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Abstract. Some properties of dimension and width of linearly compact modules with
respect to the discrete topology and the co-localization of Artinian modules are given.

1. Introduction

This paper is concerned with linearly compact modules over Noetherian rings.
Note that the linear compactness was introduced by Lefschetz [8] for vector
spaces of arbitrary dimension and extended to modules by Zelinsky [20] and it
plays important role for duality in algebra (see [9]). These modules were studied
later by Zoschinger [21] and others. Although the class of linearly compact mod-
ules with respect to the discrete topology contains strictly all Artinian modules,
we can show that many results of dimension and width of these two classes are
similar.

Melkersson and Schenzel [12] defined a so-called co-localization Homg(Rg; M)
of an R-module M with respect to a multiplicative set S in R. When M is Ar-
tinian, they showed that Hompg(Rg; M) is almost never Artinian, but it has
many good facts inherited from M. Moreover, it is linearly compact by [2], but
it is not usually linearly compact with respect to the discrete topology.

The purpose of this paper is to study the dimefision and the width of linearly
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compact modules with respect to the discrete topology and the co-localization
of Artinian modules.

This paper is divided into five sections. In the next section we study linearly
compact modules with respect to discrete topology. In Sec. 3 we are interested in
the co-localization of Artinian modules. We will prove that the result of Ooishi
[13] of width for Artinian modules is still true for linearly compact modules with
respect to the discrete topology (Theorem 2.8) and for the co-localization of
Artinian modules (Theorem 3.3). Roberts [14] introduced the notion of Krull
dimension for all modules and gave some basic results of Krull dimension for
Artinian modules. Kirby [7] changed the terminology of Roberts and referred to
Noetherian dimension (N-dim) to avoid confusion with Krull dimension defined
for Noetherian modules. In this note we use the terminology of Kirby [7]. Denote
by dim M the Krull dimension of the Noetherian ring R/ Ann M. We shall give
some relations of dimension of linearly compact modules with respect to the
discrete topology (Theorem 2.4). Moreover, we extend the main result of [14] for
Artinian modules to the co-localization (Theorem 3.6). In Sec. 4, we consider co-
Cohen-Macaulay modules which were studied by ‘Tang and Zakeri [17], Denizler
and Sharp [4] etc. In Sec. 5 we give several examples to clarify the results in this

paper.

2. Linearly Compact Modules with Respect to the Discrete Topology

First we recall the concept of linearly compact modules by using the terminology
of Macdonald [9].

Definition 2.1. (i) A topological module M over a topological ring R is said to
be linearly topologized if M has a nuclear base M consisting of open submodules
which satisfies the condition: given ¢ € M and N € M, there ezists a nucleus
U of R such that Uz C N.

(i1) A Hausdorff linearly topologized R-module M is said to be linearly compact
if M has the following property: if F is a family of closed cosets (i.e., the cosets
of closed submodules) in M which has the finite intersection property, then the
cosets in F have a non-empty intersection.

Observe that M is linearly compact with respect to the discrete topology if
and only if any finitely solvable system of congruences x = zx(mod M},), where
M, are submodules of M, is solvable. So we can forget the topological structure
of these modules. It should be mentioned that the class of linearly compact mod-
ules with respect to the discrete topology contains strictly all Artinian modules.

From now on, we always assume that R is a Noetherian ring and M an
R-module. Heré are some facts which are often used in this paper.

Lemrna 2.2, [21] Suppose that M is linearly compact with respect to the discrete
topology. Then we have

(i) There ezists a Noetherian submodule B of M such that M/B is Artinian.
(ii) If f: M — M is a surjective homomorphism then Ker f is Artinian.
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As mentioned in the introduction, the notion of Krull dimension for mod-
ules is given by Roberts [14]. Kirby [7] changed the terminology of Roberts
and referred to Noetherian dimension (N-dim) to avoid confusion with Krull di-
mension defined for Noetherian modules. We recall first this concept using the
terminology of Kirby [7].

Definition 2.3. The Noetherian dimension of M, denoted by N-dim M, is de-
fined inductively as follows: When M = 0, put N-dim M = —1. Then by induc-
tion, for an integer d > 0, we put N-dim M = d if N-dim M < d is false and for
every ascending sequence My C My C ... of submodules of M, there exists ng
such that N-dim(M,,/M,+1) < d for all n > ng.

It is clear that N-dim M = 0 if and only if M is a non-zero Noetherian
module.

The theory of secondary representation, which is in some sense dual to that
of primary decomposition of Noetherian modules, is due to Macdonald [10]. A
module M is said to be representable if M has a secondary representation. If M
is representable then the set of attached prime ideals is denoted by Att M. Any
Artinian module is representable (see [10] for more details).

Remark. We denote by dim M the Krull dimension of the Noetherian ring
R/ Ann M. For convenience we put dim M = —1 if M = 0. On the other hand,
Yassemi in [18] also defined the set of coassociated prime ideals (Coass M) of
M and then defined in [19] the notion of magnitude (mag M) of M. Note that
if M is representable then Coass M is just the set Att M (see [18]) and the set
of minimal prime ideals of Ann M is just the set of minimal elements of Att M
(see [10]). In this case, mag M is therefore nothing else but dim M.
We summarize some known facts of dimension of modules in [1,3,7,19] as
follows.
(i) Let 0 — M’ — M — M” — 0 be an exact sequence of R-modules.
Then we have
mag M = max{mag M',mag M”}; N-dim M = max{N-dim M’, N-dim M”}.
(ii) If M is Noetherian then N-dim M = mag M = 0.
(iii) Suppose that M is Artinian. The following statements are true:
(a) N-dim M < oo.
(b) Let J(M) be the intersection of all elements in Supp M (note that
J(M) = m if (R,m) is a local ring). Then for n large enough £((0 : J(M)™))
is a polynomial with rational coefficients and

N-dim M = deg(£((0: J(M)™)m))
= inf{t > 0|3z1,...,2: € J(M) : £(Ops : (z1, ..., 2:)R) < o0}

(c) N-dim M = 0 if and only if dim M = 0. In this case, the length of M is
finite and the ring R/ Ann M is Artinian.
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(d) N-dim M < dim M.

Note that there exist by [3,4.1] Artinian modules M over Noetherian local
rings R for which N-dim M < dim M. Moreover, N-dim M is always finite, but
dim M may be infinite when R is non-local (see [3,4.2]).

Although the class of linearly compact modules with respect to the discrete
topology contains strictly all Artinian modules, we have the following general
result.

Theorem 2.4. Let M be linearly compact with respect to the discrete topology.
Then we have

(i) N-dim M < oo,

(ii) N-dim M < mag M < dim M.

Proof. (i) There exists an exact sequence 0 — B — M — M/B — 0 by
Lemma 2.2 (i), where B is Noetherian and M/B is Artinian. Since N-dim B = 0,
we have N-dim M = N-dim(M/B). Since N-dim(M/B) is finite, so is N-dim M.
(ii) Because mag B = 0, we get mag M = mag(M/B) = dim{M/B). Now the
assertion follows from the above remark. B

Now we recall the concept of width of modules, which is in some sense dual
to the notion of depth of modules (see [13]).

Definition 2.5. (i) A sequence of elements x1,... ,x, in R is called an M-
cosequence if it satisfies the following conditions

(a) xi(O (T 7-Ti—1)R)M = (0 (T e ’$i_1)R)M for 1< i< n,

(b) (0 : (zla 059 axn)R)M 75 0.

(ii) For an ideal a of R, the width of M in a, denoted by Widthy M, is the
supremum of the lengths of M-cosequences in a. If (R,m) is a local ring then
we write Width M for Widthy, M.

Ooishi [13] proved that, if M is Artinian and a is an ideal of R such that
(0 : a)ps # O then the length of an M-cosequence in a is finite, two maximal
M-cosequences in a have the same length, and

Widthg M = inf{t : Torf(R/a; M) # 0}.
We shall show below that this result is still true for linearly compact modules
with respect to the discrete topology. First we need the following lemmas.
Lemma 2.6. Let a be an ideal of R. Then we have
Widthg M < N-dim M.

In particular, if M is linearly compact with respect to the discrete topology then
Widthy M < oo.

Proof. Let x1,... ,x; be a M-cosequence in a. We will show that ¢t < N-dim M.
If t = 0 then there is nothing to do. Suppose that ¢ > 0. Since z1 M = M, there
exists an exact sequence
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0— (0:2"R)pr — (0: 27 R)pr =5 (0: z1R)pr — 0

for all n > 0. Hence (0: 27 R) /(0 : 7 R)p = (0 : 21 R) )z for all n > 0. From
the ascending sequence of submodules of M

(0: 2R CO: 2R C...C(0:aTR)m C ...

we have N-dim (0 : 7' R)/(0 : 27 R)p) < N-dim M — 1 for n large enough.
Therefore N-dim(0 : z; R)»s < N-dim M —1. Now the lemma follows by induction
on t. |

The following lemma can be proved easily by induction.

Lemma 2.7. Let a be an ideal of R and 1, ...,z an M-cosequence in a. Then
we have

(i) Tor®(M;R/a) =0 fori <n—1.

(i) Tor®(M;R/a) = (0: (21, ...,2n)R) ,, ® R/a.

Theorem 2.8. Let M be a linearly compact R-module with respect to the discrete
topology and a an ideal of R. Then we have
(i) The length of an M-cosequence in a is finite.
(ii) If (0 : a)pr # O then two mazimal M-cosequences in a have the same length
and

Widthg M = inf{n > 0 : TorZ(M; R/a) # 0}.

Proof. (i) follows from Lemma 2.6.
(ii) Let @1, ..., 2, and ¥, ..., Ym be maximal M-cosequences in a. Assume that
n > m. We have by Lemma 2.7 that

TorZ(M;R/a) =02 (0: (y1, ... ,ym)R)M ® R/a.

Since n > 0 and y1, ... , Ym is a maximal M-cosequence in q, it follows that m > 0.
Hence (0 : (y1,...,ym)R),, is a non-zero Artinian module by Lemma 2.2 (ii).

Since (0 : (y1, ... ,ym)R)M =a(0: (y1, ...,ym)R)M, there exists ym+1 € a such
that

(0 : (y17 7ym)R)M = Ym+1 (0 : (yl’ aym)R)M-

Because (0 : a)ys # 0, it follows that ¥1,...,Ym+1 is an M-cosequence in a. It
gives a contradiction. Now the remainder of the claim is derived by Lemma 2.7
L]

Corollary 2.9. Let (R,m) be a local ring, a C m an ideal of R and M a linearly
compact R-module with respect to the discrete topology. Denote by soc M the
largest sum of simple submodules of M. Then the lengths of two mazimal M-
cosequences in a are finite and the same, and

(i) Ifsoc M =0 then mag M <1 and Width M = 0.

(ii) Otherwise, Widthg M = inf{n > 0 : Tory (M; R/a) # 0}.



170 Le Thanh Nhan

Proof. (i) If soc M = 0 then we get by [21,1.6] and [18,1.15] that mag M < 1
and (0: zR)y = 0 for all z € R satisfying M = M. Thus Width M = 0.

(ii). Clearly, soc M = (0 : m)ps. So (0 : m)as # 0. Now the assertion follows from
Theorem 2.8. |

Remark. The condition (0 : a)ps # 0 in Corollary 2.9 (ii) is necessary (see
Example 5.1).

3. Cb-Localization of Artinian Modules

In this section we assume in addition that M is an Artinian R-module.

Melkersson and Schenzel in [12] defined so-called co-localization of all mod-
ules. In this paper we only study the co-localization of Artinian modules. First
we recall this notion.

Definition 3.1. Let S be a multiplicative set in R. The co-localization of M
with respect to S is the module Homg(Rg; M).

The set Cos M = {p € SpecR|Hompg(Ryp; M) # 0} is called the co-support of
M.

For convenience, we write gM for Homg(Rg; M). In particular, for each
prime ideal p of R, we write p M for Homp(Ry; M). We recall some facts in [12]
which are often used in the rest of this paper.

Lemma 3.2. The following statements are true:
(i) Cos M is the set of all prime ideal containing Ann M.
(ii) For all p € Cos M, the co-localization y M is representable and

Attry(pM) = {qRp : 9 S p,q € Att M}.

(iii) Suppose that 0 — M' —s M — M” — 0 is an ezact sequence of
Artinian modules. Then for any multiplicative set S of R, the following
sequence is exact

0—sM —sM—g M —0.

Note that the co-localization of Artinian module is not usually Artinian (see
[12]). However, Ooishi’s result of the width for Artinian modules is still true for
the co-localization.

Theorem 3.3. Letp € Cos M and a C p an ideal of R. If (0 : aRp)pnr # 0 then
the length of every p M -cosequence in aRyp is finite, two mazimal y M -cosequences
in aRy have the same length and

Widthgg, (,M) = inf{n > 0 : Tor,? (,M; Ry/aRy) # 0}.

Proof. For any element z € p, observe that (0 : 2Ryp),m = ((0: zR)p). So
(0 : zRyp),n is representable by Lemma 3.2 (ii). Let zy,...,z: be an arbitrary
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pM-cosequence in aRy. Then by induction on ¢ we can show that ¢ < dimpg,, (pM).

Therefore

Let z1, ..., Zn and y1, ... , Ym be maximal , M-cosequences in aRy. Assume n > m.
We have by Lemma 2.7 that

r:[‘OI‘f_L‘:l (pM,Rp/aRp) =0 (0 : (yl, ’ym)Rp)pM ®RP Rp/aRp.

So
) (0 5 (yly Slels] ,ym)Rp)pM = aRp (0 5 (yl, ,ym)Rp)pM

Since (0 : (y1, ... ,ym)Rp)p 2 18 representable, there exists ymy1 € aRp such that
(0 : (yl, 000 ym)Rp)bM = Ym+1 (0 : (y17 7ym)Rp)pM-

Because (0 : aRp)p y 7 0, it follows that y1, ..., Ym+1 is a p M-cosequence in aRy.
It gives a contradiction. Now the remaining statement is derived by Lemma 2.7.
]

Note that Ann(N/pN) = p for any finitely generated R-module N and any
prime ideal p containing Ann N. However, the dual result for Artinian modules
is not true. Therefore, we need the following definition (see [3,4.3]).

Definition 3.4. Suppose that (R,m) is a local ring. We say that M satisfies
the condition () if Ann(0 : p)pr = p for all prime ideal p containing Ann M.

Remark. (i) It is known by [3,4.4] that there exists an Artinian module M over
local ring R for which M does not satisfy the condition (). However, there are
still many Artinian modules which satisfy the condition (*) (see [3,4.5]).

(ii). Note that the co-localization of Artinian modules, which satisfy the condi-
tion (*), may have infinitely many associated primes (see Example 5.2). So they
have infinite Goldie dimension. Therefore they are not linearly compact with
respect to the discete topology. However, they are linearly compact by [2].

Corollary 3.5. Suppose that (R, m) is a local ring and M satisfies the condition
(¥). Let p € Cos M and a be an ideal contained in p. Then the length of any
pM-cosequence in aRy is finite, two mazimal p M -cosequences in aRp have the
same length and

Widthar, (pM) = inf{n > 0 : Tors? (,M; Ry/aRy) # 0}.
Proof. We have only to prove by Theorem 3.3 that (O 3 aRp)p y 7 0. Since M
satisfies the condition (x), Ann(0: a)ar € Ann(0: p)y =p. So p € Cos(0: a) .
Hence p((0: a)ar) # 0. It leads to (0 : aRp)pM # 0. n

Remark. The condition () in Corollary 3.5 is necessary (see Example 5.3 (i)).
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Let (R, m) be a local ring. Then the main result of Roberts [14] is that
N-dim M = inf{t: 3z1,...,2: € m : 6(0 : (@l ,zt)R)M < oo}

It is known by [3,6] that N-dim M = dim M if M satisfies the condition (*).
Therefore, the theorem below is an extension of this result to the co-localization.

Theorem 3.6. Suppose that (R, m) is a local ring and M satisfies the condition
(). Let p € Cos M. Then we have

dimp, (M) = inf{t : Iz1, ...,z € pRy : dim (0 : (1, ... ,zt)Rp)pM =0}.

Proof. Let qRy be a prime ideal of Ry which contains Anng, (yM). Since M
satisfies the condition (*) and q € Cosg M, we have Anng(0 : q)p = q. Hence
g € Attr(0 : q)a. So we get by Lemma 3.2 that qRy, € AttRp (0 : qu)pM.

Hence Anan (O : qu)p a = 9Ryp. Therefore
rad( Anng, (0 : zRy),r) = rad(zRp + Ann(, M)), (1)

for all elements z in p. Let dim Rp (pM) = d. Now we prove the theorem by in-
duction on d. If d = 0, then it is trivial. Suppose d > 0. Since Attg, (,M) is a
finite set, there are only finitely many prime ideals p; Ry, ..., pxRp € Attg, (,M)
such that d = dim Rp/p; Ry for all ¢ = 1,2,...,k. Since d > 0, we can choose
an element z € p\ |J p;. So dimg, (0 : xRP),,M =d -1 by (1). By induc-

1<i<k

tion hypothesis we can find d — 1 elements z2,...,z4 in p such that dime (0 :
(m,xl,...,md)Rp)pM = 0. Conversely, suppose that xi,...,x; € pRy satisfying
dimp,, (0: (21, .. 7It)RP),,M = 0. Then we have by (1) that d O ¢ because Ry is
a local ring. Tt finishes the proof. ]

Remark. Theorem 3.6 may be not true when M does not satisfy the condition
(*) (see Example 5.3 (ii)).

Note that M is representable. Therefore magp (pM) and dimp, (,M) are
the same for any prime ideal p in R. However, N-dimpg, (yM) and dimpg, (, M)
may not be so. Moreover, from dimg, (y M) = 0 one cannot imply £, (, M) < oo
(see Example 5.4). Therefore we give below a characterization of representable
modules of finite length.

Proposition 3.7. Let R be a Noetherian ring and S a representable R-module.
Then the following statements are equivalent:
(i) £(S) < oo
(ii)) N-dim S = 0;
(iii) dim S =0 and S has finite Goldie dimension.

Proof. (i)=(ii). Trivial.
(ii) = (iii). Suppose N-dim S = 0. Then S is Noetherian and hence mag S = 0.
Since S is representable, dim S = 0.
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(iii) = (i). Suppose dim § = 0. Then Att S C Max R. Let Att S = {my,...,m,}
and S = 81 + ... + S, be a secondary representation of § with §; being m,-
secondary for 1 < i < r. For each 4, since R is Noetherian, there exists a positive
integer n; such that mS; = 0. We can easily check that if m{S; # 0 then m{S;
is m;-secondary for all positive integers t. Now, consider the exact sequence

00— mﬁ“Si — mez — m:Sz/meSZ — 0.

Since m!S; and m{*1S; are representable of finite Goldie dimension, mtS; /m{*'5;
has finite Goldie dimension by [11,3.3]. Therefore it is an R/m;-vector space of
finite dimension. Now from the sequence 0 = m;*S; C m?i_lsi C..CS8; we
get £(S;) < oo for all 4 = 1, ..., 7. Therefore £(S) < oo. ™

4. Co-Cohen-Macaulay Modules

In this section, assume that R is a commutative ring (not necessarily Noetherian)
and M an Artinian R-module.

Recall that the inverse polynomial module M[X[!, ..., X;;1] can be consid-
ered as an Artinian module over the polynomial ring R[X1, ..., X,,] (see [6]). The
following result is related to these modules.

Proposition 4.1. With the same notations as above, let S = R[ X1, ..., X, and
K = M[X[',...,X;]. Then we have

N-dimg K = N-dimp M + n.

Proof. By induction, we have only to prove the proposition for the case n = 1.
Let X; = X and K = M[X™!]. First, we can easily check that XK = K.
Next, we claim that X € J(K), where we denote by J(K) the intersection of all
elements in Suppg K. In fact, we have by [15,1.4] that M = M1 ®@ Mo ® ... ® M,,

where Supp M = {my,...,m,} and M; = |J (0: m})y for i =1,...,7. Let
n>0

m=m®RXP.. DRX"® ..., for i=1,...,r1.

Clearly, m} is a maximal ideal of S and

K=M[X"NeM[Xe. &M[X1]. (a)
Moreover
J©: m)™) 2 MXT1#0 (b)
n>0

fori =1,...,r. We get by (a), (b) and [15, 1.4] that Supp K = {m],...,m;}. Thus
X € J(K). The claim is proved. Since X is a K-coregular element in J(K), we
have

N-dimg K — 1 = N-dimg (0 : X)x = N-dimg M = N-dimpg M. ™

Now we need the notion of co-Cohen-Macaulay modules (see [4] and [17]).
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Definition 4.2. (i) An Artinian module M over a quasi-local ring (R, m) is
called co-Cohen-Macaulay (CCM, for short) if N-dim M = Width M.

(ii) An Artinian module M over a commutative Ting R is called co-Cohen-
Macaulay if My is co-Cohen-Macaulay as Rm-module for every mazimal ideal
m.

Theorem 4.3. Let M, S, K be as in Proposition 4.1. Then M is a CCM R-
module if and only if K is a CCM S-module.

Proof. By induction, we have only to prove for the case n = 1. By using the
same notations in the proof of Proposition 4.1 we have

M=Me&M®..dM,; SuppM ={my,..,m,}
and Mm, =2 M, for i = 1, ..., 7. Therefore
K=K ®..®K,; SuppK ={mj,...,m:}

and Km: = K; for i = 1,...,7, where K; = M;[X7!]. So, for i = 1,...,r, we
obtain by Proposition 4.1 and [15,1.7] that

N-dimg,,, K; = N-dims K; = N-dimg M; + 1 = N-dimg,, M; +1. (2)

Next, let a1, ...,a, be a maximal M;-cosequence in m;. Then aq,...,a,,X is a
maximal K;-cosequence in m}. In fact, clearly a4, ..., a,, X is a K;-cosequence in
m;. Suppose that a1, ...,a,, X,Y is a K;-cosequence in m}. Let ¥ = by + b; X +
i + 5 X? with by, ...,b; € R and by € m;. Then

Y(O s (al,...,an,X)Sm;_«)Ki = (0 5 (al,...,an,X)Sm;_«)Ki,

It leads to bo (0 : (ay, ..., an)Rm,) ,, = (0: (a1, ,8n)Rm,),, - Hence as, ..., an, bo
is a M;-cosequence in m;. It gives a contradiction. Therefore, we have by
[15,1.7;1.9] that

Widthsm? K, = Wldthm: K; = Widthmi M, +1= WidthRmi M; + 1. (3)

Now, we have by (2) and (3) that K; is a CCM Sp:-module if and only if M; is
a CCM Ry,-module for all ¢ = 1, ...,r. Thus K is a CCM S-module if and only
if M is a CCM R-module. =]

Next, we summarize some properties of dimension and width of co-localization.

Lemma 4.4. Let p € Cos M. Then we have

(i) dim(pM) + dim R/p < dim M,

(iii) Widthy (M) < Width(, M) if (R, m) is Noetherian local and M satisfies the
condition (x),

(iv) if R is Noetherian local and M is CCM which satisfies the condition ()
then .
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(a) Widthy (M) = dim(y M),
(b) dim(p M) + dim R/p = dim M.

Proof. (i) is obvious.

(i) is an immediate consequence of Lemma 3.2 (ii).

(i) is derived by the condition (x) and the exactness of co-localization.

(iv) follows from (ii) and (iii). (]

As an application, we get a characterization of CCM modules.

Corollary 4.5. Suppose that (R,m) is a local ring and M satisfies the condition
(). Then M is CCM if and only if dim(p M) = Width(, M), for all p € Cos M.

Proof. Tt can be immediately derived by Lemma 4.4, (iii), (iv). ]

Remark. The condition (*) in Corollary 4.5 is necessary (see Example 5.3 (iii)).

5. Examples

Example 5.1. There exist modules M over a local ring (R, m) such that M is
linearly compact with respect to the discrete topology and

Width M # inf{n > 0: TorZ(M; R/m) # 0}.

Proof. Let N be a linearly compact module with respect to the discrete topology
over a local ring (R, m) such that soc N = 0 and mag N = 1. Then there exists
by [21, 1.4] a non-zero minimal submodule M of N such that M has no maximal
submodule. Clearly, M is a linearly compact module with respect to the discrete
topology. It follows by [21, p. 126] that mag M =1, soc M = 0 and Coass M =
Ass M. Hence m ¢ Coass M. Then there exists z € m such that zM = M. Hence
(0:xR)M = 0 by [21, 1.6]. So the multiplication by x on M is an isomorphism.
Therefore ’I‘or{"'(ﬂ-f: R/m) = . Torf{M; R/m) =0 as x € m, for all ¢ > 0. Thus,
inf{n > 0: Tor®(M; R/m) # 0} = occ. -

Example 5.2. A co-localization y M of an Artinian module M over a local ring
(R,m) such that M satisfies the condition (x), but Assgy, (pM) is an infinite set:

Let (R,m) be a local ring of dimR > 2 and p # m a prime ideal of R of
ht(p) > 1. Let M be an Artinian R-module which contains the injective hull of
R/m. Then M satisfies the condition (*). It can be easily derived by [12, 4.1]
that Ass(y M) = Spec(Rp). Since dimpg,, (Rp) > 1, it follows that Spec(Rp) is an
infinite set. Therefore Ass(y,M) is an infinite set. It also follows that yM has
infinite Goldie dimension and therefore it is not Artinian.

Example 5.3. There ezist co-Cohen-Macaulay modules M over a local ring
(R, m) such that M does not satisfy the condition (x) and M has the following
properties:

(i) There exists a prime ideal p € Cos M such that
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Widthg, (,M) # inf{t : Tor,* (Rp/pRpsp M) # 0}

(ii) There exists a prime ideal p € Cos M such that dimg, (,M) = 1, but
dimp, (0: a:Rp)pM =—1forall0#zcp.

(iii) There ezists a prime ideal p € Cos M such that Widthg, (,M) = 0, but
N-dimpg, (M) > 0 and dimg, (, M) > 0.

Proof. Ferrand and Raynaud [5] constructed a local domain (R, m) of dimension
2 for which the m-adic completion R has an associated prime of dimension 1.
Let M = H},(R), the local cohomology of R with respect to the maximal ideal
m. We have by [3,4.1;4.4] that N-dimM =1, dimM = 2 and M does not
satisfy the condition (x). Let 0 # = € m. We can easily check that M is the
0-secondary. Therefore = is M-coregular. So Width M = 1. Therefore M is
co-Cohen-Macaulay.

(i) Let p be a prime ideal such that p # 0 and p # m. Let 0 # = € p. Since
(0 : zR) s has finite length, Cos(0 : zR)y = {m}. It follows by Lemma 3.2 (i)
that

(0:2Ryp) 5 = p(0:zR)M = 0.

So Widthg, (pM) = 0. Since x is M-coregular, we get M = M. It follows by
the exactness of co-localization that z(p M) = M. Since (O ] sz)p = 0and
T € p, we get

Tory™ (Rp /pRy;p M) = z Tor{” (Ry/pRysp M) =0
for all ¢. It follows that
inf{t : Torf'p (Rp/pRp3p M) # 0} = oo.

(ii) Let p be asin (i). Then ht(p) = 1. Since 0 € Attg M, we get by Lemma 3.2 (ii)
that 0 € Attg,(pM). Therefore Anng, (,M) = 0. Hence dimp, (,M) = 1. Let
0% z € p. Then we have (0 : xRp)pM = 0. Therefore dimpg,, (0: :cRp)pM =—1.

(iii) Let p be as in (i). We get Widthg, (pM) = 0 and dimp, (,M) = 1 by (i)
and (ii). Let 0 # z € p. Since yM # 0 and z(, M) = y M, it follows that p M is
not Noetherian by Nakayama lemma. So N-dimpg, (M) > 0. ]

Example 5.4. An Artinian module M over a local ring R such that there
exists a co-localization yM for which N-dimg, (,M) > 0,dimg, (,M) = 0 and
ERP (pM) =00

Let (R, m) be the local domain as in Example 5.3. Let M be the injective
hull of R/m and let p = (0). Then M is Artinian, Ry = K is a field and yM is a
K-vector space. We know by [12, p. 127] that ;M has infinite length over K. So
N-dimg (pM) > 0 and dimg (p M) = 0.
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