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Abstract. Based on the theory of maximal monotone operators, we obtain some re-
sults on continuity and Hélder continuity of the locally unique solution to a parametric
generalized variational inequality in a reflexive Banach space. Local boundedness and
strict monotonicity of the involved set-valued mapping are assumed. Our results extend
some results of A. Domokos and N.D. Yen.

1. Introduction

It is well known that the necessary optimality condition to a convex programming
problem can be written as a generalized variational inequality. Namely, if X is
a locally convex topological vector space with the dual X*, K C X a nonempty
closed convex subset and ¢ : X — RU {400} a convex function, then z is a
solution of the optimization problem

p(z) — inf, z € K, (1.1)
if and only if = satisfies the following inclusion
0 € dp(z) + Nk(z). (1.2)
Here
dp(z) = {z" € X" : f(y) — f(2) 2 (z",y — z) Vy € X}
denotes the subdifferential of f at z, and
o N { {z* € X*: (z*,y— )< 0 Vy € K} %f zeK
0 ifz ¢ K



98 Bui Trong Kien

denotes the normal cone to K at z. The generalized variational inequality (GVI,
for short) defined by a set-valued operator F' : X — 2% and a closed convex set
K in X is the problem of finding z € X satisfying the inclusion

0 € F(z) + Nk(x). (1.3)

For F(z) = O¢(x), where ¢ is a convex function defined on X, (1.3) becomes
(1.2). Therefore, convex programming problems can be studied by using the GVI
model (1.3). If F(z) = {f(z)}, where f : X — X* is a single-valued operator,
then (1.3) has the form

0 € f(z) + Ng(x), (1.4)

which is called a variational inequality (VI, for short).

Conditions for the solution existence of variational inequalities and gener-
alized variational inequalities have been considered in many papers (see, for
instance, [2] and references therein).

In the last two decades, several authors have studied the solution sensitivity
of parametric variational inequalities (see, for instance, [4,6,12,13], and refer-
ences therein). By using the metric projection method of Dafermos [4], Yen [12]
obtained a theorem on the Holder continuity of the solution to a parametric vari-
ational inequality in Hilbert spaces. Recently, Domokos [6] has extended that
theorem to the case of VIs in reflexive Banach spaces. However, the proof of
the main result in [6] had an inaccuracy, which will be corrected in the proof of
Theorem 3.1 below. (See also the discussion in Sec. 4 of this paper). Domokos’
method is based on the theory of maximal monotone operators [8, 16].

In this paper, by using the method of Domokos [6], we shall obtain some
results on solution sensitivity of parametric generalized variational inequalities
in reflexive Banach spaces. Our results generalize the corresponding results of
[9] and [6]. As a by-product, we obtain some facts on solution sensitivity of
parametric convex programming problems in reflexive Banach spaces.

From now on X denotes a reflexive Banach space with the dual X*, (A,d)
and (M, d) are metric spaces; o € X, Ao € A and pg € M are some given points.
Let F: X x M — 2% and K : A — 2% be two given set-valued mappings. It is
always assumed that K (-) has nonempty closed convex values. The problem of
finding « = x(u, \) satisfying the inclusion

0¢c F($,M) +NK()\)(.’L‘), (15)

where (1, ) € M x A is a pair of parameters, is called a parametric GVI.

The paper is organized as follows. In Sec. 2 we recall some definitions and
facts concerning maximal monotone operators, which will be used in subsequent
sections. In Sec. 3 we will show that under some suitable conditions on F(-)
and K(-), the unique solution z = z(u, A) of (1.5) is continuous with respect
to (w4, A). Moreover, if F is Lipschitz continuous and strongly monotone then
z = z(p, A) will be a Holder continuous function. In Sec. 4 we will study some
special cases of (1.5) where F(-) is a single-valued map. Sec. 5 is devoted to an
application of our result to the solution sensitivity of problem (1.1).
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2. Auxiliaries

For a given point a in a metric space and a real number p > 0, denote by B(a, p)
(resp. B(a,p)) the open (resp. closed) ball centered at a with the radius p. For
a set-valued map G : X — 2%, the set domG := {x € X : G(z) # 0} and
grG := {{z,z*) € X x X* : ¢* € G(z)} is called, respectively, the effective
domain and the graph of G.

Definition 2.1. G is called lower semicontinuous in the sense of Hausdorff (H-
l.s.c) at xg € X if, for any € > 0, there exists a neighborhood U of xo in X such
that G(xzo) C G(z)+€eBx~ for everyx € U, where Bx» := {a* € X* : |z*| < 1}.

Definition 2.2. [8, p.28] G is said to be demicontinuous at xy € X if, for any
weakly* open subset V. C X* satisfying G{xo) C V, there exists a neighborhood U
of xo in X such that G(z) C V for every x € U. G is said to be hemicontinuous
at ©g € X if, for everyv € X, T € [0,1] and every weakly* open subset V. C
X*satisfying G(txo+(1—t)v) C V, there exists § > 0 such that G(tro+(1—t)v) C
V for every t € [0,1] with |t —¢| < 6.

Definition 2.3. [16,p.852] G : X — 2% is said to be monotone if for any
(x1,2%), (z2,2%) € grG one has

(x5 — z1,22 — 1) > 0.

G is maximal monotone if it is monotone and there exists no monotone map
G': X — 2%X7 such that gr G is a proper subset of gr G'.

Combining the following two properties one has a criterion for checking
whether the operator G is maximal monotone.

Lemma 2.1. [8, Lemma 2.5,p.32] Let G : X — 2X° be a monotone and
hemicontinuous mapping. If U C dom G is such that G(z) is a closed convez set
for every x € U then G is demicontinuous at every o € U.

Lemma 2.2. [8, Lemma 2.13,p.34] Let G : X — 2% be a monotone and
demicontinuous mapping. If G{x) is a nonempty closed conver set for every
z € X then G is mazimal monotone.

The following proposition gives a criterion for checking maximal monotonic-
ity of a sum of two maximal monotone operators.

Lemma 2.3. (Rockafellar 1970; see [13, Theorem 32.1)) If G;,Gy : X — 2%X°
are mazimal monotone mappings satisfying int (dom G1) N dom Gy # §, where
int D denotes the interior of a set D C X, then the sum G1 + Gy : X — 2X7
defined by setting (G1 + G2)(z) = G1(z) + Ga2(x), is also mazimal monotone.

The following fact is fundamental in the theory of maximal monotone oper-
ators.
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Lemma 2.4. [16, Corollary 32.35) If G : X — 2X" is mazimal monotone and
dom G is bounded, then G is surjective, i.e. UzexG(z) = X*.

In the sequel, we shall need the notions of strict monotonicity and uniform
monotonicity (with respect to a gauge function w) of a set-valued mapping G :
X — 2X". For the case of single-valued mappings, these notions can be seen in
[16, pp. 500-501].

Definition 2.4. G : X — 2X" is said to be strictly monotone if for any (z1, z3),
(x2,23) € gr G, =1 # T2, one has (5 — z}, T2 — 1) > 0.

Obviously, if F: X — 2% is a strictly monotone operator then the problem
(1.3) has at most one solution. Indeed, suppose that z;, 5 € K are two solutions
of (1.3). Then there exist z1* € F(z1), 2* € F(z2) such that

(z1*, T2 — 1) >0, (x2", @1 —72) > 0.

Therefore (z2* — z1*,22 — z1) < 0. By the monotonicity of F', (z2* — 1%, 72 —
z1) > 0. Hence (x3* — z1*,22 — 1) = 0. Then, by the assumed strict mono-
tonicity of F, 1 = z2.

Definition 2.5. [1] Let w be a non-decreasing real function defined on the set
Ry = {t € R:t > 0} such that w(t) > 0 for every t > 0. G(.) is said to be
w-uniformly monotone if, for any (z1,2}), (z2,73) € grG, one has

(23 — 21, 22 — 71) 2 w(l|lz2 — zal))ll22 — 21 |- (21)
For w(t) = at, a > 0, (2.1) becomes
(z3 — 25,32 — 71) 2 allzz — 21 (2.2)

In this case G(-) is said to be a strongly monotone operator.

3. Continuity Properties of the Solution to a Parametric GVI

Consider a parametric generalized variational inequality in the form (1.5), where
F(z,pn), K()\), M, A are defined as in Sec. 1. Suppose (zo, 1o, Ao) € X X M x A
is such that

0 € F(zo, po) + Nk (xo) (o) (3.1)

Qur first result on the solution sensitivity of the problem (1.5) can be stated
as follows.

Theorem 3.1. Suppose that the following conditions are fulfilled:

(a1) For every u € M, F(-, ) is a mazimal monotone operator.

(a2) There exists a neighborhood U of zo such that, for every € > 0 there exists
8 > 0 with the property that if (z1,2}), (z2,23) € gr F(-,p) N (U x X*) for
some p € M, and |z — z1]| > €, then (x5 — 1,22 — 1) > 0.

(a3) There exist a neigborhood U’ of xo, a neighborhood W of uo and a constant
v > 0 such that F(z,u) # 0 for every (z,p) €U’ x W,
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sup{flz*|| : * € F(z,pn),z €U, pe W} <4, (3.2)

and for every x € U, F(z,-) is lower semicontinuous in the sense of Haus-
dorff at every p € W

(as) There exist a real function 8 : Ry — Ry with lim;_,o B(t) = 0, a neighbor-
hood U" of xy and a neighborhood V' of Ao such that

KO\)NU" ¢ K(O) + BN, \)Bx (3.3)

for all N, A € V, where Bx_denotes the closed unit ball in X.
Then there exist a neighborhood w of po, a neighborhood 1% of Ao such that, for
every (u,A) € W x V, there ezists a unique solution x = x(u,\) € U of the
following generalized variational inequality

0€ F(z,p) + NK()\)(:E). (3.4)

Besides, z(to, Xo) = zo and the function (u,)) — z(u,A) is continuous on
WxV.

The following remarks allow us to have a closer look at the assumptions

(a1) — (aq).

Remark 1. If there exists a constant o > 0 such that, for any p € M and
(@1,231), (x2,x5) € grF (-, p), inequality (2.2) holds, then (az) is fulfilled. The
proof is obvious. Note also that if there exists a nondecreasing real function
w: Ry — Ry, w(t) >0, for every t > 0 such that for every u € M and for any
(z1, %), (z2,23) € gr F(+, p) inequality (2.1) holds true, then (a3) is fulfilled.

Remark 2. If (a1), (az) are valid then, for every 4 € M, the restriction of the
map F(-,u) on U is strictly monotone. Indeed, by (a:), F(-,u) is monotone.
Suppose that for some (z1,z3}), (€2, z3) € gtF (-, p) N (U x X*), 1 # T2, one has
(x%—x%,29—21) = 0. Let € = ||zg —z1]|/2. For any § > 0, one has ||z2 —z1|| > €
but (z3 — 2}, 2 — 1) = 0 < §. This contradicts (az).

Remark 8. If F(z,u) = {f(z,p)}, where f : X x M — X* is a continuous
single-valued map, then (a3) is fulfilled.

Remark 4. Suppose that A is a subset of a normed space and ((t) = kt, where
k > 0 is a constant. Then (3.2) becomes

KW\)NU" c K(A) +k||N — X|Bx
for all X', A € V. In this case, one says that K (-) is pseudo-Lipschitz at (Ao, o).
In the terminology of [11], the map K (-) has the Aubin property at Ao for zo. We
have seen that if K(-) has the Aubin property at A for xo then (a4) is fulfilled.
Sufficient conditions for the Aubin property of implicit set-valued mappings can
be found, for instance, in [5, 11, 14].

Remark 5. If for every u € M the map F(z,u) has nonempty closed convex
values and it is monotone and hemicontinuous on X, then (a;) holds. For the
proof, it suffices to apply Lemmas 2.1 and 2.2.
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Remark 6. Theorem 1 of [6] corresponds to Theorem 4.1 below, which is a special
case of Theorem 3.1 above where F' is single-valued. A detailed comparison of
our Theorem 4.1 with Theorem 1 from [6] will be given in Sec. 4.

The notion of uniformly monotone operators (w.r.t. a certain gauge function
w) has proved to be very useful in functional analysis (see [16]). In [10] and [7],
it is shown that one can characterize the uniform convexity of Banach spaces by
using uniformly monotone operators. Note that the class of strongly monotone
operators is too small and not suitable for obtaining such characterizations.

It is not difficult to give examples of w-uniformly monotone operators which
are not strongly monotone.

Example 1. [16, pp. 502-503] Consider the set-valued map F : R — 2% defined
by the formula F(u) = {|u[P~2u} for all u € R, where p > 2 is a fixed constant.
Since there exists ¢ > 0 such that

(JulP~2u — |v|P~2v,u — v) > clu —v|P
for all u,v € R, then F(-) is a w-uniformly monotone operator, where w(t) :=
ct?~1. Meanwhile, it can be shown that F(-) is not a strongly monotone operator.

Example 2. Let ¢ : R — R, p(z) = z*. Obviously, ¢ is a convex function and
Op(x) = {¢'(z)}. For all z,y € R we have

(') — ¢ (x),y—z) = (49° — 42®)(y — z)
=4(y* + zy + 2%)(z — y)?
> (y—x)*.

So F(-) := 8¢(+) is w-uniformly monotone, where w(t) = t3. Note that it is not
a strongly monotone operator.

Example 3. Let X = LP([0,1]), p > 2, be the Banach space of all measurable
functions defined on [0, 1], for which fo |z(s)|Pds < 4+o00. By definition, ||z|| =
(Jy lz(s)|Pds) /P, Let ¢(z) = ||z||P/p for all z € X. Let F : X — 2X" be the

set-valued mapping defined by the formula F(-) = d¢(:). In fact, F(-) is the
normalized duality mapping on X (see [7]). By Corollary 2.1 from [9],

1
[tz + (1 = D)yll” < tllel® + (1 = Ollyll? = —e(t)llz - ylI”
p2p

for all z,y € X and ¢ € [0,1], where ¢(t) := t(1 — )P +tP(1 — t). Using this fact
and arguing similarly as in the proof of Proposition 5.1 below, we get
(z* —y" 2 —y) 2 oz -yl

for all z,y € X, z* € F(z), y* € F(y), where a = 2/p?2P. This implies that
F is a w-uniformly monotone operator with w(t) := atP~!. However, F is not
strongly monotone. Indeed, suppose to the contrary that there exists 8 > 0 such
that

(z* —y*,z —y) > Bllz — y|?
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for all z,y € X, x* € F(z), y* € F(y). For z := 2y, y # 0, we have
(@ -y y) 2 Bllyll?
for all y € X, z* € F(2y), y* € F(y). By Theorem 2.1 from [7],
F(z)={z" € X*: (z*,2) = ||z||", l="|| = |l=[|P~"}.
Consequently,
Blyl? < & =y, y) = 22 yllP = llyllP = (277" = )]yl

Therefore

B< (2P =)yl
Since this inequality does not hold for y € X with ||y} sufficiently small, we have

arrived at a contradiction.

Proof of Theorem 8.1. (This proof is based on some ideas of [6]). Let the as-
sumptions (a1) - (a4) be satisfied. By (a3) and (a4), there exist positive constants
s, 8, such that B(zo,s) CcUNU' NU",B(X,0) CV, and

Bd(A, Xo) < s, for all A € B(Xg,9). (3.5)
It follows from (3.2) and (3.3) that
sup{||z*|| : z* € F(z, 1),z € B(zo,s),p € W} < 7, (3.6)

K ()N B(xo,s) C K(\) + Bd(XN,))Bx, (3.7)

for all X', A € B(X,3). Putting X' = Ao in (3.7), we see that for each A €
B()\o, d) there exists z) € K(\) satisfying

”»

ll2x = zoll < Bd(X, Ao) < s.
Hence K (X) N B(xo,s) # 0 for all A € B()\o, 0). Fixing any pair (u,A) € W x
B(\g, 0) we consider the inclusion
0€ F(z,p)+ NK(/\)OE(%J)(z). (3.8)
Since K()\) N B(xo, s) is a closed convex set, the normal cone operator
T = NK(A)DF(IO’S)(JJ), (3.9)

is maximal monotone (see [16, p. 859]). By (a1), F(-, p) is also a maximal mono-
tone. According to (as) and the choice of s, we have B(zo,s) C int F(-,u).
Since the effective domain of the operator in (3.9) is a bounded nonempty set
K()) N B(zyg, s), by Lemma 2.3 the set-valued map

z = F&, 1) + N (3ymB(z0,5) () (3.10)

is a maximal monotone operator with a bounded effective domain. Lemma
2.4 shows that there must exist a vector z = xz(u, ) satisfying the inclusion
(3.8). Since F(-, ) is a strictly monotone operator (see Remark 3.2), such vector
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x = x(u, A) is uniquely defined. By (3.8), there exists some z; 3 € F(z(p, A), 1)
such that
(Zh 2 —z(p, A)) = 0 for all z € K(X) N Bz, s)(z).

In particular,

(Zan 22 — (1, A)) > 0. (3.11)
By (3.7), since z(u, \) € K(A) N B(xo, s) then there is zy € K()\o) satistying

lz(u, A) = 20[l < d(A, Ao).
By (3.1) there exists 23y € F(zg, po) such that

(5,2 — o) >0 for all z e K(\g).
In particular,
(25,20 — o) > 0. (3.12)

As F(-, ) is a maximal monotone operator, its values must be convex weakly*
closed sets in X™* (see [16, Proposition 32.6]). Thus F(xo, 1), u € M, are convex
weakly* closed subsets in X*. In addition, by (a3), F(zo,u) # 0. Since X is
a reflexive Banach space, X* is also a reflexive Banach space, hence there is

Yy, € F(mo, p) satisfying

deh, Flao,p) = inf o= = o~ gl (313)

Using (3.11), (3.12), and the monotonicity property of F(-, u), we get

(Zux — yp o(p, A) — o)

(zix = Y @1y A) — o) + (25, 20 — Zo) + (2 5, 23 — T, A))
(2,3 22 — Zo) + (25, 20 — o) — (y};, (1, A) — o)

(23,2021 = o) + (25 = Y31, 20 — To) — (Y, T(k, A) — o)

< lzgalllzr = zoll + ll2g — yillllzo — zoll + gz (e, A) — 2ol

By (3.6),
”Z*,)\” <Y “y;”S Ys

(s, A) = 20| < Bd(A, Xo), [l2x — zoll < Bd(A, Xo),
120 = @ol| < ll20 — (i, M)|| + [l (s, X) — 2ol < Bd(N, Ao) + 25 < 2s.
Therefore

0 < (2 5 — i @(1, A) — o) < 298d(X, No)) + 25|z — - (3.14)

We claim that ||z5 — y;| - 0 as p — po. Indeed, by (a3) the set-valued
map F(zo,-) is H-ls.c. at pp. Then for any € > 0 there exists &' > 0 such
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that F(zg,uo) C F(xo,p) + €eBx~ for all p € B(uo,d"). As zf € F(xzo, uo),
d(zg, F(zo, ) < €. By (3.13), llz§ — y;;|l < € for every u € B(uo,d’). Thus we
have proved that ||z5 — ;|| — 0 as u — po. We get from (3.14) that

(zj x = Y (1, A) —T0) = 0 as (p, A) = (o, Ao)- (3.15)

Now we can take the advantage of the assumption (az). Let € > 0 be given.
Choose § > 0 such that the property stated in (az) is valid. By (3.15), there
exists 0 > 0 such that (2} \ — v, z(p, A} — z0) = < § for any pair (u, \) satisfying
d(p, pio) < 0,d(X, do) < 0. As (z(p, M), 2}, ), (¥);, To) € gr F(-, ), the property
in (ag) implies that

(i, A) = 2ol < €,

for any pair (u, A) satisfying d(u, po) < 6,d(A, Ao) < 6. This shows that z(ug, Ag)
= zo and z(g,A) = 0 as (g, A) = (po, Ao). Asa consequence, there exists an
open nelghborhood W of 1o, an open neighborhood V of Ag such that W C W,
Vc B()\g,ts) and z(p, A) € B(o, s) for any pair (1, \) € W x V. Then, for any
pair (4, \) € W x V, since z = z(u, A) satisfies (3.8) and

NK(A)OE(zo,s)m('u” A) = NK(A)m(“a A

we have
0 € F(z(u, N)) + Ny (@i, 1)).

This shows that « = z(u, A) is a solution to the GVI problem (1.4).
We now prove that the function (g, A) — z(u, ) is continuous on W x V.
Let (i, \) € W x V be given arbitrarily. Putting Z = 2(%, X), we get

0 € F(Z,7) + Ny, (@)-

Now, instead of the triple (zo, 10, Ao) we shall deal with the triple (Z, 7, ).
Observe that the assumptions (a),(a2) do not depend on the choice of
(%0, o, Ao). As concerning (a3) and (as), we note that W and V, respectively,
are also neighborhoods of 7 and \; while U, U’ and U" are neighborhoods of Z.
Therefore, the assumptions (a;) — (as), where (o, to, Ao) is replaced by (Z, I, A),
remain valid. Then, by the result established in the preceding part of this proof,
there exist open neighborhoods WcWandVcVofn T and ), respectively,
such that for each (u,A) € V x W one can find a unique vector u = u(u, \)
satisfying (3.4), so that u(u,A) — T as (g, \) = (&, A) and u(@,X) = . For
every pair (u,\) € M x A, since (3.4) has at most one solution then we get
up, A) = z(u, \) for every (u,\) € W x V. The desired continuity of the func-
tion z(u, A) at (7, A) follows from the above-mentioned continuity of the function
u(u, A) at (G, ). The proof is complete. ™

We now show that under a strengthened version of (a;) — (a4), the solution
map ¢ = xz(u,A) of the parametric problem (3.4) possesses a finer continuity

property than that described in the conclusion of Theorem 3.1.

Theorem 3.2. Suppose that (a1) and the following conditions are fulfilled:
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al) There exist a neighborhood U of zo and a constant o > 0 such that, if
2
(x1,2}), (2, 23) € gr F(-,u) N (U x X*) for some u € M then

(x3 — 21,22 — 31) > a2z — 21| (3.16)

(a§) There exist a neighborhood U’ of zo, a neighborhood W of ug, and a con-
stant I > 0 such that F(xz,p) # 0 for every (z,p) € U' x W and

h(F (21, 1), F(22, 12)) < U(l|lz1 — @2l + d(p1, p2)) (3.17)
for all (z1, 1), (z2,u2) € U' x W, where
= inf ||a — b||, inf ||a — b
h(A, B) max{jgg inf fla — b gy, lla — oI}

denotes the Hausdorff distance between two subsets A, B C X*;
(a}) There exist a neighborhood U" of po, a neighborhood V “of Ag, and a con-
stant k > 0 such that

KWN)NnU" c K(\) + kd(X',)\)Bx (3.18)

forall A, XN € V.
Then there exist a neighborhood W of po, a neighborhood 1% of Ao, and constants
ky1,ko > 0 such that, for any (u,A) € W x V, there exists a unique solution
z =z(u, ) € U of problem (3.4). Besides, z(uo, Xo) = z¢ and

Iz (', N) = 2(i, A)|| < kad(p', ) + kod(X, )2
for all (W', N), (m,\) €W x V.

Proof. Firstly, we shall show that the assumptions (a;)-(as) of Theorem 3.1
are fulfilled. It is obvious that (a}) implies (a2) and (aj) implies (a4). From
(a}) it follows that zo € int (dom F(-, uo)). Since F(:, ug) is maximal monotone
then F(zo, o) must be a bounded set (see [16, Proposition 32.33]). By (a3) and
the boundedness of the set F'(xg, 1o), there exists a constant v > 0 such that
requirements stated in (a3) are fulfilled. Therefore the proof of Theorem 3.1 is
applicable to the case we are considering.

By Theorem 3.1, there exist neighborhoods W V and a _unique continuous
function z(u, A) deﬁned on W x V such that, for each (u, \) € WxV, z = z(u, \)
solves the inclusion (3.4).

Let s and 4 be chosen as in the proof of Theorem 3.1. Let neighbor-
hoods W, V and function z = z(u, A) be the ones obtained in that proof. Let
(1, \), (', N') € W x V be given arbitrarily. Since z(u,A) € K(\) N B(zo, s) C
K(\)NU”, by (3.18) there is some z € K(\') such that

(i, A) — 2] < kd(X, X). (3.19)

Similarly, since z(u, \') € K (X' )N B(zo,s) C K(N)NU" then by (3.18) we must
find some y € K(A) such that

”‘/L‘(/J'a }‘I) = y“ < kd(A’ )‘,) (320)

As z{u, M) (resp. z(p, ') solves the inclusion
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0 € F(z,u) + Ny (z)
(resp., 0 € F(z,p) + Ng(vy(z)); there exists some y* € F(z(u,A), ) (resp.,
z* € F(z(u,X'), u)) such that
W ,y—z(1,N) 20, ("2 —z(p, X)) > 0. (3.21)
By (3.16) and (3.19)- (3.21),

allz(p, N) = z(u,N)|? < (2" —y*,2(p, N) — (s, A)
< (2" =y x(p, ) —z(p, ) + "y — 2w, )
+(z*, 2z — z(p, X))
= (2%, 2 —x(u, ) + (¥, y — z(p, X))
< lz*[lllz — 2, DI+ lly* [y — (s, M)
< 2vkd(A, N).

Therefore
2ok
o

(i ') — 2 (u, M| < { A A’)}2 : (3.22)

Now, since z(u, \') (resp., z(u', X)) solves the inclusion
0 € F(z,p) + Nr vy (@)

(resp., 0 € F(z,u') + Ng(n)(z)), there exists u* € F(z(u, \'),p) (resp., v* €
F(z(y/',X'), 1)) such that

<U*7z(p'la)‘l) - ‘T(.u'v AI)) 2 07 (v*,x(u, ’\I) =\ m(:u'lv ’\,)> 2 0. (323)

By (3.17), there is some w* € F(z(y', X'), ) satisfying
[[o* —w*|l < d(u', ) (3.24)
By (a%) and (3.23),
alle (i, X) — 2 X2 < (" — (', X) — a(u, X)
< (w" —u”,z(p, X) —z(p, X))
+ (ut, 2w, N) — z(p, X))
+ <v*a $(/"7 ’\,) - z(/J‘I? X))
= (" —v", z(W'N) — 2(p, X)) -
< fw* = vz, X') — 2 (u, M.
Therefore, using (3.24) we have

aflz(p’, ) — =(u,N)|| < W, p). (3.25)
As

ll2(u's N') = 2(u, M| < 2!, X) = 2, X + 2 (s, X) — 2 M),
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by (3.22) and (3.25) we obtain
1
l 2vk 2
oo, X) = 2(u V] < )+ { 220, )

Putting k; = l/a, ky = (2vk/a)/?, we get (3.18). The proof is complete.  m

4. Special Cases

In this section we study the parametric problem (1.5) in the case F(z,p)
{f(z,pn)}, where f : X x M — X* is a single-valued map. Let (z, tg, \o)
X X M x A be such that

m

0 € f(zo, po) + Nk (x)(20)-

From Theorem 3.1 we can deduce the following result.

Theorem 4.1. Suppose that (as) and the following conditions are satisfied:

(b1) For every u € M, f(-, ) is a hemicontinuous monotone operator.

(b2) There ezists a neighborhood U of ¢ such that for every e > 0, there exists
0 > 0 with the property that if z1,z2 € U, p € M, and ||z2 — z1|| > ¢, then

<f("1:2)/1') - f(wl,ﬂ),l'Z — ZE1> > 6
(bs) There exist a neighborhood U’ of xq, a neighborhood W of ug and a constant

v > 0 such that
sup{||f(z,p)l| : 2 € U',p € W} O

and, for every z € U, f(x,-) is continuous on W.
Then there exist a_neighborhood W of wo, a neighbourhood 1 of Ay such that,
for every (u,\) € W x V, there exists a unique solution z = z(u,\) € U of the
following parametric variational inequality

Besides, x(t0, 0) = xo and the function (u,\) — x(u, ) is continuous on
W xV.

Proof. For the proof, it suffices to note that (b;) implies (a1) (see Lemma 2.1
and Lemma 2.2) and apply Theorem 3.1. ™

The following theorem was obtained in [6].

Theorem 4.2. Suppose that (a4) and the following conditions are satisfied:

(by) There exist a neighborhood U of zo, a neighborhood W of ug such that f
s continuous on U X W.

(%) The mapping f(-,u) are strictly-monotone for all p € W, and

(flyp) — flz,p)yy—z) 2 0=>y >z

uniformly with respect to u € W.
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Then there exist_a neighborhood 1772 of po, a neighborhood 174 of Ao such that, for
every (p, A) € € W x V, there erists a unique solution & = x(u,\) € U of the
following parametric variational inequality

0¢€ flz,u)+ NK(,\)(.Z'). (4.1)

Besides, z(uo, o) = zo and the function (u,A) — x(p, ) is continuous on
W x V.

Condition (b5) is rather difficult to understand. Its exact meaning is ex-
plained in condition (bs) of our Theorem 4.1. Note that Theorem 4.1 extends
Theorem 4.2. Indeed, if one assumes that f(z, ) is continuous on a neighbor-
hood of (z¢, 1) then it is obvious that condition (b3) in Theorem 4.1 is satisfied.
As it has been said in Introduction, the.proof in [6] has some inaccuracy. Namely,
in our notation, to prove that the function z(u, A) is continuous at (fz, \) € WxV
the author proves that z(-,X) (reps., (%, -)) is continuous at (resp.7 A) then
he concludes that z(u, ) is continuous at (f, X) This argument is, of course,
incorrect! As an example, consider the function

2uv T2 9
o(u,v) = ¢ u? +0? if u” o7 £ 0
0 fu=v=0

of two real variables u and v (see [3, p. 464-465]). Observe that ¢(-,v) is contin-
uous for each v fixed, and o(u, -) is continuous for each u fixed. Since ¢(0,0) =0
and @(u,v) =1 if u = v and u # 0, ¢ is discontinuous at (0,0). In the proof of
Theorem 3.1, by introducing some modifications to the proof scheme proposed
in [6] we have shown that the above-mentioned inaccuracy can be eliminated,
and the result of [6] can be extended to the case of generalized variational in-
equalities.

The following result follows directly from Theorem 3.2.

Theorem 4.3. Suppose that (b1), (a}) and the following assumptions are satis-

fied:
(b)) There exist a neighborhood U of o and a constant o > 0 such that for
every (z1, 1), (z2, 1) € U x M, it holds

(f(z2, 1) — (@1, 1), 22 — T1) > 0f|z2 — 21>

(bY) There exist a neighborhood U’ of o, a neighborhood W of po, and a con-
stant I > 0 such that

| f (1, 1) — F@2, p)ll < Ullzr — 22|l + d(pa, p2)),

for all (z1, 1), (z2,u2) € U' x W.
Then there exist a neighbourhood W of po, a neighbourhood v of Ao, and con-
stants ki, ks > 0 such that for any (p, ) € W xV, there exists a unique solution
z = z(p, \) € U of the parametric problem (4.1). Besides, x(po,Ao) = o and
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llz(u', X) — 2, VI < kad(', ) + kad(X, A)
for all (u', X'), (1, A) € WxV.

For X = H, where H is a real Hilbert space, Theorem 4.3 recovers Theorem
3.1 of [12] except for one thing: We have to impose the additional condition
(b1). Therefore, Theorem 4.2 extends Theorem 3.1 of [12] to the case of vari-
ational inequalities in reflexive Banach spaces. The proof in [12] allows one to
avoid using the extra condition (b;), and get the conclusion of Theorem 4.3 by
using only the assumptions (a4), (b2) and (b3). Note that, in order to follow the
Domokos scheme [6], one has to assume that the operators f(-,u), u € M, are
maximal monotone. This is the reason why we cannot omit the assumption (b;)
in Theorems 4.1 and 4.3.

5. Applications

In this section we want to explain how the obtained results can be applied to
study the solution sensitivity of parametric convex programming problems.

Definition 5.1. A function ¢ : X — RU {400} is said to be strongly convex if
there exists a constant p > 0 such that

(tr + (1 — t)z3) < (@) + (1 = )p(z2) — pt(l —t)]lo1 ~ 22,
for allt €]0,1] and 1,22 € X.

There exists a tight relation between strong convexity of a function and
strong monotonicity of the subdifferential map.

Proposition 5.1. If ¢(-) is strongly convex then there exists a constant a > 0
such that for all x1,72 € X, 7} € Op(z1), x5 € Op(x2) one has

(x5 — x}, 29 — 1) > allza — 212 (5.1)

Proof. (This simple proof is presented here for the completeness of presentation).
For every z,y € X, * € O¢(z) we have

oz +t(y — 2)) — () < Upy) — ¢(2) — pt(1 = B)lly — ||
Therefore
t(z*,y — ) < t(p(y) — () — pt(1 — t)lly — %,
and hence
(@*y — ) < o(y) — p(@) = p(L — )y — =|? (5.2)

for all z,y € X and z* € Op(x). Suppose that z1,z, € X, z] € Op(z1),
x5 € p(x2). From (5.2) we have
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(x}, 22 — 21) < p(z2) — (1) — (1 — t)||z2 — 71 %,
(3,71 — 22) < (1) — p(22) — p(1 — t) |71 — 32||°.
Adding these inequalities yields
(x5 — x}, 22 — 71) = 2p(1 — t)||z2 — 71|

Letting t — 0 and putting o = 2p we obtain (5.1). The proof is complete. m

Note that if ¢(-, 1) is not assumed to be Fréchet differentiable on X then the
correspondence x — dp(z) defines a set-valued map.

Now we can formulate two results on solution sensitivity of convex program-
ming problems which work for the case of parametric strongly convex program-
ming problems.

Let o : X x M — RU {400} be a real function such that, for every . € M,
¢(+, ) is a convex function. Denote by 9yp(-, 1) the subdifferential of (., 11).
Consider the problem

o(z,u) — min, z € K(\). (5.3)

Here (u, A) € M x A is a pair of parameters. Let zq be a solution of (5.3) where
{8, A) = (o, Ao) € M x A is a given pair.

Theorem 5.1. Suppose that (a4) and the following assumptions are fulfilled:

(c1) For every u € M, o(-, 1) is a lower semicontinuous function on X;

(ca) There exists a neighborhood U of xo such that, for every e > 0 there exists
§ > 0 with the property that, for any x} € Oyp(z1, ), T3 € Opp(z2, ),
z1, 20 €U and p € M, if |z2 — z1|| > € then (x5 — z],22 — x1) > §;

(c3) There exist a neigborhood U’ of xg, a neighborhood W of pg and a constant
v > 0 such that 8yp(z, ) # 0 for every (z,p) e U' x W,

sup{||z*|| : * € Bpo(m, 1),z €U, p e W} <,

and, for any € U, Oz9¢(x,-) is lower semicontinuous in the sense of
Hoausdorff at every p € W; _
Then there exist a neighborhood W' of po, a neighborhood V' of Ao such that,
for every (u,\) € W x V, there ezists a unique solution z = z(u,A) € U
of the optimization problem (5.8). Besides, x(po0, o) = zo and the function

(2, A) — z(u, A) is continuous on W x V.

Proof. Tt suffices to note that z is a solution of (5.3) if and only if z solves the
following variational inequality:

0 € Op(x, ) + Nr(ny ()

Put F(z,u) = 8;p(x, ). By a result of Rockafellar (see [16, Proposition 32.17,
p.860]), for every p € M, F(-,u) is a maximal monotone operator. Hence we
can apply Theorem 3.1 to get the desired conclusions.

Theorem 5.2. Let (a}) and the following conditions be fulfilled:
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(ch) There exist a neighborhood U of zo and a constant a > 0 such that, if
x} € Opo(z1, 1), x5 € Opp(x2, 1) for some p € M, where z1,x2 € U, then

(x5 — 2}, 22 — 21) > af|z2 — 21|

(c4) There exist an open neighborhood U’ of xy, a neighborhood W of ug, and a
constant | > 0 such that, for every (z,p) € U' x W, ©(-, 1) has the Fréchet
derivative @), (z, 1), and

| (1, 1) — o (2, )| < U1 — 2] + d(pa, p2))

for all (z1,p1), (z2, u2) € U' x W,
Then there exist a neighborhood w of po, a neighborhood 1% of Ay, and constants
ki,k2 > 0 such that, for any (u,A) € W x V, there exists a unique solution
z = z(u, A) € U of the parametric problem (5.8). Besides, z(uo, o) = zo and

(!, N) = (i, | < knd(i, 1) + kod(X, )3
For all (', N), (u,\) € W x V.

Proof. This theorem follows from Theorem 3.2 in the same manner as Theorem
5.1 follows from Theorem 3.1. =
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