote by B(m) the space
of all trigonometric polynomials f of the form

f=3 > Mes Vs, (46)

|k|=m s€Qk

and denote by L(m), and B(m)¢, the subspace in L, and B,,, respectively,
which consists of all f € B(m). By use of the equivalent quasi-norm (37) we
have

£z, =2 flB., <2 mE D flIG
for any f € B(m)oo,e. This implies the inequanlity
0n(SBY, 9, V4, Ly) > 27 ™m0 V/0 (SB(m)oo.00, V4, Ly).  (47)

Pm(f) = Z Z /\k,svk,s

k=m 3€Qy

00,81

Let

a linear projection from the space L, onto the subspace L(m),. Then we have
o'n(SB(m)oo,odea Lg) 2 0a(SB(M)oo,c0, V', L(m)g),
where V' = P,,(V9), and consequently,

n(SBT

00,01

V4, Ly) > 27 ™m0, (SB(M) oo 00, V', L(m),).  (48)
Let us now give a lower bound for 0, (SB(M)oo,00, V', L{m),). Define m =
m(n) from the condition
=< m2™ < dim B{(m) > 2n.
Let f € B(m). We have
1 £l Bmyes, 0 = POz .
and by the Littlewood-Paley Theorem
1£lla > 274D () log .

where ¢’ := min{g, 2} and D is the continuous mapping from B(m),,, into b ,
given by
D(f) = {Ak,s}seQu lkl=m

for f having the representation (46). Clearly, D(V’) = & and D(L(m),) = b}} ,,
where £’ is the canonical basis in b7 ,. Also, if S is an algorithm of n-term
approximation with regard to V' in L( m)q, then D o S will be an algorithm of
n-term approximation with regard to £ in by . Hence we obtain

0n(SB(M)so,00, V', L(M)g) > 274 0n(ST, 5, €', B! ). (49)
From the inequality

| - Hb:z > m(d—l)(1/2—1/p)2m(1/q’—1/p)” Mo,
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for some 0 < p < ¢, by the inequality (45) we have

Tn(ST o0, £, B2 5) > MDA/ e)gmU/a' =1 (ST £, b7)
> 7,,L(t7l—l)(1/2—1/17)2—m/p(S . 1)1/p

> 9m/4 p(d=1)/2,
Combining the last estimate (47)—(49) gives

Un(SB;o,g,Vd,Lq) > 2—rmm(d—1)(1/2—-1/0)
> n—r(log n)(d—l)(r+1/2—1/6‘)_

Thus, the lower bound of (39) for Un(SB;,a,Vd, L,), and the asymptotical op-
timality of $* in (40) are proved.
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