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Abstract. By constructing a covariant functor, called the “fuzzy functor”, from the
set category into the category of fuzzy spaces, we show that, a Chu space is a fuzzy
space if and only if it is fully complete.

1. Introduction

This work is motivated by recent attempts to model information flow in dis-
tributed systems [2] as well as the work of Pratt in computer science, in which
a general algebraic scheme, known as Chu spaces, is systematically used [5]. In
this paper, we are interested in using Chu category framework in uncertainty
modeling. We specify an important Chu category: vague (fuzzy) evaluations
having the unit interval as the set of truth values. We address fundamental
questions in these modeling frameworks towards applications.

In Sec. 2 we consider Chu spaces in general settings. We define some numer-
ical data and prove that these data are invariant in the category of Chu spaces
in the sense that any two isomorphic Chu spaces have the same data.

In Sec. 3 we introduce a new class of Chu spaces, called “fuzzy spaces”. We
construct a covariant functor, called the “fuzzy functor”, from the set category
into the category of “fuzzy spaces”. The ”fuzzy functor” characterizes fuzzy
spaces as fully complete Chu spaces.

The results in Sec. 3 are extended further in Sec. 4, where each map in the
set category is associated with a Chu space, called a “*-fuzzy space”. This
establishes a covariant functor, called the “*-fuzzy functor”, from the “dual” set
category into the category of *-fuzzy spaces.

Finally, the theory of Chu spaces applies to game theory in Sec. 5. We define
some statistical data as norm, mean, standard deviation of a game space. These
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data are proved to be game invariances.

2. Chu Spaces in General Settings

A Chu space is a triple C = (X, A, f) consisting of two sets:
1. X, called the set of events, or players of C; and
2. A, called the set of states, or situations of C.

The two sets X and A are joined by a map f: X x A+ K, where K is an
arbitrary set of values. In this paper, we take the set K to be the unit interval
[0,1]. Then the map f: X x A — [0,1] is called the probability function of C.

Example 1. Let X be a metric space. Then C = (X, X, f) is a Chu space, where
f:X xX —[0,1] is defined by

f(z,y) = min{d(z,y),1} for z,y € X.

The notation (z,a) means the event x is at the state a. The value f(z,a) is
called the probability of the event x given that it is in the state a.

Let C = (X, A, f) be a Chu space. For z € X and a € A we define the
supports of x and a respectively by

supp(z) = {a € A: f(z,a) > 0} and supp(a) ={z € X : f(z,a) > 0}.

For an event x € X we define the following statistical data:
The number ||z||* = sup{f(z,a) : a € A} is called the upper value of x.
The number ||z||. = inf{f(z,a) : a € A} is called the lower value of z.
The number ||z|| = (||z]|* + ||z]|«)/2 is called the value of .
The number d(z) = ||z||* — ||z]|« is called the deviation of z.

g =

We can also define the following statistical data for the whole space C:
1. M*(X,C) = sup {[|z||* : € X}. The number M*(X, C) is called the upper
event value of C.
2. M.(X,C) = inf{|| z||* : £ € X}. The number M,(X,C) is called the
minimagz event value of C.
3. m*(X,C) = sup{||zllx : z € X}.
4. m.(X,C) = inf{||z|], : z € X}.
Dually, we can define the values [|a||*, [|la]lx, ||af, d(a) for a state a € A, and
the numbers M*(A, C) M., ( A, C), m*(4A,C), m.(A,C) in the same way. For
instance:

lall* = sup {f(z,a): z € X}.

Roughly speaking, for an event z € X the upper value ||z||* measures the
“skill” of z in the best situation and the lower value ||z||. measures the “skill” of
z in the worst situation. An event x € X is called a strong event if ||jz|| = 1, or
equivalently f(z,a) =1 for every a € A, and z is called a null event if ||z = 0,
or equivalently supp(z) =

Dually, for a state a € A the upper value |la|* describes the quality of the
position a if a best player is staying there, and the lower value ||a||. describes
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the quality of the position a if a worst player is staying there. A state a € A is
called a winning state if ||a]| = 1, or equivalently supp(a) = X and a is called a
dead state if || a|| = 0, or equivalently supp(a) = 0.

We can define the distances ||z — y|| between two events z,y and |a — b]|
between two states a and b. For instance

Iz = yll = sup{|f(z,a) — f(y,a)| : a € A}.

A Chu space C is separated, see [2], if ||g — b = 0 implies @ = b and C is
extensional if ||z — y|| = 0 implies z = y. If C is both separated and extensional

then we say that C is biextensional.
Clearly, the Chu distance defines pseudometrics on X and A. Hence

Proposition 1. If C is separated (resp. extensional) then A (resp. X) is a
metric space with the Chu distance. Therefore if C is biextensional then both A
and X are metric spaces.

We say that a Chu space C = (X, A, f) is complete if for any function
¢ : X — [0,1] there exists a state a € A such that ¢(z) = f(z,a) for every
z € X. We say C fully complete if C is complete and separated.

If (X, 4, f) and (Y, B, g) are Chu spaces, then a Chu morphism ® : (X, A, f) —
(Y, B, g) is a pair of maps ® = (¢,%), where ¢ : X — Y and ¢ : B — A such
that the diagram below commutes:

X x B w_lm} Y xB
Lo | ls (1)

where 1x : X — X denotes the identity map. That is
f(z,¢(b)) = g(p(z),b) for £ € X and b € B. (2)

If®=(p): C=(XA7f)— D= (Y, B, g) is a Chu morphism, then the
Chu space (X, B, f xg g), where

(f xo g)(z,b) = f(z,¥(b)) = g(p(x),b) for (z,b) € X x B

is called the cross product of C and D over ®, denoted by C x& D, see [3].
We say that the diagram (1) upper-commutes if instead of (2) we have

flz, (b)) < g(p(z),b) for z € X and b € B. 3)

If (3) holds, then we say that @ : (X, A, f) — (Y, B, g) is a Chu upper-morphism.
The composition of two morphisms ®; = (p1,7¢1) and &2 = (p2,%2) is
given by ®1®; = (p1p2,¥291). Clearly 15 = (1x,14) is the identity map of
C =(X,4,f).
An easy proof of the following proposition will be omitted.
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Propositon 2. If ®; and ®; are Chu morphisms (resp. Chu upper-morphisms),
then ®;®5 is a Chu morphism (resp. a Chu upper-morphism).

By Proposition 2 we can define:

1. The Chu category, denoted by C, of Chu spaces with Chu morphisms.

2. The Chu upper-category, denoted by C*, of Chu spaces with Chu upper-
morphisms. ' . inky 1 o
For Chu spaces C = (X, A, f) and D= (Y, B, g) let M(C, D) (resp. M*(C, D))

denote the set of all Chu morphisms (resp. Chu upper-morphisms) from C into
D. Observe that M(é, 5) = () in many situations. In fact, let X and A be two
sets and ¢ € [0,1]. Then C; = (X, A, f;) is a Chu space, where f; is the constant
function defined by:

fe(x,a) =1t for any (z,a) € X x A.

It is easy to see that

Proposition 3.

1. Ift # s, then both M(Cy,Cy) = 0 and M(Cs, Cy) = 0.
=

but M*(Cs, Ct) # 0.

2. If t > s, then M*(C},Cs)

More generally we have the following necessary condition for the existance
of Chu morphisms between Chu spaces.

Proposition 4. Let C =(X, 4, f) and D =(Y, B,g) be Chu spaces. IfM(é, 5)
# @ then M*(X,C) > M.(Y, D).

Proof. We prove that M(C, D) # 0 implies M*(X, C) > M.(Y, D). In fact, if
it is not the case, then
llzl|* < |ly||* for any x € X and y € Y. (4)
On the other hand, since M(C~', ﬁ) # () there exists a morphism & = (¢,%),
where ¢ : X — Y and ¢ : B — A such that
F(z, (b)) = g(p(x),b) for z € X and b € B.
1t follows that
z||* = sup{f(z,a): a € A}

> sup{f(z,9(b)) : b € B}

— sup{g(¢(2),b) : b € B}

= lle@I"

which contradicts (4). Consequently M*(X, C) > M.(Y, D) and the proposition

is proved. L
If M(é, 13) # 0, _then we say that C is dominated by D and denote C = D.
We say that C and D are equivalent , denoted by C = D, if C = Dand D X C,
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and C and D are connected if either C < D or D =< C. A class of Chu spaces G
is called a connected system if any two members of G are connected. If C = D
for C, D € G, then we say that G is an equivalent system. A connected system is
called a closed system if G is closed under cross products. That is, C xe DEG
for any C,D € G and ® € M(C’ D) A complete system 1is a closed equivalent
system.

We say that C and D are isomorphic, denoted by C D if C and D are
isomorphic objects in the category C of Chu spaces. It is easy to see that a Chu
morphism ® = (p,%) : (X, A4, f) = (Y, B,g) is an isomophism if and only if
both ¢ : X — Y and ¢ : B — A are one-to-one and onto. _If ¢ is one-to-one, ¥
is onto, then we say that C = (X, A, f) is a subspace of D = (Y, B, g), denote
CCD.

It is easy to see that

Proposition 5. The space C = (X, A,f) is a subspace of D= (Y,B,g) if and
only if @ = (p,v) : C = (X,Af) — D= (Y, B, g) is a monomorphism, that
is, if ®1 = (p1,91) and B3 = (p2,v2) are two morphisms with the same target
C = (X, A, f), then the equality @8, = &P, implies 21 = D5.

The Chu space C+ = (X, A, 1— f) is called the complement of C =(X,A4, 7).

Proposition 6. For any Chu space C = (X A, f) we have
1. m.(X, C') <m*(X,C) and M,(X, C')<M'*(¥ o) &
2. mJ(X,CL)=1—M* (X,C) and m.(X, C)=1- M,(X,Ch).
Proof.
1. An easy proof is omitted.
2. We have
my(X,Ct) = inf{||z||, : z € X}
= inf{inf{(1 — f(z,a)) :a € A} : 2z € X}
= inf{1 — sup{f(z,a)) : a € A} : z € X}
=1+ inf{—sup{f(z,a) :a € A} : z € X}
=1 —sup{sup{f(z,a):a € A} : z € X}
=1-—sup{|z||*: z € X}
=1- M*(X,C).
m*(X,C+) = sup{|jz||. : z € C*}
= sup{inf{l — f(z,a)}:a € A} :z € Cct}
=1+ sup{—sup{f(z,a):ac A}:z € 5l}
=1—inf{sup f(z,a):a € A} :z € ct}
=1- M.(X,Ch).

Of course Proposition 6 still holds if the set X of events is replaced by the
set A of states.
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Observe that if m*(X, C) > M,(X,C), then ||z||. > ||y||* for some z,y € X.
This means that in the worst situation the player = can do better than the player
y even when y is in the best situation. Clearly, in this situation the qualification
of the set X is “very non-uniform”. We say that Chu space G s event uniform
(vesp. state uniform) if m*(X, C) < M.(X,C) (resp. m*(A4,C) < M,(A,C)),
and C is uniform if it is both event and state uniform. From Proposition 6 we
get

Pr0p031t10n 7. For any uniform Chu space C = (X A f):
1. m.(X, C)<m (X, C)<M (X, C)< M*(X, C’)
2. m.(4, C)<m (A, O’)< M. (A, C)<M*(A C)

The following theorem shows that any two isomorphic Chu spaces have the
same data

Theorem 1. Let C = (X, A, f) and D = (Y, B, g) be Chu spaces. If C C D
then
1. M*(X,

2.
3. m*(X,C) < m*(Y, 1§).
4

Ffu":"f’forc afC fmdD are ESGTROT]D?MC, then M*(X, C‘) (Y, D) M, (X, Q)
= M, (Y, DJ, m* (X, 0} =X, D) and m. (X, C} = m.(Y, D}.

Proof. 1. We have
M*(X,C) = sup{ sup{f(z,a) :a € A} : z € X}
= sup{sup{f(z,¥(b)) : b€ B} : z € X}
= sup{sup{g(p(z),b) : be B} : z € X}
< sup{sup{g(y,b) : b€ B} :y € Y}
sup{|lyll|* : y € Y}
= M*(Y, D).

2. We have
M,(X,C) = inf{sup{f(z,a) :a € A} :z € X}
= inf{sup{f(z, (b)) : b€ B} : z € X}
= inf{sup{g(p(z),b) : b€ B} : z € X}
= inf{flp()[|" : z € X}
> inf{|ly|* : y € Y}
= M,(Y, D).
3. We have
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m*(X,C) = sup{inf{f(z,a) : a € A} : z € X}
sup{inf{f(z,¥(b)):be B} :x € X}
sup{inf{g(¢(z),b) : b€ B} : z € X}
= sup{[lo(z)ll. : © € X}
<sup{|lyll«:y €Y}

= m*(Y, D).

I

A

4. We have
my(X,C) = inf{inf{f(z,a) :a € A} : z € X}
= inf{inf{f(z,¥(b)) : b€ B} :z € X}
= inf{inf{g(x(z),b) : b€ B} :z € X}
> inf{inf{g(y,b): b€ B} :ye€ Y}
=m,(Y, D).

The following subcategories of C and C* will be also considered:

1. Cg (resp. C%) denotes the category of separated Chu spaces with Chu mor-
phisms (resp. with Chu upper-morphisms).

2. Cg (resp. C},) denotes the category of extensional Chu spaces with Chu mor-
phisms (resp. with Chu upper-morphisms).

3. Cp (resp. Cy) denotes the category of biextensional Chu spaces with Chu
morphisms (resp. with Chu upper-morphisms).

4. Cc (resp. C%) denotes the category of complete Chu spaces with Chu mor-
phisms (resp. with Chu upper-morphisms).

5. Cr (resp. Cy) denotes the category of full complete Chu spaces with Chu
morphisms (resp. with Chu upper-morphisms).
Observe that Cg, Cg, Cg, Cc and Cr are full subcategories of C, and C%, Cj,

C%, C¢ and Cj, are full subcategories of C*.

3. Fuzzy Spaces and the Fuzzy Functor

In this section, we introduce a special class of Chu spaces called fuzzy spaces.
The category of fuzzy spaces is an equivalent system. That is, any two fuzzy
spaces are equivalent.

By a fuzzy subset of a set X we mean any function f : X — [0,1], see [4].
Observe that if A is a subset of X, then the characteristic function X4 of 4 is a
fuzzy subset of X. So by identifying A with X4 we can say that any subset of
X is a fuzzy subet of X. A fuzzy subset of X is also simply called a fuzzy set.

Let S denote the category of sets. For a given set X, let X* = [0, 1]X denote
the collection of all fuzzy sets of X.

For any map « : X — Y we define the conjugate a* : Y* — X™* of a by the
formula

a*(a)(z) = a(a(z)) for every x € X and a € Y™. (5)

It is easy to see that
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(Ba)* =a*B* foreverya: X =-Y,8:Y = Z.
For any set A C X* we define fa : X x A — [0,1] by
fa(z,a) = a(z) for (z,a) € X x A. (6)

Clearly C = (X, A, fa) is a Chu space. This space is called a pre-fuzzy space
on X. In the case A = X* the Chu space F(X) = (X, X*, fx+) is uniquely
determined by X, and called fuzzy space associated with X, or shortly a fuzzy
space.

We have the following proposition

Proposition 8. Any pre-fuzzy space is separated, but not necessarily erten-
sional. However, any fuzzy space F(X) = (X, X™*,Fx») s fully complete and
bieztensional.

Proof. Firstly, we show that pre-fuzzy space is separated. Assume that ||a—b| =
sup{|f(z,a) — f(z,b)| : ¢ € X} = 0. Thus

flz,a) = f(z,b) for every z € X.

Hence
a(z) = b(z) for every z € X.

That is
a=>b.

Therefore, pre-fuzzy space is separated.
In the next we prove that the pre-fuzzy space is not necessary extensional.
In fact, let A= {a:a(z) =1 for all z € X}. Then for z # y we still obtain

|z —yll = sup {|f(z,a) — f(y,a)| :a € A} =0.
We show that FI(X) = (X, X*, fx~) is biextensional. Since F(X) is sepa-
rated, it is enough to show that F(X) is extensional. Assume that
lz —yll = sup {|f(z,a) - f(y,a)| :a € X"} =0.
It follows that
f(z,a) = f(y,a) for all a € X*.

Hence
a(z) = a(y) for all a € X*.

Let a = X{;) we have a(z) = 1. It implies that a(y) = X(;)(y) = 1, that is
z=y.

Finally, we show that F(X) = (X, X*, fx+) is complete. Let ¢ : X — [0,1]
be a map of a set X into the interval [0,1]. Then ¢ € X*. Thus witha = ¢ € X*,
we have

f(z,a) = o(z) for z € X.

The assertion is proved. n
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In particular, any fuzzy space F'(X) = (X, X*, fx~) is biextensional. There-
fore by Proposition 1 the Chu distance on X defines a metric. It is easy to see
that it is a discrete metric.

The category of pre-fuzzy spaces with Chu morphisms is called the pre-fuzzy
category, denoted by Fp. The fuzzy category, denoted by F, is the subcategory
of Fp consisting of fuzzy spaces.

Observe that a Chu morphism @ : (X, A, fa) — (Y, B,gp) in the pre-fuzzy
category is a pair of maps ® = (¢, ), where ¢ : X — Y and ¢ : B — A satisfy
the condition

¥(b)(z) = b(p(z)) for (z,b) € X x B.

As we have seen, in general Chu spaces are not connected. Fortunately it is
not the case in the fuzzy category. In fact, we get

Theorem 2. The fuzzy category F is an equivalent system.

Proof. We need to show that M(F(X), F(Y)) # 0 for any fuzzy spaces F(X) =
(XaX*an*) and F(Y) = (YvY*’fY*)'
Let @ : X — Y be any map (in the set category). Define o* : Y* — X* by

a*(y*)(z) = y*(afz)) for x € X and y* € Y.
We have
a*(y*)(z) = fx+(z,a"(y"))
=y*(a(z))
= fy-(a(2),v").
Therefore the diagram below commutes

X xy» fealy)

(]-X,a*)l lfy*

XxX* —— [0,1]
Fx+

Thus, ® = (a,a*) € M(F(X),F(Y)), and the theorem is proved. =

We shall show that F(X) = (X, X*, fx~) is a covariant functor from the set
category S into the fuzzy category F and F will be called the fuzzy functor.
In fact, let @ : X = Y be a map. Define F(a) : F(X) » F(Y) by

F(a) = (o, a*), where a* : Y* — X* is the conjugate of a, see (5).
Observe that
F(Ba) = (Ba, (Ba)") = (Ba,a” %) = F(B)F(a)

forany a: X — Y and 8:Y — Z. Therefore F' preserves the composition.
Now we shall prove the following theorem stating that fuzzy spaces are, in
fact, fully complete Chu spaces.
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Theorem 3 (Charaterization of fuzzy spaces). A Chu space C = (X,A, f) isa
fuzzy space if and only if C is fully complete.

£
Proof. By Proposition 8 any fuzzy space F'(X) = (X, X*, fx+) associated with
a set X is fully complete.
Conversely, let C = (X, A, f) be a fully complete Chu space. Then F(X) =

(X, X*, fx~) is a fuzzy space. We shall show that C' and F(X) are isomorphic.
To see this we first define T': A — X* by

T(a)(z) = f(z,a) for every z € X. (7)

We claim that T is one-to-one. In fact, assume that a,b € A and a # b.
Since C is separated there exists # € X such that f(z,a) # f(z,b). Hence
T(a) # T(b). B

To see that T is onto, let ¢ € X*. Then ¢ : X — [0,1]. Since C is state
complete there exists a state a € A such that

o{z) = f(z,a) for every z € X.

It follows that T'(a) = ¢.
Now we define

&= (1x,T7Y) :C=(X,A,f) = F(X) = (X, X*, fx+).

U= (1x,T): F(X) = (X,X*, fx=) = C = (X, A, f).
From (6) and (7) we get
f(&,T7(a)) = TT" ' (a)(z) = a(z) = fx-(z,a)
for every z € X and a € X*, and by (7)
fx+(z,T(a)) =T(a)(z) = f(z,a)

for every x € X and a € A. Therefore ® = (1x,7!) and ¥ = (1x,T) are Chu
morphisms. N

It is easy to see that ¥® = 15 and ®¥ = 1p(x). Consequently C and F(X)
are isomorphic, and the theorem is proved. =

Corollary 1. The two categories F and Cr are isomorphic.

Proof. The functor F defined in the proof of Theorem 3 is an isomorphism
between the fuzzy category F and the Category Cr of fully complete Chu spaces.

From Theorem 2 and Corollary 1 we get

Corollary 2. The category Cr of all fully complete Chu spaces is an equivalent
system.

Let F(X) = (X, X", fx+) be a fuzzy space. Observe that if a € X* is a
winning state in the fuzzy category, then ||a|| = 1 which implies that a = X,
and if @ € X* is a dead state in the fuzzy category, then |ja| = 0 which implies
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that a = Ajp. Consequently the whole set X will be called the winning set and
the empty set §) will be called the dead set.
Clearly there are neither strong events nor null events in this category.

Remark 1. Since any subset of a set X is a fuzzy set we can consider the family
A = 2X C X* consisting of all subsets of X. The resulting pre-fuzzy space
D(X) = (X, 2%, f,x) will be called the crisp space associated with X, and the
category D of all crisp spaces is called the crisp category.

We shall show that

Proposition 9. Every crisp space is biextensional.

Proof. By Proposition 8 a crisp space is separated, we shall claim that it is
extensional.

Assume that 0 = ||z—y|| = sup{|f(z,a)—f(y,a)| : a € A}, then a(z)—a(y) =
0 for every a € A. From this it follows that = y, since if it is not the case,
setting a = X[;) € A, we get a(z) = 1, but a(y) = 0.

The crisp category D is a subcategory of F. Observe that

Proposition 10. The map D defined in Remark 1 is a covariant functor from
the set category S into the crisp category D.

Proof. In fact, let @ : X — Y be a map. Then the morphism
D(a) : D(X) = (X,2%, fx) = D(Y) = (V,2, fov)
is defined by
D(a) = (o, a7 t), where a~1(b) € 2% for every b e 2¥.
We shall show that the following diagram commutes

ol
X xa¥ &)y oy

(1x,a_1)l lfzy

Xx2X —— [0,1]
sz

To do this, we have to show that
fax (2,071 (b)) = fov (az,b) for every b € 2Y.
That is, we need to claim that
a~1(b)(z) = b(ax) for every b € 2Y.

Since @~1(b) and b are two characteristic functions of the sets a~'(b) and b
in the spaces 2% and 2Y, respectively, they admit only two values 0 or 1. If
a~1(b)(z) = 1, then z € o~ '(b) which implies az' € b, hence b(az) = 1. If
a~t(b)(z) = 0, then x ¢ a~1(b) which implies az ¢ b, hence b(az) = 0.
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Thus, in both cases we have
a~1(b)(z) = b(az) for z € X.

Therefore the proposition is proved. =

4. *-Fuzzy Spaces and the *-Fuzzy Functor

As we have seen, the fuzzy category F is an equivalent system. Unfortunately
F is not closed under the cross product, therefore F is not a complete system.
In this section, we expand the fuzzy category F to a complete system.

Let S denote the set category. We define the category S* as follows:

1. Objects of 8* are morphisms in S.

2. Ifa: X - Y and & : X' —» Y’ are two objects of $*, then a morphism
p:a= o from a to o in S* is a map (in the set category) ¢ : Y — X'.
Let 0 : X - Y, d : X’ - Y and o' : X’ - Y” be objects in S*

and ¢ : a — o, ¢ : & — a" be morphisms of §* (i.e., ¢ : ¥ — X’ and

@' :Y' — X"). Then composition of ¢ and ¢', denoted by ¢’ * ¢, is given by

Y rp=¢dp:a—a.

It is easy to check that with the above definition S* is a category.
For a : X = Y we define F*(a) = (X,Y™, fo), where Y* denote the collec-
tion of all fuzzy sets of Y, and f, : X x Y* — [0,1] is given by

fo(z,a) = a(a(z)) for every (z,a) € X x Y™*.

The Chu space F*(a) = (X,Y™*, fo) is called the *-fuzzy space associated
with the map a : X — Y. The category of all *-fuzzy spaces associated with
maps in the set category S is called the *-fuzzy category and denoted by F*.

The *-fuzzy category F* contains the fuzzy category F as a subcategory. In
fact we have

Theorem 4. Any fuzzy space is a *-fuzzy space.

Proof. If F(X) = (X, X*, Fx+) is a fuzzy space, then clearly F(X) = F*(1x) is
a *-fuzzy space.

Theorem 5. F* is a complete system.

Proof. Assume that & = (i, %) : F*(a) = F*(X,Y*, fo) = F*(&) = (X', Y%, fur)
is a Chu morphism, where F*(a) and F*(o') are *-fuzzy spaces associated with
themap a: X 5 Y and o : X’ — Y respectively. =

Putting 8 = o/¢ : X — Y’ we get the cross product C = (X, Y™, fa X& for)
which is a *-fuzzy space associated with the map 5. In fact, for every (z,b) €
X x Y'* we have

(fa X@ fa’)(za b) = fa’(‘p(x)’b) = b(a"P(m))
= fa’ga(wab) = f,@(xab)'
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Thus, the category F* is closed under the cross product. Therefore the theorem
is proved. n

Theorem 6. F* : 8* — F* is a covariant functor.

Proof. For a morphism ¢ : @ — o' in §* we define

F*(p) = (pa, pa’™),

where ¢* and a'* are conjugate of ¢ and o' respectively, see (5)
‘We claim that F*(p) : F*(a) = (X,Y*, fo) = F*(&/) = (X',Y'*, fo) is a
Chu morphism. That is, the following diagram commutes:

' 1,1»- ’
X xy» v xr oy

(lx,sa*a’wl lfa' (8)
X ey —T———'e [0,1]

o

In fact, for every x € X and a € Y'*,

falz, 0" (a)) = p*a*(a)(az))
= (¢/p)*(a)(ox)
)

=ad'p(az
= fa(pa(z), a).

Consequently the diagram (8) commutes. Hence F*(p) = (pa, p*a'*) is a
Chu morphism.

Now we shall show that F™* preserves the composition. In fact,leta: X —» Y,
o X'">5Y', a”: X" - Y" be objects in the catégory 8*, and let ¢ : @ — o,
¢ i &’ = o' be morphisms in $* (i. e. , ¢:Y - X' and ¢’ : Y/ - X" are
maps in the set category). Then by definition we have ¢’ xp = p'a’p. Therefore

F*(¢' *p) = (¢ d'pa, (¢'o'p)*a"™)
= (¢d'po, p*a*p*a™)
= F*(¢")F" ().
Consequently F™* preserves the composition, and hence F* : §* — F* is a

covariant functor.
The functor F* : §* — F* is called the *-fuzzy functor.

5. Game Spaces and Game Invariance Theorem

Given a set A, by a game space over A we mean a Chu space G = (X, A, ),

where:

1. X is a finite set, called the team game. If z € X, then z is called a player of
the game G.
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2. A is any set, called the field game. If a € A, then a is called a position in
the field game A.

3. f(z,a) is called the winning probability of the player z while he is in the
position a in the field game.

Example 2. A soccer team X in a soccer field A is a game space S = (X, A, f),

where

1. The team X is the player team. Hence X is a finite set consisting of eleven
elements.

2. The field game A is the soccer field. Hence A is an infinite set: Every point
in the soccer field is an element of A.

3. (z,a) means the player z is having the ball at the position a in the soccer
field, and f(z,a) means the probability that the player z kicks a goal from
the position a in the soccer field A.

Example 3. An armed force S= (X, A, f) is a game space, where:

1. X is the set of soldiers of the force S. 5

2. The field game A is the. arsenal of the force S.

3. (z,a) means the soldier z is having the weapon a at hand, and f(z, a) is the
ability of the soldier z to kill an enermy when he has the weapon a at hand.

Example 4. A university U = (X, A, f) is a game space, where:

1. X is the set of students of the university U.

2. The field game A is the set of courses being taken at the university U.

3. (z,a) means the student z is taking the course a, and f(z,a) is his grade in

course a. For instance f(z,a) =1 if the student = gets an “A” in course a.

In this example the function f : X x A — [0, 1] takes only five values: 4 = 1,

B=%,C’:%,D:iandF=0.

Observe that if § = (X, A4, f) is a game space, then the value ||z|* describes
the “skill” of z in the best situation, and the lower value ||z||. describes the
“skill” of x in the worst situation.

Dually |la||* describes the “qualification” of the position @ in hands of the
best players and ||a||. describes the “qualification” of the position a in hands of
the worst players.

For instance, if we take the “soccer example” ||z|| = 1 means that the player
z can kick a goal from any point a in the soccer field. (This player is really too
good!) On the other hand if z € X is a null event, then ||z| = 0. This player z
is, perhaps, the goal keeper!

Dually, if a € A is a strong state in the soccer space S, then |la|| = 1. This
means that a is, in fact, a “winning position”. From this point any player can
kick a goal! Clearly there are many “winning positions” in the soccer field. If
a € A is a weak state, then ||a| = 0. This position is clearly a most difficult
position in the soccer field. From this point no player can kick a goal.

On the other hand in Example 3 the value ||z||* describes the “fighting
ability” of the soldier z when he has best weapon at hand, and the lower value
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lz||. describes the “fighting ability” of the soldier  when he has no weapon at
hand. N

Since the team X of a game space G = (X, A, f) is finite we can define the
following statistical data for a game space:

1. The number
IGI =/ llzll?
zeX

>zl = lzll) > ld@)?

reX zeX

is called the norm of G.
2. The number

is called the standard deviation of G.
3. The number

zeX

where |X| denotes the cardinality of X, is called the mean of G.

Now given a set A, we define the game category over the field A, denoted by

G4, as follows:

1. The objects of G4 are game spaces over A.

2 IS = (X,A,f) and T = (Y, A4,g) are two game spaces over A, then a
morphism ® = (p,14) : S — T, where ¢ : X > Y is a map satisfying the
condition:

f(z,a) < g{p(z),a) for ¢ € X and a € A.

Consequently morphisms in the game category are Chu upper-morphisms.
Observe that a morphism ® : S = (X,A,f) = T = (Y,A,g9) in G4 is
determined by a map « : X — Y such that

f(z,a) < g(a(z)) for z € X.

The existence of a morphism @ : § = (X, A, f) = T = (Y,A,g) in the game
category over the field A implies that for any player z of the team X there exists
a player ¢(z) of the team Y such that at any position a in the game field A the
player () has better chance to win than the player z at the same position a.
It follows that the team Y has some advantages over the team X in the field A.
It is straightforward to check that

Proposition 11. If S C G, then ||S|| < |G-

The following theorem shows that the statistical data as norm, mean and
standard deviation are game invariances.

Theorem 7. (The game invariance theorem.) The number Gl (é) and
D(G) are invariances in the game category over the field A. That is, if S and G
are isomorphic, then || S|| = |G|, M(S) = M(G) and D(S) = D(G).
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