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Abstract. We give a brief survey on non-linear n-approximations using wavelet de-

compositions. In these approximations, we resolve a target function by linear com-

binations of n free terms of a wavelet series, which constitute a non-linear set. The

wavelets which form wavelet decompositions are B-splines and dyadic scales of de la

Vall6e Pussin kernels. The selection of n terms depends on the target function. Cen-

tral questions to be focused are what, if any, the advantages of non-linear n-term

approximations over linea,r ones, and the differences between univariate and multivari-

ate non-linear n-term approximations. These questions will be discussed mainly in

terms of asymptotic orders of error of the best non-linear n-term approximation and

non-linear n-widths based on optimal continuous algorithms of n-term approximation,

for smoothness classes of functions.

1. Introduction

A typical approximation problem is to resolve a complicated target function by

well-known special approximants such as polynomials, splines and wavelets etc.

The target function is usually assumed to belong to a normed space X. To

approximate f e X we use a set M of approximants which is a small subset of
X and consists of simplier, more appropriate to compute functions. To measure
the error of the approximation to a target function / by an approximant I e M
we use the norm lll - ell of the difference between f and 9. The quantity

* This paper is a pa.rt of a plenary lecture delivered at the Third Asian Mathematical Confer-

ence, Manila, 23-27 October,2000.
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E(f ,M,X): :  i2tr l l f  -  v l l

measures the error of the best approximation to / by approximants from M.
In linear approximation, the set M is a linear manifold. While in non-linear
approximation, it is a non-linear set. If W C X is a class of target functions
which is defined by certain common properties, for example, smoothness, the
quantity

E (W,M,X)  : :  sup  E ( f  ,M ,X )
tew

measures the worst case error of the approximation to / e W by M.
Increasing the accuracy of approximation to a target function can generally

be achieved by increasing the complexity of the approximants via a so-called
approximation analysis which is defined as an increasing sequence {M^}f:, of.
sets of approximants such that the union Uf:tM- is dense in X. The parameter
n usually expresses the complexity of the approximants. It can be the linear
dimension of. Mn or the logarithm of the capacity of Mn etc. For an approxi-
mation analysis {M"}f:, and a target function /, the quantity E(f ,M*,X) is
increasing as a function of n and, E(f ,M-,X) ---+ 0 when n tending to oo. A
central problem of Approximation Theory is to compute the asymptotic order of
E(f ,Mn,X) if certain smoothness properties of / are known. It is well-known
that if a 2zr-periodic function/ belongs to the Sobolev space W; ,I < p ( oo, i.e.,

f e Lo$) 1(r-t) ir absolutely continuous and /(') € ,e(11), then the error of
the best approximation of / by trigonometric polynomials has the upper bound:

E"( l )p , :  E( f  ,T^,  Lo(T))  I  Cn- '  ,

wherc Tn is the space of trigonometric polynomials of order at most n.
To understand the advantages of non-linear approximations over linear ones,

let us first discuss the simplest case: approximations in a separable Hilbert space
H. Let {pr}Er be an orthonormal basis for .I/. Then, any f € fI is decomposed
by the Fourier series with regard to this basis:

, S .
I  :  

L  I r9* '

where /3 :: (f ,pn) denotes the,kth Fourier coefficient and (.,.) the inner prod-
uct. For linear approximation, we take the linear subspace Ln of all linear
combinations of the n first terms p6, k : I,...,n to approximate /. The nth
partial sum

o  , . -  $ ,rn| i: )r Ikgk

of the Fourier series gives the best approximation to / by approximants from
Ln, and the approximation error is

EU, Ln, H) : l l f - P"f l l  :
/  @  r 1 / 2

(-r, tr*t',;
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However, this linear approximation is not practically useful if the n first Fourier

coefficients ft, k : lr. . . ,fl are zero or very small.
Let us have freedom in selection of n terms from the gn,k -- 1,2,.. '  for

approximation to / by their linear combinations. This selection depends on the
target function "f. We rearrange the Fourier coefficients fi, in increasing order

of their absolute values so that

l / t ' l  2  l f x , l 2  " ' >  l f n , l  >  " '

and defi.ne l}'e greedy algorithm G" by
n

Gnf :: Dfo,rr,. (2)

Notice that G, is a non-linear operator in X. The error of approximation to /
by the approximant Gnf is

/  3  ^ r r / 2
117 -  G^f l l :  (  L l f  n ' (  )  < l l /  -  P^f l l :  E(f  ,Ln,H) '

j:n-tr

Hence we can see that for any target function / the approximation by the ap-
proximant Gnf is always reasonable and appropriate and moreover, better than
by the best approximant Pnf for the linear approximation by Ln.

We have just touched a particular case of non-linear n-term approximation
for which the approximants are the non-linear set Mn of all linear combinations
of  n f ree terms f rom the cp*,  k  :1,2, . . . ,  that  is

M n : :  
{ ,  

: i a k i g k i ,  k i  : r ' r ,  . . . } .
j : r

Remarkably, the greedy algorithm G,, gives the best approximant for this non-
linear approximation. More precisely, we have

117 -  G-f  l l :  E(f  ,Mn,H) '

The next example which more visually shows the advantages of non-linear
approximations over linear ones is uniform approximations to the function

f  (*) : ' / i

in the interval [0, 1] by piecewise constants (PWCs). For linear approximation,
we use PWCs with fixed breakpoints. Let Sn be the n-dimensional linear space
o f  a l l  PWCsw i th  n , - l  equa l l y  spaced  b reakpo in t s  t p : :  k f  n ,  k :1 ,2 , . . . , n - t .
A simple computation shows that the error of.the best uniform approximation
to / by PWCs from S, satisfies

E(f  ,  S- ' , I - [0 ,  1] )  :  O(r- t /2) ,

where .L-[0, 1] is the normed space of bounded functions g on [0, 1], equipped
with the norm

l lg l l -  , :  sup ls(r)1.
ce [0,1]

(1 )
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For non-Iinear approximation, we use the non-linear set En of all PWCs with
n - I free breakpoints. It is easy to see that the error of the best uniform
approximation to / by PWCs from E, satisfies

E(f  ,En,r -10,1] )  :  o(n- t ) ,

and the best approximant is a PWC with the breakpoints ti :: Jffi, k :
1,2, . . . ,tu - 1. Notice that the selection of the breakpoints of the best approxi-
mant depends on the behavior of / on the interval [0,1].

Wavelets were discovered and rapidly developed in the 1980's. The most im-
portant dicoveries in Wavelet Theory are the multiresolution analysis (or shortly
multiresolution) of Mallat and Meyer (see [20]) and the dicovery of Daubechies [2]
of compactly supported orthogonal wavelets with arbitrary smoothness. Wavelets
are appropriate tools for non-linear approximation and numerical computations.
The interested reader can find basic ideas and knowledge on wavelets in the books
of Daubechies [3] and Meyer [23]. Wavelet Theory provides simple and efficient
decompositions of target functions into a series of integer translates of dyadic
dilates of a single function. These decompositions are connected to multireso-
lutions which decompose a function space into a increasing sequence of closed
subspaces called scaling spaces generated from integer translates of a dyadic
level. In linear approximations using wavelet decompositions, approximants are
taken from a linear scaling space. In non-linear n-approximations using wavelet
decompositions, a target function is approximated by linear combinations of n
free terms from different dyadic levels, which constitute a non-linear set.

To have the first look on non-linear n-term approximations using wavelet de-
compositions, let us consider approximations by PWCs with dyadic breakpoints.
We begin with the single PWC called waveJet or scaling function:

( t , 0  I
tr(r) :: 

| 0, o e

Let
g k , s : :  p ( 2 k  . - s ) , . s : 0 ,  1 ,  . . . , 2 k  - 1 ,  k : 0 ,  1 , . . .

be integer translates of dyadic dilates of the wavelet tp, and for g € C[0, 1]

2 k  - l

pps::  
I  oQ-kt)v*," .
k:0

Since cp(r) : 9(2r) * 9(2x - 1) and Pn(g,*) converges to g(r) uniformly on

[0.1], each g e C10,1] can be decomposed into the series:

e : Po9+ i{Pr+rc 
- Pks}: D )0,"p*,", (3)

lc:0 ft,s

converging in the space -L-, where )r," : fr,"(/) are certain continuous linear
functionals of /. This decomposition is called PWC wauelet decomposit'ion.

Let us now consider approximations to the function f (") :1f using the
PWC wavelet decomposition (1). Denote by V1, the ,kth scaling space which is
the l inear space of all l inear combinations of pr,", s :0, 1,...,2k - 1. Notice
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that V* : ^9, with n : 2k. Therefore, for the linear approximation to / by

approximants from U, we have

E(f  ,vx,  L*)  :  o(n-r /21.

For non-linear n-term approximation, rir'e use approximants from the non-linear

set Xi of all linear combinations of n free terms from the functions 9,',s, s :

0, 1, ..., 2k - I, k :0,1, ..., that is the l inear combinations of the form

D"x,"9t","
k , s

with at most n non-zero coefficients cp,". Clearly, Xi is a subset of E' and

"much smaller" than Er. However, one can easily prove that

E(f  ,E; , r - [0 ,1] )  :  O(n-r ) '

This means that the non-linear n-term approximation as good as the non-linear

approximation by PWCs with free breakpoints from D'.

Let us give a general concept of n-term approximation in a quasi-normed

space. Let X be a quasi-normed linear space and O : {pn}flt a family of

elements in X (a quasi-norm ll ' ll it defined as a norm except that the triangle
inequality is substituted by: l l /+9ll < C(ll/ l l  + l lgll) with C an absolute con-

stant). Denote by M,(A) the non-linear set of all linear combinations of n free

terms from O of the form
\-1

9 :  2 - o r 9 o '
xee

where Q is a set of natural numbers with lQl : n. Here and later lQl denotes
the cardinality of Q. For completeness we put Ms(O) : i0). We shall assume

that some elements of O can coincide, in particular, O can be a finite set, i.e., the
number of distinct elements of (D is finite. The n-term approximation to a target

element f e X with regard to the family iD is called the approximation to / by
approximants from M,(O). The error of the best approximation is measured by

o n ( f  , Q , X ) : : . 8 ( / , M ' ( O ) , X ) .  ( 4 )

Let W be a subset in X. Then the worst case error of n-term approximation of
the elements in V7 with regard to the family iD is given by

on (W,O,X)  : :  sup  o ' ( / ,O ,X ) :  E (W,M^(O) ,X ) .  ( 5 )
f ew

Notice that if spanO is dense in X, then the sequence {M'(O)}fl, is an ap-
proximation analysis. Clearly, without loss of generality we can assume that O is

bounded, i.e, there exists an absolute constant C such that l l9; ' l l  1C, k:1,2'..
In what follows, the families O in the definitions (4)-(5) are conveniently repre-
sented in the form Q : {px} kre where Q is an at most countable set of indices.

The idea of n-term approximation belongs to Schmidt [28]. Multivariate
n-term approximations with regard to splines was first studied by Oskolkov

[25]. There has recently been great interest in both the theoretical and practi-

cal aspects of n-term approximation. There are special applications of n-term
approximation to image and signal processing, numerical methods of PDE and

20r
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statistical estimation. The reader can also consult the paper of DeVore [4] for a
detailed survey of various aspects of non-linear approximation and applications,
especially of n-term approximation.

It is easy to check that if X is separable and O is dense in the unit ball of X,
lhen on(f,o,X) : 0 for any f e X. Thus, the definition (4) is not suitable for
dense families in separable spaces. Fortunately, such families are not practical
and for many well-known approximation systems with good properties the n-
term approximation on(W, O, X) has reasonable lower bounds for functions sets
with common smoothness. In general, to obtain lower bounds on on(W,Q,X)
for well-known classes lll of functions families, iD should be restricted by some
"minimality properties" which at least well-known approximation systems would
satisfy. This approach was considered by Kashin and Temlyakov [10] and Dinh
Dung [17].

An algorithm of rz-term approximation with regard to O, is represented as
a mapping S from W into M,(O). If .9 is continuous, then the algorithm is
called cont'im^rous. Another way to deal with n-term approximation by M",(O) is
to impose continuity assumptions on algorithms of n-term approximation. This
assumption which has its origin in the classical Alexandroff n-width is quite nat-
ural: the closer objects are the closer their reconstructions should be. On one
hand, any continuity assumption decreases the possibilities of approximation.
On the other hand, it tends to guarantee a lower bound for n-term approxi-
mation. Moreover, it does not weaken the asymptotic order of the correspond-
ing n-term approximation for many well-known dictionaries (D and functions
classes trU. Namely, for many interesting approximation systems Q and classes
of functions with common smoothness W, lhe asymptotic order of on(W,Q, X)
is achieved by a continuous algorithm S from W into M,(O*), where O* is a
finite subset of iD. This is shown again in our paper for n-term approximation
using wavelet decompostions.

The idea of n-width as an approximation characteristic was fi.rst introduced
by Kolmogorov [19]. He defined the n-width d.(W,X) as a quantity character-
izing the best approximation of W by linear manifolds of dimension at most n.
The earlier Alexandroff non-linear n-width a^(W, X) [1] which now is well-known
in Approximation Theory, comes from Topology. It is defined as follows

a-(w,x)' :  al l  ; :# l l i  
- G(/) l l '  (6)

where the infimum is taken over all complexes K c X of dimension ( n and all
continuous mappings G from W into l(. See, e.g., [6, 15,32] for details regarding
a n .

Just as the continuity assumption on the algorithms of approximation by
complexes leads to the Alexandroff n-width, the continuity assumption on the
algorithms of n-term approximation leads to various continuous non-linear n-
widths. Let us introduce some of them.

We can restrict the approximations by elements of M,(@) only to those
using continuous algorithms and in addition only from families iD from f(X),
which we define as the set of all bounded O whose intersection O l.L with any
finite-dimensional subspace Z in X, is a finite set. The n-term approximation
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with these restrictions leads to the non-linear n-width r.(W,X) [11] which is
given by

r,(w,X)': t15 /s:# ll/ 
- s(/)ll, (7)

where the infimum is taken over all continuous mappings S from W into M'(O)

and all families A e f $). Observe that the condition O e .F(X) is quite mild

for well-known approximation systems. Similar to rn(W,X) is the non-linear

n-width r'-(W,X) [11] which is defined by formula (7), but where the infimum

taken over all continuous mappings ,9 from W into a finite-dimensional subset

of M,(O), or equivalently over all continuous mappings,9 from W into M'(O)

and all finite families O in X. Note that the restrictions on the families O in

the definitions of r, and rl are quite natural. All well-known approximation

systems satisfy them.
Another non-linear n-width, introduced in [10], is based on restrictions by a

special class of continuous algorithms of zl-term approximation. Before recalling

this notion let us motivate it. Let l- be the normed Iinear space of all bounded

sequences of numbers r : {r*}pt, equipped with the norm

l l r l l -  : :  ,sup l r*1,

and M, the subset in J- of all r € l- for which rr1 : 0,k ( Q, fot some set

of natural numbers Q with lQl: n. Consider the mapping fto from Jhe metric

space M, into M,(O) defined by

,Ro(e)  , :  L*npn,
kee

if r : {rp}f. and zp : 0,k f Q, for some Q with lQl : n. From the definitions

we can easily see that if the family O is bounded, then ft6 is a continuous

mapping from M' into X and M'(O) :.Ro(M"). Thus, in this sense, M'(O)

is a non-linear set in X, parametrized continuously by M'. On the other hand,

any algorithm S of rz-term approximation with regard to O of the elements in

W is of the following form

^e(/) :: i^*,r)r*, (8)
k:r

where,\s(/) are coefficient functionals of / such that at most n of ,\;(/) are

non-zero. This means that S can be treated as a composition ^9 : Ro o G for

some mapping G from W into M,. Therefore, if G is required to be continuous,
then the algorithm S will also be continuous. This requirement means the uni-
form continuity of the coefficient functionals )p(/) in the representation (8) of
S. Although the class of continuous algorithms of the form ,S : Ro o G does not

exhaust the continuous algorithms of n-term approximation with regard to O,

in many cases one can construct such a continuous algorithm ^9 which is asymp-
totically optimal even for on(W,O,X), i.e., there holds the following inequality

sup l l /  -  S( / ) l l  <  Co^(W,o,X) ,
f€w
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with some absolute constant C, where ^9 : Eo o G for some mapping G from I4Z
into M,. On the other hand, continuous algorithms of the form (8) are easier to
construct and to be applied in practical problems. Finallg as mentioned above,
the boundedness assumption on Q does not lose generality. These preliminary
remarks are a basis for the notion of the non-linear n-width an(W,X) [10] which
is given by

an(W,X) ::  i_r{ rnp l l /  -  no(c(/)) l l ,
e ,u  JeW

where the infimum is taken over all coirtinuous mappings G from

(e)

I,7 into M,

(10)

( 1 1 )

and all bounded families O in X.
There are other notions of non-linear n-widths. We would like to recall some

of these which are based on continuous algorithms of non-linear approximations
different from n-term approximation, and related to problems discussed in the
present paper.

The non-linear manifold n-width 6.(W, X) introduced by DeVore, Howard
and Micchelli [5] and with a modification by Math6 [22], is defined by

5"(w,x),: l i6 ;:# l l /  
-,?(c(/)) l l ,

where the infimum is taken over all continuous mappings G from W into lR' and
R from lR' into X . The interested reader is referred to [15], [6] for brief surveys
on the non-linear n-widths an and d, and others of the classical Sobolev and
Besov classes.

The non-linear n-width P-(W,X) is defined by

0.(w,x):: Ai[ /':# ll/ 
- R(c(/))ll,

where the infimum is taken over all continuous mappings G from W' into M,
and .R from M, into X. This non-linear n-width has been introduced in [10].

The non-linear n-widths introduced in (6), (7) and (9)-(11) are different.
However, they possess some common properties and are closely related. Let
W be a compact subset of a quasi-normed linear space X. Then the following
inequalities hold

qn(W, X) 3 0.(W, X) < a"(W, X),

6zn+r(W, X) ! a^(W, X) 3 0^(W, X) < 5^(W, X),

rn+r(W, X) 3 /^*r(W, X) ! a^(W, X) ! r'.(W, X),

and in addition
on (W,X) :  r n (W,X)  :  r ' . (W,X)

for finite dimensional X (see [11]).
Our attention is primarily focused on n-term approximation via the quantity

o,, and continuous algorithms of n-term approximation and the relevant non-
linear n-widths or, rn,rl for Sobolev and Besov smoothness classes of functions.
Because of the close relationship between dntTnrrl,,gn,d, and an, and. because

and
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in many important cases they are asymptotically equivalent, it is quite useful
and natural to study them together.

Interesting ideas concerning non-linear n-widths, which are not based on

continuous algorithms, have been recently introduced by Ratsaby and Maiorov

[26] and Temlyakov [30]. In particular, a notion of non-linear width p' based

on optimal non-linear approximation by sets of finite pseudo-dimension, was
introduced and studied by Ratsaby and Maiorov 126,271for traditional Sobolev
classes. The asymptotic order of pn f.or Sobolev and Besov classes of functions
with mixed smoothness have been recently obtained by Dinh Dung [12]. In
addition, in establishing the upper bound of pn a n-term approximation with
rega,rd to the mixed wavelet family Vd formed from the integer translates of
the mixed dyadic scales of the tensor product multivariate de la Vall6e Poussin
kernel (see Sec. 3 for definition), was employed as a preliminary approximation.
For other notions of non-linear n-widths, see [6,32].

In Sec. 2 we discuss univariate n-term approximations using wavelet decom-
positions, the asymptotic order of o, and the above introduced non-linear n-
widths for smoothness classes of functions, and again show their advantages
over well-known linear approximation methods. Section 3 is devoted to the same
problems for classes multivariate periodic functions with mixed smoothness. In
addition we wish to understand the differences between the univariate and mul-
tivariate n-term approximations. In Sec. 4 we show how to employ so-called

"dual" inequalities to reduce lower bounds of on and non-linear n-widths of
function classes to problems of on and non-linear n-widths in finite-dimensional
spaces.

2. Univariate n-Term Approximations

To understand the advantages of non-linear approximations over the established
linear approximation let us first study univariate approximations using wavelet
decompositions and classical linear methods. We will consider univariate approx-
imations of non-periodic and periodic functions in the space Ln(G),1< q ( m
equipped with the usual pintegral norm) where G is either the interval ll :- [0, 1]
(non-periodic case) or the one-dimensional torus'lf :: [-r,r] (periodic case).

We will assume that target functions are from the Sobolev class ,9I421(G) and
the Besov classes SB;..G) and SB|3(G). For 0 ( p ( oo and natural number
r, the Sobolev class SW;(G) is the unit ball of the Sobolev spaceW[(G) of all

functions f e fo(G) for which /(r-t) it absolute continuous and /(") e Le(G).
The Sobolev semi-quasi-norm and semi-quasi-norm of WI : WI(G) are

l f lw . , - -  l l . f ( ' ) l l o ,  l l f l lw ; , :  l l / l l p  +  l f lw ; ,

where ll/llo ': llf ll4g. For the case G : 'lf, the definition of Sobolev space can
be extended to a positive r using fractional derivative in the sense of Weyl. We
will give a generalized definition for multivariate functions in the next section.

Let
ut( f  , t )p: :  sup l lL 'nf l l " , rc,^t ,

lhl<t
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is the lth modulus of smoothness of /, where G17, :: lf if G : 1f and G1;, ::

llh,l - th] it G: II and the lth difference All is defined inductively by

Lt7:: AIA'n-t,

starting from

^Lf  , :  f  ( .+  n lD -  f  ( . -  h l2) .

We introduce the class M & of functions ar of modulus of smoothness type as
follows. It consists of all non-negative functions c.., on [0, oo) such that:

(i) a.'(0) : 0,
(i i) c,r(t) 3 a(t ') i f t < t ' ,

( i i i )  or ( , t f )  < k tw(t ) ,  for  k  :  I ,2 , . . . ,
(iv) r,r satisfies Condition 27, that is, there exist a positive number a < I and

positive constant Cr such that

w(t)t-" > Cfu-"u(h), 0 < t < h,

(v) o satisfies Condition BS, that is, there exist a positive number b and a
positive *^t'"' 

;,',:":jnln-0,1n1,0 <, < h < r.

Let 0 < p,0 1rc and r,; € M&. The Besov class SB\.1G) is the unit ball of
the Besov space Bl': Bi.e(G) of all functions / e LoG) for which the Besov
semi-quasi-notm ljln.,, is-finite. The Besov semi-quasi-norm l/ls-, is given by

I r l- .- J (ttr t"r(f ,t)ela(t)Itdtlt) ' /t , 0 1 q,
t r  tui 'e ' -  

I  , rorro a1(f  , t )r lw(t) ,  o:  x.
(12)

Similarly, the Besov quasi-norm is defined by

l l f l la;," ' : l l / l lp +ll ln' ' ," (13)

For 1 S p ( oo, the definition of. Bi,e does not depend on l, i. e., for a given
a.,, (12)-(13) determine equivalent quasi-norms for all I such that u € MSr The
function f' belongs to the class M & for any I > r. The space B[,6(G) t: Bi,e(G)
with a.,(t) : t' , r > 0, is the classical Besov space (for more details about Besov
spaces, see [2a]). In linear and non-linear approximation, the smoothness of
functions to be approximated is more conveniently and, maybe more naturally
given by boundedness of Besov quasi-norms. Thus, the Besov smoothness char-
acterize the asymptotic order of approximation in terms of direct and inverse
theorems of approximation completely for the linear trigonometric approxima-
tion (see [24]), and in some special cases for non-linear n-term approximation
using wavelet decompositions (see [4]).

Let us now give a concept of wavelet decompositions for ,r(R). Let g be a
bounded function on IR. Denote by O the family of functions

g k , " : :  p ( 2 k  . - s ) ,  k , s  € 2 ,
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which are integer translates of dyadic dilates of g. Under certain conditions on
rp, a general function / on JR can be decomposed into the series

/ :  t  \ k ' "qk ' " '
k , s

(14)

where ,\;," :: tr*," ("f ) are certain coefficient functionals of /. This decomposition
is called wavelet decomposition (WD) of / and the function g waaelet or scaling
function.

WDs are quite appropriate to both linear and non-linear approximations, in
particular, n-term approximation because of their good approximation proper-
ties. Firstly, they provide a simultaneous time and frequency localization. This
allows us to select different numbers of terms g*," at each kth dyadic scale for
n-term approximation, depending on a given target function. Secondly WDs
give discrete descriptions of equivalent norms and semi-norms for Sobolev and
Besev spaces in terms of coefficient functionals trr,"("f). Using these discretp
characterizations, we can process a quantization or discretization of our approx-
imation problems. In the discrete form, they are more convenient for study and
numerical computation.

For 0 < p I @, and Q an at most countable set, denote bv lp(Q) the space of
all sequences r : {rp}pEq of (complex) numbers, equipped with the quasi-norm

/  \ L / p

l l{"r}l[, : l lrl lb6.7t,: ( t l"*lo ). / c e Q  /

with the change to the max norm when p : oo. We sometimes use the notation
tT  :  t o (Q)  i t  lQ l :  m .

WDs are closely related to multiresolutions. A sequence {Yx}nrz of closed
subspaces in Io(R) is called a multiresolution of. re(R) if it satisfies the following
conditions:

MRl. V2, C Vr+r.
MR2. )zqvY* : {0} and uyEvYp is dense in Io(lR.).
MR3. / € Vs +=e f(2.) €Vr+r.
MR4. / € V6 ==1 f (. - 2-ks) € V* for all s e€ Z.
MR5. There exists a function I €Yo such that {e( - s)}"ez is a Riesz basis

for Vs, i.e., there are positive constants C and C/ such that

Cl l {o" i l lo  < l l t  a"e( . -  s ) l lo  S C' l l {o" } l l ,
s€Z

for all {a"}" ez e lo(Z).
The case p:2 is particularly interesting because 12(R) is a Hilbert space.

Let W;, be the orthogonal complement of Vs in Vr+r. Then I2(lR) can be de-
composed as an orthogonal sum of W;, k e Z. F\rrthermore, one can construct
a function / € Ir(R.) called wauelef such that {t/6,"}"62 forms an orthonormal
basis for Ws. Hence the family {rlt*,"}x,"ez is an orthonormal wavelet basis for
,z(R). This construction of wavelets from a multiresolution is due to Mallat
f201.
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Let rp be a function on IR such that the 1-periodic function

s,  , :  Dle( . -  r ) l
s€Z

belongs to lo(ll). If g satisfies a refi,nement equat'ion

p : D b " c p ( 2 . - s )
s€Z

with the mask {b"}"Ev € I1(Z), and

supl,?(€+2trk)l ) 0 for all ( e JR,

where rp denotes the Fourier transform of g. Then it was proved by Jia and
Micchelli [16] that the family {Yx}n.z is a multiresolution of Io(R.) with the
scaling function cp, where Vp is the closure of the span of the functions (pri,s) I €
2,. ff {I/k}kav is a multiresolution of Io(R.) with the scaling function 9, then
every function / e .L,(JR) has a WD (14) with the convergence in ,o(R),

Let 9@),: l/r(") (I > ,), be the B-spline of order I with knots at the integer
points 0, 1, ... ,l, and V6 be the closure of the span of the functions tp1".", I € Z.
Then {Vr};. av is a multiresolution of -Lo(lR).

Let us give a B-spline WD and discrete characterization for the Besov space
BF,t$) of functions on II. It is proved by DeVore and Popov [7] that each function

f e Ln$) has a WD

f  :P ( f ) * t t  \ k , "ek , " ,

Dinh Dung

(15)
f t :O s€1r

with the convergence in .Lo(ll), where

l -L

P(f)  :D^u**,
ft:0

is an algebraic polynomial of degree I l, Ip is the set of those integers s such
that gpp does not vanish identically on II, and )k," ': Ir,"(/) and ); ,: )r(./)
are certain coefficient functionals of /.

Every function / e Bl,e$) has a WD (15) with convergence in Bl,r$).
Moreover, the Besov space Bfie(ll) can be characterized by the discrete semi-
quasi-norm

I  f  l ' ry. , ' :  ( i (  l l  {r*,"} l lo I  2r /  o, (2-nf |  /  e .
&:0

The quasi-norm

l lf l l 'a;,, ': l l/ l lo +|fl 'B'",,

is equivalent to the Besov quasi-norm given in (12)-(13). These equivalences
of semi-norms and quasi-norms were proved in [6] for the case w(t) : t". The
general case can be obtained similarly.
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In constructing continuous algorithms of rr-term approximation using a WD
(15) we will need the continuity of coefficient functionals .\;.," and .\6 on /' We

say that a; satisfies Condition R(p, q) if u(t)t-Q/e-tlo)+ 551i5fies Condition BS.

Here and later we denote a+ i: max{4,0}. For the case w(t).: t" Condition

R(p, q) is equivalent to the inequality r > ([lp - lld+. If tr satisfies Condition

R(p,q), the coefficient functionals )r," and )t can be chosen to depend con-

tinuously on / e Bl,e$) in the norm of_,Ln([). A construction of continuous

coefficient functionais lr,, was given in [6] Tor the case r^.'(l) : f'. In the general

case, they can be constructed similarly.
There are periodic analogues of WDs and multiresolutions for ,Ln(11). Pe-

riodiC scaling functions and wavelets can be constructed by periodizing scaling
functions and wavelets of trn(lR.) (see, e.g., [18]). However, one can construct
periodic scaling functions and wavelets immediately from well-known trigono-
metric kernels. We will construct a periodic WD and multiresolution from the

de la Vall6e Poussin kernel of order rn:

,  Z n - l

v*(t) :: -i" 
" - 

D k(t) : 
sin(mt l-2) si!(3mt I 2),

3*, ?* Smzsinz(tfz) '

where

D - f f ) . :  \ -  e i ' i tun\u)  
t f<*

is the univariate Dirichlet kernel of order rn. Let

' t ) k , s  t :  o * ( .  _  2 n s f 2 k ) ,  s  :  0 , 1 ,  . . . , 2 k  -  1 ,

be the integer translates of. the dyadic scaling funct'ions

? /g  l :  1 ,  Up  : :  V2 r - r ,  k  :  I r 2 ,  . , .

Since for each function f e Ln(T), the convolution 96 :: 3x2k f *V2n-r conv€rg€s
to / in In(T), and being a trigonometric polynomial of order 2k-r - 1, 97, is
represented in the form

o k * l  r

gt " :  D  as l )k+r , " ,
s:0

/ h a s a W D
a  2k - r

f  :D D ^0,"o0,"
lc:0 s:0

(16)

with the convergence in Io(11).
Let Vr be of the span of the functions ?rft,s, s : 0, 1, ...,2k-7 - 1. Then the

family {Vr}Po possesses the following properties:

MRl. V* C V*, for k < lrt.
MR2. UrezVr is dense in Io(11).
MR3. For  k :0,1, . . . ,  d imV7, :2k andthe funct ions ?rk,s  : :  up( ' -2nsf  2h) ,  s :

0, 1...., 2k-L - 1, form a Riesz basis for Vp, i.e., there are positive constants

C and C' such that
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(17 )

(18)

2" - r

cl l {o"} l lo s l l  t  a"uk(--  s) l lq S c ' l l { " , } l ln

for all {a"}!-:oL e tfl' .
A sequence {V*}Po of subspaces in Io (T') is called a multiresolution of Ln(T)

if there exist scaling functions u1 such that there hold MRI-MR3. Notice that in
contrast to the non-periodic case, in general, there is not a single scaling function
for periodic multiresolution and the periodic scaling functions t'7, depend on ,k.

For the c&s€ p : 2, Lz(T) is a Hilbert space. Koh, Lee and Tan [18] gave suffi-
cient conditions for a sequence of scaling functions to generate a multiresolution,
and constructed an orthogonal wavelet basis for.L2(1f) from scaling functions of
a multiresolution.

Let us give a WD and discrete characterization for the Besov space Bfr.r(1f)
of functions on'lf. Let | < p3 oo and 0 < 0 < oo. A function / e tro(T)beiongs
to the Besov space BF,'$) if and only if / has a WD (16) with the convergence
in the space B3,0(T), and in addition the quasi-norm of the Besov space Bi,s$)
given in (17), is equivalent to the discrete quasi-norm

l l  f l l 'a;,, '  : ( t ( | | { ,r o, "} l l  o I 2* / ' , Q- k )e )L / e .
ft:0

Moreover, if | < q ( oo and ar satisfies Condition R(p, q), then the space Bf.r(1f)
is compactly embedded into the space ,Ln(1f) and the coefficient functionab.\p,"
can be chosen to depend continuously on / e Bi.t in the norm of ^Ln(11). For
the space Bi,e(T), a proof of the equivalence of quasi-norms and a construction
of continuous coefficient functionals )6," were given in [10]. In the general case
they can be obtained similarly.

We now consider univariate approximations of periodic functions using WDs.
For n-term approximation of the functions from S Bi,e(11) and SW; (T) , we take
the family of wavelets:

V  : :  { t ' 6 , "  :  s  :  0 ,  1 , . . . , 2 k  -  I ,  I r : 0 , I , 2 , . . . } .

We use the notation F x F' if F < F' and F' << F,and F < tr'l if F < CF'
with C an absolute constant.

Theorem L.  LetL < q< m, 0 (  p,0 1oo andw sat is f ies Cond' i t ion R(p,S) .
Then we haue

o"(SBi,s(T), V, rq(T)) = y(SBi,e(T), rq(T)) = w(7ln). (1e)

To establish the upper bounds of (19) we explicitly construct a finite subset
V* of V and a positive homogeneous (continuous) mapping G*: B\'$) -* M,
such that

sup ll/ - si(/)l l  q <. w(rln),
f  esB;,e

(20)

where Sfi :: Rv* o G*. This means that the (continuous) algorithm Si of n-
term approximation with regard to V, is asymptotically optimal for on and 7n.
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Theorem 1 and (20) was proved in [10] for the class ,SBi.r(lf). The general case
has been proved recently by Mai Xuan Thao.

Le t  1<  Q  S  r c ,  01p ,d  S  oo  and  r  )  ( | l p - l l d+ .Deno te  by  1 {  e i t he r
SB;,g(T) or Sl{(lf). As a consequence of (19), we have

on(K,V, rq(T)) =' tn(K,ro(T)) x n- ' (2r)

Let us now discuss in details the periodic case. Firstly, we wish to show again
the advantage of non-linear n-term approximation with regard to V under the
linear approximation by trigonometric polynomials. For a subset W in Ln(T),
let

E-(W) n :: E (W, T-, L n(T))

be the worst case error of the best approximation to / by trigonometric poly-
nomials of order at most n. Observe thatTn C V6 C Tzn, f l:2k. Hence and
from a well known result on trigonometric approximation (see, e.g., 124,32]), we
h a v e f o r r > 1

E"(SBi,-(11))- = ,E(SB|,-(11), Vp, .L-(lf )) = n-?-t) .

While the n-term approximation with regard to V gives

o-(S Bi ,* (T) ,  V,  ,L-  (1f ) )  = n- '  .

Next, we will briefly show how to construct an asymptotically optimal (con-
tinuous) algorithm Sfi satisfying (20). Notice that from embedding theorems (see

l24l) it follows that the space Bfr,B(l|) can be considered as a su pace of the
Iargest space Bfr,* (1f ). Hence, it is sufficient to construct Si for H SB;* (T') .

We will use greedy algorithms in each scaling space V;. A general definition
of greedy algorithm is as follows. Let O : {Vx}fl, a family of elements in
a quasi-norrned linear finite dimensional or separable space X such that each
element f e X can be decomposed by a series

, - $ ' , ,' :  
?--no'*

with convergence in X, where rn is the dimension of X or infinity. Then we can
define the greedy algorithm.Gnf of n-term approximation with regard to the
family O by (1)-(2) by replacin1 fn by )r. For convenience we put Gsf :: 0.
Although the greedy algorithm G"f is not always optimal for the n-term ap-
proximation, it is quite useful in constructing asymptotically optimal algorithms.
Using the WD (16), we will preliminarly decompose a target function / into
functions fi" belonging to the dyadic scaling space V7,, and then apply greedy
algorithms to each component /6.

By use of the equivalent quasi-norm (18) for H, from (16) we can see that a
function f e Lo$) belongs to the class f/ if and only lf. f can be decomposed
into functions 

"fr by a series @
f : \ - f , _

J  /  . J E 1

k:o
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where the functions

o l r

fu: D tr,,,"t'&."
s:0

are from V;" and satisfy the condition

l l / r l lo  = 2-n/n l$,n, " \ l le3cu(2-r ) ,  k-  0 ,1, . . .  (22)

In addition, for each function.

9 :  \  r "uP, "  (23)
s:0

from V;, we have

l lgl lq x 2-k/sl l{a"}l lq. (24)

For a non-negative number n, let {np}f;:o be a sequence of non-negative
integers such that @

Dn*. n. (25)
k:0

Of course, such a sequence contains only a finite number of non-zero n;r. We
will construct an asymptotically optimal algorithm Sfi in the form

s;(f):i",*{/*),
ft:0

where Gru are the greedy algorithms in the scaling subspaces Yn, k:0, 1,...,
equipped with the norm of tro(T), with regard to the family uk,st I : 0, 1,...,
2k - L For reaching asymptotical optimality of S[, we will select an appropriate
sequence {t r}Eo such that there holds the following estimate

l l / -s i ( / ) l l ,  =  i  l l fx -G.*( / r ) l lnS cw(r ln) .  (26)
k : -L

We now use an idea of discretization for the greedy algorithm Gnu of n,c-term
approximation. It has origin in discretization methods which was first used for
the well known Kolmogorov width by Maiorov [21].

Let us preliminarly consider n-term approximations in the finite-dimensional
space lfl. Let t : {""}3, be the canonical basis in |f,, i. e., r : DT:rr"e" for
n:  { r " }T:LeI i .  We let  the set  {s1}p,  be ordered so that

l r " , l  2  l * " "1  2 . . .  1 " " - l  2  . . .  l r " ^1 .
Then, the greedy algorithm Gn for the n-term approximation with regard to t
ID

G. ( r ) ' :  i  r s i €s j .
j : 7

Clearly, G, is not continuous- However, the mapping
/ r n / t l

GI(r) , :  {  : ' ; t (n" i  
- l r"^* ' ls ignr" ' )e" ' '  for p 1q

I L'i=1r"e", for P >- q
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defines a continuous algorithm of n-term approximation.
Let 0 < p,e I @. Then we have (see [10, 13]) for any possitive integer n < n1,

sup llr - G.(r)llry S su_p_ llr - cl(r)llt7 I Ao,n(m,n), (27)
r€&tr ' rQBi

where

(28)

Observe that the greedy algorithm G'u in l!* corresponds to the greedy

algorithm of n;.-term approximation in V1 (we denote it again by G',") which

is given by

G-n(d ' :  i  ns i 'uk,s i
j : 1

for a function g represented as in (23). Similarly, the continuous algorithm Gfu

in lj* corresponds to a continuous algorithm of nr-term approximation in V;" (we

denote it again bv GI). Because of the norm equivalence (24) for each function
from V6, we can estimate the errors llfn - G.*(fi")lln for f e H satisfying the

restriction (22), in the discrete nor^2-k/' l l{}r,"}l lo of the space Il". By (22),

(24), (27) we have for any possitive integer nn .,-2k

sup ll.fi. - G^rffn)lln ( sup llfx - G1-(/r)llo
f e H  f e H

11 w (2-  k  
)ZG /  n -  r  /  d  k  ao,  n(2k,  n n) , (2e)

Let us now select a sequence {rr}Eo. For simplicity consider the case p ( g

and a.'(t) : f'. The other cases can be done similarly. We find a number ks
satisfying the inequalities 2ft0+2 I n I 2ko*3, and a fixed number e satisfying
the inequal i t ies 0 (  e 1(r  - I lp+t ld l l lp- t ld .  Then an appropr iate
selection of {n;}po is

.  ( n L / o - t / n ,  f o r p < q
Ao ,n ( * , " )  :  

t  (m_  n )L /o - t / n ,  f o ,  p2q .

( zk, for ,k < fts^ ,  _  )
"^ - t lan2-'&-no)1, for k > k6,

(30)

with a positive constant o chosen such that there holds the inequality (25).
Flom (28)-(30) one can derives the estimate (26), which shows the asymptotical
optimality of ,Sfi (for a detailed proof see [10]). If in (26) Gno are replaced by

Gl*, then,Sfi is a continuous algorithm of n-term approximation. Moreover,
since n6 : 0, k > k* with k* Iarge enough, Sl t: Rv- o G* where V* ::

{r0,"}o<*., ":0,, ,2r-1 is a finite subset of V. This proves (20).
Results similar to (19)-(20) are true for n-term approximation of the func-

tions from SB;,e$) and Sl{f ([) using B-spline WDs. We take the family of
algebraic polynomials and wavelets:

o ' :  
{ {P"}"  . , ,  {9x," }osf t<m,s€rr  }  ,

with the scaling function 9(r) :: lfr(") (J ) r) and P"(r) :: r".
Let 1 ( { S oo, 0 < p,d < m and r,.r satisfy Condition R(p,q). Then we

have
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o.(SBF,o(D, o, rq(I)) x 7-(SBi,e([), rq(n)) = a(rln). (31)

The case w(t): f'of (31) was proved in [10]. The general case has been proved
by Mai Xuan Thao.

3. Multivariate n-Term Approximations

Let us first discuss the smoothness of multivariate target functions. Flom the
point of view of multivariate approximation the classical multivariate Sobolev
and Besov smoothness classes are rather simple. Almost all results on univariate
linear and non-linear approximations can be extended to them without any dif-
ficulty' More interesting are Sobolev and Besov smoothness classes of functions
with bounded mixed derivative or differences. For multivariate approximations
we are restricted to consider the periodic case for which approximation methods
and tools are more developed. Multivariate periodic functions are considered as
functions defined on the d-torus yd i: f-n,rld.

Let us now introduce a notion of mixed smoothness sobolev and Besov
spaces. As usual, f(,t) aenotes the ,tth Fourier coefficient, in the distribu-
tional sense, of f e Lo :: Lo(Td), and ri the jth coordinate of e € lRd, i.e.,
r :: (n1,...,ra). The ath mixed derivative ;r(o), in the sense of Weil, of / is
defined by

7@) :: D irD\aa"i\k' '),
k€v,g

wherg Z!. , :  . {F e Zd :  k i  + 0, j  :  1,  . . . ,  d} ;  ( ik)  7 ( ikr)o'  .  .  .  ( ' i ,ko\.o.  ( i , r )u 7
lrlae\xrastEnr)/2.If. q. is an integer non-negative ector, then,f(o) coincides with
the partial mixed derivative of order a of. f . Let the semi-quasi-norm | . lw; A"
def ined bY 

l f lw'  t : l l ' f ( ' ) l lo '

where ll . llo is the usual p-integral norm in -Lo.
Let ,4 be a finite subset of R{. For 0 < p oo, let Wf denote the Sobolev

space of mixed smoothness .4 which consists of I functions on the n-dimensional
torus 'lfd, for which the quasi-norm

l l / l lwx ' :  l l / l lo + t l / lw;

is finite.
Let us now define Besov spaces of functions with common mixed smoothness.

For J e Nd, we let the multivariate mixed lth difierence operator aln,n e 1rd, be
defined by

d

e;tny::llo|,f,
j € e

where the univariate operator At , is applied to the variable ri. Let

Q1(f  , t )o : :  sup l lA l / l lp ,  r  €  R1,
lhi l<t i , j : r ,  ,d
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be the lth mixed modulus of smoothness of /. We introduce the class MSI of

functions Q of mixed modulus of smoothness type as follows. It consists of all

non-negative functions on R{ such that Q e MS1, as a univariate function in

var iable r j ,  i  :1 , . . . ,d-  Clear ly ,  MSr c MSf i f  I  <  l ' .  For  O € MSl  and

0 ( p,0 3"x,let Bf., denote the Besov space of all functions on'lfd, for which

the quasi-norm

l l / l l "g,,  , :  l l / l lo + l / lef, , (32)

is finite, and

l f t  ^
t . ,  tB , ,  ̂  . - ,  0 1crc, (33)

(the integral changed to the supremum f.or 0:9o). Similarly to the univariate

space Bfe, for 1 S p S 6, the definition of Bfla does not depend on J, i. e.,

for a given f,), (32)-(33) determine equivalent quasi-norms for all I such that

0 e MSr.
Let .4 be a given compact subset of JRf such that

p ( A ) : : m i n { m a x { p i  i  p i e r  € A ] 1 ,  i  
- 1 , . . . , d } > 0 ,

where {ej}j:, is the canonical basis in IRd. We define the function f)4 on Rt bv

d

Oa(t) :: igf. fl4?'.orA 
i:,

It is easy to check that Oe € MSl for all I such that

l i  >  max {a i  :  a  e  A } ,  i  :  1 ,2 , . . . , d . (34)

Therefore, (32)-(33) define the Besov space Bf;p ,: 8!,6 for any I satisfying

the condition (34). We say that the spa"" Bfe consists of the functions with

the common mixed Besov smoothness A. An important case of the Besov space

SBf,, is that when A is finite. In the last case, there holds the following quasi-

norms equivalence q_ , .,
l l / l le3, ,  x l l / l lp + \ l f  ln;" ; .

AIso, the classical isotropic urra u.ri.otloti. 
""*r, 

spaces are special cases

of  Bf ; ,e .  For  r  > 0,  le t .A '  ; :  { r (e)  :  e  c  { I ,2 , . . . ,d ' ] . }  where r (e)  denotes the

element of JR{ such that r(e)i : r for j e 9, and r(e)i :0 for j ( e. We use the

abbreviation: Si,6 :: Bf,b.

We can consider a direct multivariate generalzation of the WD (16) and

the re levant  wavelet  components uL,"@),  5r  :  0 ,  L, . - .  ,2k -  l , i  :  1 ,2,  - . -  ,d ,  as

integer vector translates of the dyadic scaling functions

(t
T-Tv i (z)  : :  l I t * ( " i ) ,  k  e  Zy.
j : L

({, tn,rr, t)eto(t)}e ftr;'or)'''
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They are appropriate to n-term approximations of the classical multivariate
sobolev and Besov smoothness classes, but not to the functions from Bfg be-
cause of the complexity of its mixed smoothness structure. In n-term approxi-
mations we need mixed wavelets and mixed WDs which are defined as follows.
For  k  e Z! :  {s  €Zd :  s j  )  0 ,  j :1 , . . . ,d . } ,  we let  the mxed dyadic scal ing
functions

d

vp(r) :: f l  ro, ("r),
j : r

be defined as the tensor product of the univariate scaling functions vpr(r) in
variable 03, and the mixed wavelets

vk , s  : :  t r ( . -  Z rs f2k ) ,  s  €  Qn ,

as the in teger  t ranslates of  v6,  where 2rsf2k ; :2r(s t l2k ' , . . . ,s6f2kd)  and,

Q p  : :  { s  e Z d  :  0 (  s 7  (  z k i ,  j  :  1 , . . . , d , } .

Similarly to the univariate case, every function f e Ln has a WD

f : > , D ^ 0 , " r . * , "
keTZI seQk

with the convergence in Zo.
Put l,kl :: kt*kz*...*ka for k eZ!. Let Vr be of the span of thefunctions

vk,", s € Qr. Then the family {Yx}nezi possesses the following properties:

MMRI. Vr C Vl,, for all pairs k,k' e Z! such that k 1 kt.
MMR2. UnezlYp is dense in lo(lRd).

C' such that

Cll{o"} l ln < l l  t  a"v*( . -  s) l lq < C' l l {o"} l ,n
s € Q t

for  a l l  {a"} ,een e lq(Qn).
A sequence {Y x} rezo- of subspaces in .Lo is called a m'iaed multiresolution of

,Ln if there exist scaling functions vy. such that there hold MMRI-MMR3.

| | / | | f g,, : 1 i 1 1 1 1 r*, "1 11o 1 ztxt / n a (2- \\L / 0,
- .  

k : 0

(37)

vrhere 2-k : :  (2kr,2kr, . . . ,2ta).  For O: f , ) .A, the quasi-no.* l l / lhf , ,  is of  the-
form:

(35)

(36)
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m

l l / l l lg ' , ' :  (D(2"(A 'k) - l f t l le l l { I  u , " } l l ) t ) ' / t '
- 

k:0

where ,9(A, z) :: sup{(a ,r) : a e A} is the support function of A.
We say that O satisfies Condition R(p, q), if O satisfies Condition R(p, q) as a

univariate function in variable ri f.or j - 1, ... , d. For the case O : Oa Condition
R(p,q) is equivalent to the inequality p(A) > (tlp,-Ilil+. If 1 < q < oo
and O satisfies Condition R(p,q), then the space Bf;., is compactly embedded
into the space .Ln and the coefficient functionals ,\;," can be chosen to flepend
continuously on / e Bf., in the norm of. Ln. A proof of the equivalence of quasi-
norms and a construction of continuous coefficient functionals l,c,e were given in

[14].
We now consider n-l,erm approximations to functions fromBf;,e and Wf.

Let

SBfe:: {f en!,e ' l l/ l lef,, < 1}, swf ': {./ € wf ' l l/ l l*3 S t}

be the unit balls inB!,, and Wf , respectively.

For n-term approximation of the functions from SBf,e and SWf , we take
the family of wavelets:

Vd : :  { t r , "  '  te  eZ! ;  s  e  Qd.

Denote by 7, any one of dntTntr 'nr 0n,an and 6n.

For the classes SBfe and S.Wf , the a,symptotic order of o' and 1n ?te
closely related to the convex problem in IR"

(t ,  r)  --  sup, c € A!, (38)

w h e r e , 4 t ; : { r e  ) R . d :  ( o , r ) S I ,  a € A ,  r i } 0 ,  i : 1 , . . . , d } ,  1 : :
(1,1, . . .  ,1)  e R.d.  Let  l l r  :  l l r (A)  be the opt imal  va lue of  th is  problem, i .  e . ,

l f  r : :  sup{( l - ,  r )  :  r  €  Ai } .

F\rrther, let u : u(A) be the linear dimension of the set of solutions of (38), i.e.,

v  : :  d i r n { r  e  A \ :  ( I , n )  : 1117 ,

u , : p , ( A ) : d - 7 - u a n d

u(h)  : :  Vola-1{r  € A!* :  (1,2;  :  7 l r  -  h} ,

where Vol*G denotes the rn-dimensional volume of G c Rd. It turns out that
we can explicitly construct from the set A a function w : ur(A, ') on [0, m) so
that w is a modulus of continuity if u I d - I, and ru : I if u : d - 7 and [8]

u(h) = wP (h) as h -* 0.

Notice that

r (A)  :min{ t  > 0 :  t l  €  coA},

where coA denotes the convex hull of A, and, p is the linear dimension of the
minimal extreme subset of co A containing the point r1. The quantity r(A) is,
in some sense a characterization of "average smoothness" of B!'. If the set,4

2t7
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is finite, then we have [8]

w ( h ) : h  f o r  u  < d - 1 .

We proved the following

Theorem 2 .  l l4 l  Le t l  <p ,Q 16,  I  <0  <  x .  Assumethate i , ther  p (A)  > I lp
a n d 0 )  p  o r  p ( A ) >  ( l l p - l l d +  a n d 0 Z m i n { s , 2 } .  T h e n w e h a u e

l*(sBf;p, L) = o.(sBf;,e,vd, Ln) = n-r (utu (71 logn) log'-t n)r+r/z-L/o ,
(3e)

where r : r(A), p,: p,(A) and w : w(A,.). In addition, ue can explicit ly
construct a finite subset V* of Yd and a positiue homogeneous (continuous)
mapp'ing G* : Bf;, ------ M, such that S* : Rv" o G* is an asymptoticallE
optimal algorithm of n-term approrimation with regard to Yd, 'i.e.,

sup l l /  -  S-( / ) l ln  11n-"(wp(1/ logn) log ' - t  n)r+1/2-r /0.  (40)
f esB!,e

If in Theorem 2 A is finite, then we have

'y"(SBt,e, Ls) = o-(SBf;,e,vd, Ln) = n-'(logn1v(r+r/z-1/e) .

Special cases of the last results were proved in [11]. Theorem 2 was proved in

[13] for the Besov class SBi,a. For this class, under the assumptions of Theorem
2 there holds the following asymptotic order:

,^(SBi,e,.Lo) x o' (SBf, ,e, Y d, L n) = n-' (Iog n) (a- t) ("+ | / 2- r / 0) .

The asymptotic orders of the n-term approximation on(W,Ud,X) with re-
gard to the family [/d formed from the integer translates of the mixed dyadic
scales of the tensor product multivariate Dirichlet kernel for the classes of func-
tions with bounded mixed derivatives or differences, have been obtained by
Temlyakov [31].

If the Besov scale 0 is given, then for different pairs p, q the asymptotic orders
of o*(SBf;,s,Yd, L) and 7, (SBf e, Lo) in Theorem 1 are completely determined
by r(A), p(A) and the concave modulus of continuity w(A,.) which are explicitly
constructed from the smoothness .4. Conversely, assume that there are given
any positive number r, non-negative integer p, < d - 1 and concave modulus
of continuity ro. Then we can explicitly construct a subset A C R.1 such that
r : r(A), p, : p(A) and tr.' : w(A,.). Thus, these quantities and function are
approximation characterizations of the smoothness of SBf,a and the expression

n-r (wp (l I log n ) logd- I n)r+r /2-1/0

in (39) exhausts all the asymptotic orders of o, and lnfor the class SBf6. For
details see [14].

For  1 < p,Q 16 and p(A) > ( l lp  -  l ld+,  we have [11,14]

?,(swf ,trn) x o,(swf;,vo, L) = n-'(logn)-" .

Dinh Dung
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Observe that although in both the univariate and multivariate cases the

asymptotic orders of o, and 7r do not depend on p and q, there are some

differences between them. Firstly, in the multivariate case, in addition of the

main term n-" of the asymptotic order, there appear secondary terms such

like (wu(Lllogn)logd-l n)r+r/z-Ll0 or (logn)"('+r/2-r/e) for Besov classes and

(logn)-"" for sobolev classes. while, in the univariate approximation this term

is absent. Secondly, asymptotic orders of o, and.fn &re the same n-t for both

the Besov class SBI,' and Sobolev class SW[. While in the multivariate case,

they are different for the Besov class SBfe and Sobolev class SWA

To construct an asymptotically optimal (continuous) algorithme,g- satisfying
(40), and prove the upper bound of (39) we develop the method employed for the

univariate case. However, a dilect generalization of this method and application

of the mixed WD (35) do not work because of the complexity of the multivariate

mixed smoothness of Besov and Sobolev classes. Appropriate are decompositions

which are analogous to those applied in Iinear approximations the Besov class

SBfe and Sobolev class SWf by trigonometric polynomials with frequences

from hyperbolic crosses (see [8,29]). Let us briefly consider the case H :: SBi,e

which was treated detailedly [13]. In this case, by use of the equivalent quasi-

norm (37), from a mixed WD (35) we form a decomposition of / e H into the

series

Fnr, (41)

2t9

with

F*: L f*,  lu: D )fr ,"r / , ," ,
lkl:m sC.Qx

satisfying the condition

l l r . , l le" , ,  =2-^/p( |  l l { r* ,"} l l t ) t / t  <z- '^
lkl:m

Denote by D- the finite-d space of functions g of the form

I o*,"tu,"'
s€Qx

Due to the well-known Littlewood-Paley Theorem (see, e.g., [24]) there holds

the following estimate

@

f : \-r L /

m:o

imensional

g:  D,
lhl:n

(42)

(43)

(44)l lgl lo < 2-*/s( ! l l{rn,"}l l [1'r", e €D^,
lkl:n

where r :: min{Q,2}. Thus, a target function / e H is decomposed into a series

(41) with the functions p- of the form (42) belonging to the space D-. We apply

the greedy algorithm and continuous algorithms of n--term.Ln-approximation in

the space D-, to each component F* and use discrete quasi-norms to estimate

the error of this approximation. The further construction of asymptotically

optimal algorithm is similar to the univariate case. But here we have to process
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a discretization of our nn-term approximation problems to reduce t}rella to n^-
term approximation problems in finite-dimensional spaces equipped with rnixed
discrete quasi-norm.

For 0 < n,< < oo, denote bV bT,e the normed space of sequences z :

{{"k,"}".q*}1r1:- equipped with the mixed discrete quasi-norm

l l" l lufr,, :  ( D l l{ 'r ," i l l f) ' /c,
lkl:m

(the sum is changed to supremum when ( : *).
By (a3) the sequence of functional coefficients {{)ft,"}"eqo }W:* o14, is in

the ball g2-G-r/ilnSfr, with some constant C ) 0, where Sfi, is the unit ball
inbfra.By virtue of (a$ the -Lo-approximation error can be'estimated via the
norm of bfr". As in the univariate case, there is a correspondance between n--
term approximations in D* with regard to the families {{vr,"}"eq*}14:-and
n*-term approximations in bfr" with regard to the canonical basis. This allows
us to consider the corresponding greedy algorithms and continuous algorithms
in bi, instead in D-.

The greedy algorithm Gn and the continuous algorithm Gl for the n-term
approximation with regard to the canonical basis in the space bf;", is defined as
fo l lows.  For  r  :  { { rk , " } "eqr} l ,c l :m,  we Iet  the set  { ( ,k ,  s)  :  k  e Qn, lk l :  n ' t }  be
rearranged so that

l r r , , " , |  2  l rx , , " , l  >  . . .  l *n , , " ,1 )  - . . l *n* , " r1 ,

where M :2 n1,. Then. we define
n

G ^ ( r )  ' :  I  r r e j , s j e k j , s j ,

J : I

and the continuous algorithm G9 AV

c.I @) t: it* r,, ", 
- l, k^*,, "  ̂ *,lsignr6r,", ) e* 1," i,

j : r

where {{"r,"}"eC*}lkl:m is the canonical basis inbi,.
Let 0 < p,e,0,r ( oo. Then for any positive integer n 1 M, we have [13'|

sup llr - G.(r)lG^ - < sup llr - GI@)ll"= -
r<S!,e teSie

< n-r  /  p  mL /  r  * ( r  /  p-  |  /  0)  a,

and if in addition 0 < p I g < oo and 0 < r 1 0 1 x,

glo_ ll" - G"(r)llur, 3 To_ ll" - G?(dllur,,
zeSi,e xeS.i.,

< C (qt)nL / e-r / p *r / p-L / q*L / r -r / e .

Similarly to (25)-(30), using the last estimates, we can construct an asymp
totically optimal (continuous) algorithm S* satisfying (40), and prove the upper
bound of (39).
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In the general case all this construction is much more complicated. The
interested reader can see [14] for details.

4. Lower Bounds for the Multivariate Case

The inequality (39) provides that the algorithm ,S* gives an upper bound for
the asymptotic order of y(5B.f;,6tr0) and o.(SBf;p,Vd,Ln). To prove the
asymptotic optimality of ^9* and the asymptotic order of these quantities we
should establish the lower bounds:

,-(SBf;,e, L) >> n-" (wp (l l log n) logd-r n)r+L/2-r/s ,

and
o-(sBf ; ,e,vd,  Ln)  D n- ' (wu( l l logn) log ' - t  n)r+r /z- r /e .

In the univariate case, to establish the lower bound of n-widths 1n or on in
(19) it is enough to use the Bernstein inequality and the related Bernstein n-
width or "certain minimal properties" of the family V, respectively (see [10, 17]).
However, in the multivariate case this approach does not work. The following
"dual" inequalities (see [10], [11], [13]) play a central role in proofs of the lower
bound for multivariate case. Let the linear space .L be equipped with two quasi-
norms l l  . l lz r  and l l  . l lv ,  ana W a subset  of  -L,  and SX : :  { r  e  L:  l l r l l ;6  < l } .
If @ is a family of elements in X such lhat o^(W,O, X) > 0, we have

on+^ (W,O,  Y )  <  on (S  X ,  Q ,Y )o^ (W,O,  X ) .

If ll ll" and ll . lly are equivalent, 14/ is compact in these quasi-norms and
'v^(w'x) > 0' *" nul,l*-, 

w,y) < tn(sx,y)1^(w,X),
where again, 7, denotes any one ef an,Tn,Tl",Bn,an and,6n. FYom these in-
equalities we derive the following consequence which are used in the proofs of
the lower bound Let 0 < 4 S oo and L, be a .s-dimensional linear subspace in
lT (s S rn). Then we have [13] for any positive integer n 1 s - I

o.(BU n L", t , lT) > (^ - n - l)r/s, (45)

and for any linear projector P:I! - L"

a^(BUa L" , tT)  > l lP l l - t ( -  -  n)L/e.

We give a draft of the proof of the Iower bound for o,(SBi,p, Vd, rq). The
other cases can be treated similarly. Because of the inclusion SB!,e c SBi,a,
it is sufficient to treat the case p : q.

For 0 < (,? S oo, let E}6,, be the space of all / e Zq which have a WD (35)
and for which the quasi-norm

l l / l lb.," ' :  1i1z-r*l/<;;1r0,"1;;,;a;r/z
k:0
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(with replacing sum by sup when 4 : m) is finite. Denote by B(m) the space
of all trigonometric polynomials / of the form

/: D I l*,"'n,", (46)
lhl:m s€Qx

and denote by L(m)o and B(m)q,, the subspace in Ln and B6,a, respectively,
which consists of all f e B(m). By use of the equivalent quasi-norm (37) we
have

I | / | | a;'' : 2'* ll f llL *'' 1 2'* m(d- t )/a | | / | | L-' -
for any f e B(m)*,e. This implies the inequanlity

o,(sB!,p, vd,L) u 2- 'm*-(d- ' ) leo-(sB(rn)*,- ,yo,L).  (47)

Let
P^(f): t I ^0,"r,0,"

k=m s€en

a linear projection from the space Zn onto the subspace L(*)o.Then we have

o^(SB(m)*, - ,  vd,  Lo)  > on(SB(rn)- ,* ,  v t  ,  L( rn)q) ,

where V/ : P*(Yd), and consequently,

a, (SB! ,p,  Vd,L)  u 2- '^*- (a-r ) /eon153(-) - , - ,  Y ' ,L(m)) .  (48)

Let us now give a lower bound for o^(SB(m)-,-, V', L(^)). Define rn :
m(n) from the condition

n=m2*  x  d im  B (m)  >  2n .

L e t f e B ( * ) . W e h a v e

l l / l le(-)- ,-  :  l lD("f) l lus,- '
and by the Littlewood-Paley Theorem 

,
l l / l lo > z-^r q l lD(f)l lvl,,,

where g/ :: min{g,2} and D is the continuous mapping from B(rn)'," into b3,-,
given by

D ( f )  = { . \s ,s  }e6sn,1rc1:m

for / having the representation (46). Clearly, D(V') : t' and D(L(m)) : bT.z,
where f is the canonical basis in b[,z. Also, if S is an algorithm of n-term
approximation with regard to V' in L(*)o, then D o ̂ 9 will be an algorithm of
n-term approximation with regard to tt in bp,2. Hence we obtain

o.(SB(m)*, - ,v ' ,  L(^) )  2.  2-m/4 '  6n(s3,- ,  t ' ,bP,) .  (49)

Flom the inequality

l l '  l lr;, >> m@-L)(L/z-L/p)2m(1/q'-L/dll '  l lb^e
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for some 0 < p S q', by the inequality (45) we have

o, (S3,-, t ' , bp,z) >> rn@- 1) (r / z - | / f i  2m(t / q' - r / p) o.(53.,*, t ' , bT, p)

> m@'- t ) (L/z- t /  
p)2-n/  o ( t  -  n  -  I ) r /  o

> 2m/qtm@-r)/2.

Combining the last estimate (47)-(49) gives

o,(sB!,8, vd, L) u, ,-"*'rnu-L)(l/2-r/o)

)  n-" ( log n1@-r)( r+t /2-L /  o)  .

Thus, the lower bound of (39) for o,(sBi,e,Yd,Lq), and the asymptotical op-

timality of S* in (40) are proved.
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