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Abstract, Some properties of dimension and width of linearly compact modules with
respect to the discrete topology and the co-localization of Artinian modules are given.

1. fntroduction

This paper is concerned with linearly compact modules over Noetherian rings.
Note that the linear compactness was introduced by Lefschetz [8] for vector
spaces of arbitrary dimension and extended to modules by Zelinsky [20] and it
plays important role for duality in algebra (see [9]). These modules were studied
later by Zcischinger [21] and others. Although the class of linearly compact mod-
ules with respect to the discrete topology contains strictly all Artinian modules,
we can show that many results of dimension and width of these two classes are
similar.

Melkersson and Schenzel 112] defined a so-called co-localization Hom6(-Rs; M)
of an ,R-mod:ule M with respect to a multiplicative set ,S in .R. When M is Ar-
tinian, they showed that Hom6(Rs;M) is almost never Artinian, but it has
many good facts inherited from M. Moreover, it is linearly compact by l2], but
it is not usually linearly compact with respect to the discrete topology.

The purpose of this paper is to study the dimetsion and the width of linearly

* This work was supported in part by the National Basic Research Programm in Natural
Science, Vietnam.
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compact modules with respect to the discrete topology and the co-localization
of Artinian modules.

This paper is divided into five sections. In the next section we study linearly
compact modules with respect to discrete topology. In Sec. 3 we are interested in
the co-localization of Artinian modules. We will prove that the result of Ooishi

[13] of width for Artinian modules is still true for linearly compact modules with
respect to the discrete topology (Theorem 2.8) and for the co-Iocalization of
Artinian modules (Theorem 3.3). Roberts [14] introduced the notion of Krull
dimension for all modules and gave some basic results of Krull dimension for
Artinian modules. Kirby [7] changed the terminology of Roberts and referred to
Noetherian dimension (N-dim) to avoid confusion with Krull dimension defined
for Noetherian modules. In this note we use the terminology of Kirby [7]. Denote
by dim M the Krull dimension of the Noetherian ring Rl AnnM. We shall give
some ielations of dimension of linearly compact modules with respect to the
discrete topology (Theorem 2.4). Moreover, we extend the main result of [14] for
Artinian modules to the co-localization (Theorem 3.6). In Sec. 4, we consider co-
Cohen-Macaulay,mq6rl.s which were studied by'Tang and Zakeri 117], Denizler
and Sharp [ ] etc. In Sec. 5 we give several examples to clarify the results in this
paper.

2. Linearly Compact Modules with Respect to the Discrete Topology

First we recall the concept of linearly compact modules by using the terminology
of Macdonald [9].

Definition 2.1. (i) A .topological module M ouer a topological ring R'is said to
be I'inearly topolog'ized if M has a nuclear base M consisting of open submodules
which sati.sfies the cond,ition: g'iuen r e M and N e M, there erists a nucleus
U of R such that Ur C N.
(ii) A Hausdorff I'inearly topologized R-module M is said to be linearly compact
if M has the followi,ng property: if F i,s a fami,Iy of closed cosets (i.e., the cosets
of closed submodules) i,n M which has the fin'ite intersection propertg, then the
cosets in F haae a non-emptg intersection.

Observe that M is linearly compact with respect to the discrete topology if
and only if any finitely solvable system of congruences r : r6(modMTr), where
Mp arc submodules of. M, is solvable. So we can forget the topological structure
of these modules. It should be mentioned that the class of linearly compact mod-
ules with respect to the discrete topology contains strictly all Artinian modules.

Flom now on, we always assume that R is a Noetherian ring and M an
ft-module. Herd.are some facts which are often used in this paper.

Lemma 2.2. [21] Suppose that M is linearlg compact with respect to the d'iscrete
topology. Then we haue

(i) There ex'ists a Noetherian submodule B of M such that M lB is Aftinian.
(ii) # f , M --+ M i,s a surject'iue hornomorphism thenKer f is Artinian.
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As mentioned in the introduction, the notion of Krull dimension for mod-
ules is given by Roberts [14]. Kirby [7] changed the terminology of Roberts
and referred to Noetherian dimension (N-dim) to avoid confusion with Krull di-
mension defined for Noetherian modules. We recall first this concept using the
terminology of Kirby 17].

Definition 2.3. The Noetherian d"'imension of M, denoted by N-dim M, 'is de-

f inedinduct iuely  as fo l lows:  Vhen M:0,  put  N-dimM: -1.  Thenby ind,uc-
tion, for an integer d) 0, we pzi N-dim M: d z/N-dimM < d i 's false and for
eaery ascend'ing sequence Mo I Mt e ... of submodules of M, there erists ns
such that N-dim(M,/Mn+r) < d for all n ) ns.

It is clear that N-dim M : 0 if and only if. M is a non-zero Noetherian
module.

The theory of secondary representation, which is in some sense dual to that
of primary decomposition of Noetherian nrodules, is due to Macdonald [10]. A
module M is said to be representable if. M has a secondary representation. If M
is representable then the set of attached prime ideals is denoted by Att M. Any
Artinian module is representable (see [10] for more details).

Remark. We denote by dim M the Krull dimension of the Noetherian ring
Rl Ann M. For convenience we put dim M : -1 if M : 0. On the other hand,
Yassemi in [18] also defined the set of coassociated prime ideals (Coass M) of
M and. then defined in [19] the notion of magnitude (magM) of M. Note that
lf M is representable then CoassM is just the set AttM (see 118]) and the set
of minimal prime ideals of AnnM is just the set of minimal elements of AttM
(see f10]). In this case, magM is therefore nothing else but dimM.

We summarize some known facts of dimension of modules in [1,3,7, 19] as
follows.

(i) Let 0 ---+ M' ---+ M ---+ M" ---+ 0 be an exact sequence of /?-modules.
Then we have

magM :  max{mag M' ,magM"} ;  N-dimM :  max{N-dinM' ,N-dimM"}.

(1i) If M is Noetherian then N-dim M : maEM :0.

(iii) Suppose that M is Artinian. The following statements are true:

(a) N-dimM < oo.
(b) Let J(M) be the intersection of all elements in SuppM (note that

J(M): m if (R,m) is a local ring). Then for n large enough (((0 | J(M)")M)
is a polynomial with rational coeffi.cients and

N-dimM : aee(/((0 : J (M)") x7))

:  i n f { t  )  0 l l z1 ,  . . . , n t  €  J (M)  :  ( . ( 0x ,1  :  ( r r , . . . , r 1 )A )  <  m} .

(c) N-dim M : 0 if and only if dim M : 0. In this case, the length of M is
finite and the ring Rl AnnM is Artinian.
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(d) N-dimM < dimM.

Note that there exist by [3,a.1] Artinian modules M over Noetherian local
rings R for which N-dimM ( dimM. Moreover, N-dimM is always finite, but
dimM may be infinite when R is non-local (see [3,4.2]).

Although the class of linearly compact modules with respect to the discrete
topology contains strictly all Artinian modules, we have the following general
result.

Theorem 2.4. Let M be I'inearly compact w'ith respect to the d'iscrete topology.
Then we haue

(i) N-dim-M < oo,
(i i) N-dimM < mag M < dimM.

Proof. (i) There exists an exact sequence 0 ---+ B ---+ M -) M lB ---+ 0 by
Lemma 2.2 (i), where B is Noetherian and M lB is Artinian. Since N-dim B : 0,
we have N-dimM: N-dim(M/B). Since N-dim(M/B) is f inite, so is N-dimM.

(ii) Because magB : 0, we get mag M : rrra1(MlB) : dim(MlB). Now the
assertion follows from the above remark. I

Now we recall the concept of width of modules, which is in some sense dual
to the notion of depth of modules (see [13]).

Def in i t ion 2.5.  ( i )  A sequence of  e lements n1, . . . , t rn ' in  R i ,s  ca l led an M-
cosequence if i,t satisfies the following cond'itaons
(a )  ra (0  i  ( r t , . . . , *o - t )R )  m :  (0  :  ( r r ,  . . . , r ; - t )R )  m  fo r  71  i ; 1  n ,
( b )  ( 0 :  ( * r , . . .  , r . ) R ) y  1 0 .
(ii) For an 'id,eal t of R, the wi,dth of M i,n a, denoted b9 Width. M, is the
suprernunx of the lengths of M -cosequences in a. If (R, *) is a local ring then
we write Width M for WidLhnl M.

Ooishi [13] proved that, if M is Artinian and o is an ideal of ft such that
(0 : a)y I 0 then the length of an M-cosequence in o is finite, two maximal
M-cosequences in c have the same length, and

Widtho M : inf {t : torf;(Rlo; M) + 0}.

We shall show below that this result is still true for Iinearly compact modules
with respect to the discrete topology. First we need the following lemmas.

Lemma 2.6. Let a be an ideal of R. Then we haue

Wiatfr"M< N-dimM.

In particular, if M 'is linearly compact w'ith respect to the d'iscrete topology then
Widtho M < oo.

Proof. Let rr,... tr1 be a M-cosequence in o. We wil l show that t < N-dimM.
If t:0 then there is nothing to do. Suppose that I > 0. Since r1M: M,there
exists an exact sequence
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0 ---+ (0 : ri R) p1 ---+ (0 , ri+r R) xa 
j+ (o : r 1R) xa ---+ 0

for all n, ) 0. Hence (0: ri+LR)yl(0: riR)v ry (0: r1R)v for all n ) 0. Fhom

the ascending sequence of submodules of M

(0 :  ryR)1a g (0 :  r lR)74 g . . .  g  (0:  r iR)xa e . . .

we have N-dim (0, ni+LAlylQ: riR)y) < N-aimu - 1 for n large enough.

Therefore N-dim(Q : r'R) m < N-dim M - 1. Now the lemma follows by induction

o n t .  r

The following lemma can be proved easily by induction.

Lemma 2.7. Let s be an i 'deal of R and n1,...,nn an M-cosequence'in s. Then

we haue
( i) Torf l(M; Rlo) :0 for i .  1n - I .
( i i )  Torf (M;Rlu) = (0 , (r1, . . . ,*^)R) r,,r I  Rlo.

Theorem 2.8. Let M be a l,inearly compact R-module with respect to the d'iscrete

topologg and q an i,deal of R. Then we haue
(1) The length of an M-cosequence in a i,s finite.

(ii) # (0 : o)y I 0 then two marimal M -cosequences 'in s haue the same length

and

Wid tho  M : i n f {n>  0 :To r l (M ;R l t )  l 0 } .

Proof. (1) follows from Lemma 2.6.
( i i )  Let  f r r t . . . t rn  andAr, . . . ,A*be maximal  M-cosequences in o.  Assume that

n > m. We have by Lemma 2.7 that

Torf l (M;  Rl  o)  :0  = (0 '  (au. . . ,a"1g)  u I  Rl  o .

Since n ) 0 and U!, ... ,y^ is a maximal M-cosequence in o, it follows that rn > 0.

Hence (0 :(yt,...,y*)R)nr is a non-zero Artinian module by Lemma 2.2(ii).

S ince  (0  ,  (A r , . . . , y * )R ) r :  o (0 :  ( y r , . . . ,A iR ) t t ,  t he re  ex i s t s  Ami r  €  c  such

that

(0  '  ( g r ,  . . .  , a iR )  u  
:  un t t  ( 0  '  ( g t ,  . . .  , a iR )  u .

Because (0:  o)y +0, i t  fo l lows that  3t1, . . . tUm*r  is  an M-cosequence in o '  I t
gives a contradiction. Now the remainder of the claim is derived by Lemma 2.7

I

Corollary 2.9. Let (R,m) be alocalring, oCm anideal of R and M alinearly

compact R-module with respect to the discrete topology. Denobe bg soc M the

largest sum of simple submodules of M. Then the lengths of tuo matimal M-

cosequences in o are fi,ni,te and the same, and
( i )  f f soc  M :0  thenma 'gM 1 l  and  Wid thM:0 .

(i i) Otherwise, Widths M : inf.{n > 0:Torf;(M;Rlo) l0}.
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Proof. (i) If. socM : 0 then we get by 12t,1.6] and [18,1.15] that mag M < 7
and (0 : rB)nr : 0 for all r eR satisfiiing rM : M. Thus WidthM : 0.
(ii). Clearly, soc M : (0 : m)irz. So (0 : m)u * 0. Now the assertion follows from
Theorem 2.8.

Remark. The condition (0 : s)^a * 0 in Corollary 2.9(ii) is necessary (see
Example 5.1).

3. Co-Localization of Artinian Modules

In this section we assume in addition that M is an Artinian R-module.

Melkersson and Schenzel in [12] defined so-called co-localization of all mod-
ules. In this paper we only study the co-localization of Artinian modules. First
we recall this notion.

Definition 3.1. Let S be a multi,plicatiue set in R. The co-local'izat'ion of M
with respect to S i,s the module Homa(-R5;M).
The setCosM: {p e SpecRlHomp(Rp; M) + 0} is called the co-support of
M.

For convenience, we write gM for Homa(rRs;M). In particular, for each
prime ideal p of ft, we write pM for Homp(Rp; M). We recall some facts in [12]
which are often used in the rest of this paper.

Lemma 3.2. The following statements are true:
(i) CosM 'is the set of all pri,me ideal containi,ng AnnM.

(ii) For all p e CosM, the co-Iocalizat'ion pM is representable and

AttRbGM) : {qftp : q q p, q € Att M}.

(iii) Suppose that 0 ---+ M' M ---+ M" ---+ 0 is an eract sequence of
Art'inian modules. Then for any multi,plicat'iue set S of R, the following
sequence is eract

0 ---+s M' ---+s M ---+s M" ---+ 0.

Note that the co-Ioca,lization of Artinian module is not usually Artinian (see

[12]). However, Ooishi's result of the width for Artinian modules is still true for
the co-localization.

Theo rem 3 .3 .  Le tp  €  Cos  M andogp  an idea lo f  R .  I f  ( 0 :oRp)pv  l 0  t hen
the length of euery pM -cosequence 'in aRp 'is fin'ite, two marimal pM-cosequences
in aRp haue the same length and

Widthaso GM) : inf{n > O ' forf;p $M; R'rlo1p) + 0}.

Proof. For any element r € F, observe that (0 : nRp)ou = p((O : nB)y). So
(0: nRp)om is representable by Lemma 3.2(ii). Let n1,...,n1 be an arbitrary



Dimens'ion and Width of Linearly Compact Mod,ules and the Co-Localization I7L

pM-cosequence in ofip. Then by induction on f we can show that t < dim6o (pM).
Therefore

Widtha;o GM) Sdimao(pM) < -.

Let 11,... 1trn an'dULt... ty- be maximal pM-cosequences in o,Rp. Assume n > rn.
We have bv Lemma 2.7 that

ro r f f (oM;Rp loR, ) :0  =  (0  :  (a r , . . . ,a iRn)ousnoRpf  oRp.

So
(0 '  (yt ,  . . .  ,y*)Rp) o*r 

-  aRp(o ,  (yr,  . . .  ,a*)Rp) ou.

Since (0 , (At,...,aiRn)ru is representable, there exists y-11 € oftp such that

(o  '  (Er ,  . . .  , y * )Rp)  FM 
:  an+r (0  ,  (y r ,  . . .  ,a^ )Rp)  rm.

Because (0 : oRp)0. + 0,it follows that 91 , ...tUntL is a pM-cosequence in o.Rp.

It gives a contradiction. Now the remaining statement is derived by Lemma 2.7.
T

Note that Ann(.nf/pN) - p for any finitely generated R-module ly' and any
prime ideal p containing AnnN. However, the dual result for Artinian modules
is not true. Therefore, we need the following definition (see [3,4.3]).

Definition 3.4. Suppose that (R,m) is a local ring. We say that M satisfies
the condition (*) i/ Ann(0 | F) tr : p for all prime ideal p conta'ining Ann M.

Remark. (i) It is known by [3,  .a] that there exists an Artinian module M over
Iocal ring rR for which M does not satisfy the condition (*). However, there are
still many Artinian modules which satisfy the condition (x) (see 13,4.5]).
(ii). Note that the co-localization of Artinian modules, which satisfy the condi-
tion (x), may have infinitely many associated primes (see Example 5.2). So they
have infinite Goldie dimension. Therefore they are not linearly compact with
respect to the discete topology. However, they are linearly compact bV [2].

Corollary 3.5. Suppose that (R,m) i,s a local ring and M satisfies the condition
(',). Let p € Cos M and a be an ideal conta'ined inp. Then the length of any

pM-cosequence'in oRp i,s finite, two marimal pM-cosequences in tRp haue the
same length and

Widthaa,  (pM):  in f {n > 0:  Tor f ;n (pM;Rpl ' 'Rp)  l0} '

Proof. We have only to prove by Theorem 3.3 that (0 : o.Ro)"no 10. Since M

sat is f ies the condi t ion (x) ,  Ann(O :a)1,a C Ann(0 iF)u:  p.So p € Cos(0:  o)y.
Hence p ((0 : o),ra) + 0. k leads to (o : oRr) 

,, I 0. r

Remark. The condition (x) in Corollary 3.5 is necessary (see Example 5.3 (i)).
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Let (.R, m) be a local ring. Then the main result of Roberts 114] is that

N -d imM :  i n f { t  :  1 r1 , . . . , n1  €  r ( \  :  ( . ( 0  :  ( r 1 , . . . , * r )R ) ,  <  oo } .

It is known by [3,6] that N-dim M : dimM if M satisfies the condition (*).
Therefore, the theorem below is an extension of this result to the co-localization.

Theorem 3.6. Suppose that (R,m) is a local ring and M satisfi,es the condition
(*). Let F € Cos M. Then we haue

d ims ,  (pM)  : i n f { t  :  ! c1 ,  . . . , x t  €pRp  :  d im  (0  :  1 r1 , . . . , r i )Rp )0o ,  :  0 } .

Proof. Let qlBp be a prime ideal of .rRp which contains Annpo $M). Since M
satisfies the condition (*) and { € Cosa M,we have Anna(0'q)itz : q. Hence
q e AttR(O I e)u. So we get by Lemma 3.2 that qRp € Rttno (O , qRp)ou.

Hence AnnRo (O: qRr)o*: qRp. Therefore

rad(Annp, (0: rRp)rya) : rad(o-Rp + Ann(pM)), (1)

for all elements r in p. Let dimno GM) : d. Now we prove the theorem by in-
duction on d. If d:0, then it is trivial. Suppose d> 0. Since Attao(pM) is a
finite set, there are only finitely many prime ideals p1Rp, ... ,F;RF € Att4p (pM)
such that d : dimftp lpaRp for all i  : 7,2,...,k. Since d ) 0, we can choose
an e lement  r  € p\  U, ,p, - .  So d impo (0:  rR)r*  -  d-  1by (1) .  By induc-

L < i < k

t ion hypothesis we can find d- l elements fr2t...,r4in p such that dime, (0:
( r , * r , . . . ,na)Rp) 

pu 
:  0 .  Conversely suppose that  rLt . . . tq  e pRp sat is fy ing

dimnp (0 : (21, ...,*r)Rp),m: 0. Then we have by (t) that d ! t because Rp is

a local ring. It finishes the proof. I

Remark. Theorem 3.6 may be not true when M does not satisfy the condition
(x) (see Example 5.3 (i i)).

Note that pM is representable. Therefore magfip $M) and dimpo $M) arc
the same for any prime ideal p in rR. However, N-dim6, (pM) and dimao (pM)
may not be so. Moreover, from dim4o $M) :0 one cannot imply /po GM) < *
(see Example 5.4). Therefore we give below a characterization of representable
modules of finite length.

Proposition 3.7. Let R be a Noetherian ring and S a representable R-module.
Then the followi,ng statements are equ'iualent:

( i )  l (S)  < m;
( i i )  N -d im^9 :0 ;

(iii) dim S :0 and S has finite Goldi,e d,'irnens'ion.

Proof. (i) + (ii). Tbivial.
( i i )+( i i i ) .  Suppose N-dim^9:0.  Then ^9 is  Noether ian and hence magS:0.
Since ,S is representable, dim,S :0.
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( i i i )+ ( i ) .  Suppose d ims :  0.  Then At t .9 c  MaxR. Let  At tS:  {* t , . . . ,m' }
and ^9 : ,Sr * ... I S, be a secondary representation of ,9 with ^9i being ma-

secondary for 1( i ( r. For eachi,l since E is Noetherian, there exists a positive

integer rz4 such that mi'S, : 0. We can easily check that if mtS, I 0 then mlSa

is ma-secondary for all positive integers f. Now, consider the exact sequence

O ---+ mi+1'S, - ^lSo -+ mlsilml*t& --* O'

Since mf & and ml+l,9r are representable of finite Goldie dimension, mlS6lml+L Si
has fi.nite Goldie dimension by 111,3.3]. Therefore it is an Rfm;vector space of

finite dimension. Now from the sequence 0 : mTnSr I m7"-'St C ... C ^9, we
get (.(S.i) ( oo for all i  : I,... ,r.Therefore /(S) < oo. r

4. Co-Cohen-Macaulay Modules

In this section, assume that R is a commutative ring (not necessarily Noetherian)

and. M an Artinian R-module.
Recall that the inverse polynomial module MlXr',...,X;'\ can be consid-

ered as an Artinian module over the polynomial ring ,R[X1, ... , Xn] (see 16]). The

following result is related to these modules.

Proposition 4.I. With the same notat' ions as aboue, let S : RlXr, .. '  , Xnl and
K :  Mlxt r , . . .  ,  X; t l .  Then we haue

N-d imsK :  N -d imn  M +n .

Proof. By induction, we have only to prove the proposition for the case n : 1.

Let X1 : X and K : MIX-1]. First, we can easily check that XK : K.

Next, we claim that X e J(K), where we denote by J(K) the intersection of all
elements in Supps K.Inf.act, we have by [15, 1.4] that M : Mt@ Mz@... O M,,

whe re  Supp  M :  {m t , . . . ,m" }  and  M i :  

" , 90 (O  

:m i )n r  f o r  i :  l , . . . , r . Le t

m )  :  m . ;  O  R X  e  . . .  e  R X "  A  . . . ,  f o r  i :  I , . . . , r .

Clearly, mf is a maximal ideal of ,S and

K : MiX-Ll A M2lx-rl e ... e M,lx-'1. (u)

Moreover

U (o , (*l)")l( )_ Milx-tl + o (b)
n )O

for i : I, ... ,r. We get by (a), (b) and [15' 1.4] that Supp 1{ : {ml, ' .. , m}}. Thus
X e J(K). The claim is proved. Since X is a K-coregular glement in J(K)' we
have

N-dims K -L:  N-dims(0 :  X)1a :  N-dimsM: N-dimnM. I

Now we need the notion of co-Cohen-Macaulay modules (see l ] and 117])'
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Definition 4.2. (i) An Art'inian module M ouer a quasi-local ri,ng (R,m) i.s
called co-Cohen-Macaulay (CCM, for short) z/N-dim M : WidthM.
(ii) An Artinian module M ouer a conxnxutat'iue ring R i,s called co-Cohen-
Macaulay ,f Mm 'is co-Cohen-Macaulay as Rs-module for euery moaimal ideal
m .

Theorem 4.3. Let M,S,K be as in Propos'it ion4.7. Then M i,s a CCM R-
module i,f and only i.f K i,s a CCM S-mod,ule.

Proof. By induction, we have only to prove for the case n : l. By using the
same notations in the proof of Proposition 4.1 we have

M  :  M t O  M z @ . . .  g  M , i  S u p p M  :  { f f i r , . . . , m , }

and Mso ry Mi for i : L,..., r. Therefore

K  :  K r e . . .  a  K , ;  S u p p l { :  { m i , . . . , m ; }

and  1 (p1  d  K i  f o r  i : 1 , . . . , r ,  whe re  K t  :  M t lX - t ] .  So ,  f o r  i  : 1 , . . . , r ,  we
obtain by Proposition 4.1 and [15, 1.7] that

N-dims*- K; : N-dim s Kt : N-dimn Mt I7: N-dimnm Mt -f l. (2)

Next ,  le t  aLt . . . tanbe a maximal  M;-cosequence in m4.  Then a1, . . . ,an,X is  a
maximal Ka-cosequence in m). In fact, clea,rly aLt...tan,X is a Kd-cosequence in
mi .  Suppose that  o1,  . . . ,an,X,Y is  a / { i -cosequence in mi .  Let  Y :bo*hX +
. . ,  *  b lXt  wi th b1,  . . .  ,b t  €.R and bo € mz.  Then

Y(0  :  ( a1 ,  . . .  , an ,  X )S* : )  r c , :  ( 0  :  ( o1 ,  . . .  , an ,X )S* ; ) r "

I t l e a d s t o b 6 ( 0 : ( a r , . . . , a n ) R - n ) u :  ( 0 :  ( a 1 ,  . . . , a n ) R ^ u ) u . H e n c e  o 4 , . . . , a n , b s
is a Ma-cosequence in ma. It givbs a contradiction. Therefore, we have by

[15,  1.7;  1.9]  that

Widths*- K; : Widthm i Kt : Widthmu Mt -t I : Widthnm Mt -l l. (3)

Now, we have by (2) and (3) that Ki is a CCM Smr-module if and only if Mi is
a CCM R6n-module for all i : !,..., r. Thus K is a CCM ^9-module if and only
if M is a CCM R-module.

Next, we summarize some properties of dimension and width of co-loca,lization.

Lemma 4.4. Let p € Cos M. Then we haae
(i) width(eM) < dim(pM),

(i i) dim(eM) + aimA/p l dirnM,
(iii) Widthp (M) S Width(pM) if (R,m) 'is Noetherian local and M sati,sfies the

condition (x),
(iv) if R is Noetherian local and M is CCM whi,ch satisfi,es the cond'iti,on (,r)

then
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(a) widthe(M) : dim(pM),
(b)  d im(eM)+ a imR/P :  d imM.

Proof. (1) is obvious.
(ii) is an immediate consequence of Lemma 3.2 (ii).
(iii) is derived by the condition (+) and the exactness of co-localization.
(iv) follows from (ii) and (iii). r

As an application, we get a characterization of CCM modules.

Corollary 4.5. Suppose that (R,m) is a local ri,ng and M sat'isfi,es the condit'ion
(*). Then M i,s CCM if and only if dim(eM) : Width(pM), for all F e Cos M.

Proof. It can be immediately derived by Lemma 4.4, (iii), (iv). I

Remark. The condition (x) in Corollary 4.5 is necessary (see Example 5.3 (iii)).

5. Examples

Example 5.1. There ex'ist mod,ules M ouer a local ring (R,m) such that M i,s
Iinearly compact with respect to the d'iscrete topology and'

Width M I int{n > 0 : Torf (M ; Rln) I o}.

Proof. Let l/ be a linearly compact module with respect to the discrete topology
over a local ring (ft,m) such that soc-ly':0 and magly':1. Then there exists
by 127,1.4] a non-zero minimal submodule M of N such that M has no maximal
submodule. Clearly, M is a linearly compact module with respect to the discrete
topology.  I t  fo l lows by [21,  p.  126]  that  mag M:L,  socM:0 and CoassM:
Ass M. Hence m f Coass M. Then there exists r € m such that rM : M. Hence

Example 5.2. A co-Iocalizat'ion pM of an Artinian module M ouer a local ring
(R, *) such that M satisfies the condit'ion (x), but Assao (pM) 'is an 'infinite set:

Let (l?,m) be a local ring of dimR > 2 and p # m a prime ideal of rB of
ht(p) > 1. Let M be an Artinian ,R-module which contains the injective hull of
R/m. Then M satisfies the condition (x). It can be easily derived by [12,4.1]
that Ass(pM) : Spec(l?p)' Since dimpo(np) > 1, it follows that Spec(Rp) is an

infinite set. Therefore Ass(pM) is an infinite set. It also follows that pM has
infinite Goldie dimension and therefore it is not Artinian.

Example 5.3. There erist co-Cohen-Macaulag modules M oaer a local ring
(R, m) such that M does not satisfy the condi,ti,on (*) and, M has the following
properties:

(i) There ex'ists a prime i,deal p e Cos M such that
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WidrhRF Gut) + inf {t : Torfp (Rplp&e;p M) + 0}.

(ii) There etists a prime ideal p € Cos M such that dimpr(pM) : 7, but
dimao (0 : nRp) 

r* 
: -7 for all 0 l r e P.

(iii) There etists a pri,me 'ideal p € Cos M such that WidthpolM) : 0, but
N-dim6o GM) > 0 and dimp,(pM) > 0.

Proof. Fenand and Raynaud [5] constructed a local domain (l?, rn) of dimension
2 for which the m-adic completion R has an associated prime of dimension 1.
Let M : H+r(n), the local cohomology of lR with respect to the maximal ideal
m .  We  have  by  l 3 ,a . t ; 4 .4 l rha t  N -d imM:1 ,  d imM:2  and  M does  no t
satisfy the c<,ndition (x). Let 0 * r € m. We can easily check that M is the
0-secondary. Therefore z is M-coregular. So Width M : 7. Therefore M is
co-Cohen-Macaulay.

(i) Let p be a prime ideal such that p + 0 and p I m. Let 0 * r € p. Since
(0 : rR)xa has finite length, Cos(O : rR)y : {m}. It follows by Lemma 3.2 (i)
that

(0 :  nRp) o*  
= p(O :  rR)xa :0.

So Widthao GM) :0. Since r is M-coregular, we get rM : M.It follows by
the exactness of co-localization that r(pM):p M. Since (0 , rRp)onr:0 and

r e p , w e g e t

rotll lnrlpRp;p M) = ,Torfo (RplpRe;p M) : o

for all f. It follows that

inf{r : Torfe @plpRe;e M) + 0} : oo.

(i i) Let p be as in (i). Then ht(p) : 1. Since 0 € Attn M,we get by Lemma 3.2 (i i)
that 0 € Attftp(pM). Therefore Annpo GM) :0. Hence dim6, (pM) :1. Let
0 I r ep. Then we have (0 : rRp)o* : 0. Therefore dim6o (0 : r-Rp)0n, : -1.

(i i i) Let p be as in (i). We get WidthaoGM) : 0 and dimao GM) :1 by (i)
and ( i i ) .  Let0 l  r  €p.  Since pM l0 and"(pM):  pM, i t  fo l lows that  pM is
not Noetherian by Nalayama lemma. So N-dim6o GM) > 0. r

Example 5.4. An Artinian module M ouer a local ring R such that there
erists a co-localization pM for trhich N-dim ne$M) ) 0, dim6o GM) : 0 and
( ' p o ( p M ) :  x :

Let (,R, m) be the local domain as in Example 5.3. Let M be the injective
hull of Rlm and,let p : (0). Then M is Artinian, ftp : K is a field and pM is a
l(-vector space. We know by [12,p.127] that pM has infinite length over K. So
N-dim6(pM) > 0 and dim6(pM) : Q.
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