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Abstract. Based on the theory of maximal monotone operators, we obtain some re-

sults on continuity and Hcilder continuity of the Iocally unique solution to a parametric

generalized va,riational inequality in a reflexive Banach space. Local boundedness and

strict monotonicity of the involved set-valued mapping are assumed. Our results extend

some results of A. Domokos and N. D. Yen.

1. Introduction

It is well known that the necessary optimality condition to a convex programming
problem can be written as a generalized variational inequality. Namely, if X is
a locally convex topological vector spacei with the dual X*, K C X a nonempty
closed convex subset and g ; X -+ n u {+m} a convex function, then r is a
solution of the optimization problem

p(r) ---+ inf , r € K, (1.1)

if and only if s satisfies the following inclusion

0 e 0e@) + N6(r). (1.2)

Here

09@) : {n* e X* : f(y) - f(") > (r*,a - r) Vy e X}

denotes the subdifferential of / at r, and

(  { * *  e  X *  :  ( r * , a - r ) S  0 V 9 e K }  i f  r  e  K
1 v 6 \ t ) : t O  

i f  r ( K
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denotes the normal cone to K at r. The generalized aariational'inequal,itg (GVI,
for short) defined by a set-valued operator F : X -+ 2x" and.a closed convex set
K in X is the problem of finding r € X satisfying the inclusion

o e  F(z )+  l f6 (z ) . (1 .3)

For F(z) :0g(r), where tp is a convex function defined on X, (1.3) becomes
(1.2). Therefore, convex programming problems can be studied by using the GVI
model (1.3). If F("): {f (")}, where / : X -+ X* is a single-valued operator,
then (1.3) has the form

0 e / ( z ) * l / 6 ( r ) , (1 .4 )

which is called a aariational i,nequality (VI, for short).
Conditions for the solution existence of variational inequalities and gener-

alized variational inequalities have been considered in many papers (see, for
instance, [2] and references therein).

In the last two decades, several authors have studied the solution sensitivity
of parametric variational inequalities (see, for instance, 14,6,12,13], and refer-
ences therein). By using the metric projection method of Dafermos [a], Yen 112]
obtained a theorem on the Hrilder continuity of the solution to a parametric vari-
ational inequality in Hilbert spaces. Recently, Domokos 16l has extended that
theorem to the case of VIs in reflexive Banach spaces. However, the proof of
the main result in [6] had an inaccuracy, which will be corrected in the proof of
Theorem 3.1 below. (See also the discussion in Sec.4 of this paper). Domokos'
method is based on the theory of maximal monotone operators [8, 16] .

In this paper, by using the method of Domokos 16], we shall obtain some
results on solution sensitivity of pa,rametric generalized variational inequalities
in reflexive Banach spaces. Our results generalize the corresponding results of

19] and 16]. As a by-product, we obtain some facts on solution sensitivity of
parametric convex programming problems in reflexive Banach spaces.

Flom now on X denotes a reflexive Banach space with the dual X* , (L, d)
and.(M,d) are metric spaces; ns e X, )o € A and ps € M are some given points.
Let F : X x M -+ 2x' and K : It -+ 2x be two given set-valued mappings. It is
always assumed that K(.) has nonempty closed convex values. The problem of
finding n : n(p,)) satisfying the inclusion

0 e F ( r , p ) * l / 6 1 1 y ( z ) , (1 .5 )

where (p,)) e M x lt is a pair of parameters, is called a parametric GVI.
The paper is organized as follows. In Sec. 2 we recall some definitions and

facts concerning maximal monotone operators, which will be used in subsequent
sections. In Sec. 3 we will show that under some suitable conditions on ,F'(.)
and 1{(.), the unique solution , : ,(lt,)) of (1.5) is continuous with respect
to (p, )). Moreover, if ,F is Lipschitz continuous and strongly monotone then
r : r(p,,\) will be a Hiilder continuous function. In Sec. 4 we will study some
special cases of (1.5) where ,F'( ) is a single-valued map. Sec. 5 is devoted to an
application of our result to the solution sensitivity of problem (1.1).
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2. Auxiliaries

For a given point a in a metric space and a real number p > 0, denote by B(a, p)
(resp. B(a,p)) the open (resp. closed) ball centered at a with the radius p. For
a set-valued map G : X -+ 2x-, theset domG 7 {r € X : G(n) I A} and
grG :: {(r,**) e X x X* : r* e G(r)} is called, respectively, the effective
domain and the graph of G.

Definition 2.L. G is called lower sem'icontinuous 'in the sense of Hausdorff (H-
l.s.c) at rs € X if, for any e ) 0, there erists a ne'ighborhood U of ns'in X such
thatG(rs)  c  G(r)+eBx" for  euery n e U,  where By* ; -  { r*  e X* :  l lz - l l  <  1} .

Definition 2.2. 18,p.28] G is sai,d to be demicont'inuous at rs € X if, for any
weakly* open subsetV C X* sati,sfyi,ng G(r6) c V, there erists a nei,ghborhood U
of rg in X such that G(r) C V for eaery n € U. G 'is sa'id to be hem,icontinuous
at rs e X i,f, for eaery u € X,I € [0, 1] and euery weakly* open subsetV C
X* satisfyi,ng G(Ins+(1-I)u) c V , there erists 6 > 0 such tliat G(trsa(1-t)o) c
V for euery t € [0, 7] wi,th lt - I l  < 6.

Definition 2.3. 116, p. S52] G : X -+ 2x- is sa'id to be monotone if for any
( r r , * i ) ,  @r , * l )  €  g rG  one  has

@ i - * i , n 2 - 1 1 ) ) 0 .

G is marimal monotone if i,t is monotone and there erists no monotone map
G' : X -+ 2x- such that gr G i,s a proper subset of gr G' .

Combining the following two properties one has a criterion for checking
whether the operator G is maximal monotone.

Lemma 2.1. [8,Lemma 2.5,p.32] Let G : X -+ 2x" be a monotone and,
hemicont'inuous mapp'ing: If U C domG is such that G(r) is a closed conuen set

for euery r e U then G 'is demicont'inuous at euery ns Q U.

Lernrna 2.2. [8,Lemma2.l3,p.34) Let G : X -+ 2x- be a monotone and
dem'icont'inuous mapp'ing. If G(r) is a nonempty closed conuer set for euery
r e X then G is marimal monotone.

The following proposition gives a criterion for checking maximal monotonic-
ity of a sum of two maximal monotone operators.

Lemma 2.3. (Rockafellar 1970; see [13, Theorem 32.I]) If Gt,Gz : X -+ 2x.
are manimal monotone mapp'ings satisfying int (domG1) n dom G2 f A, where
intD d,enotes the interior of a set D C X, then the sum G1 I G2 : X -+ 2x-
defined by setti,ng (Gt + Gz)(n) : Gr(") -l G2(n), 'is also maximal monotone.

The following fact is fundamental in the theory of maximal monotone oper-
ators.

99
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Lemma 2-4. 116, Corollary 32.951 If G : X -+ 2x- is marimal monotone and

dom G is bounded,, then G is suriectiue, i'e' l)*41G(n) : X* .

In the sequel, we shall need the notions of strict monotonicity and uniform

monotonicity (with respect to a gauge function ar) of a set-valued mapping G :

X -+ 2x-. For the case of single'valued mappings, these notions can be seen in

[16, pp. 500-501].

Definition 2.4. G : X -+ 2x' is said to be strictlg monotone if for any (q,xi),

@r, ri) € gr G, rr # rz, one has (ri - *i, a2 - 11) ) 0.

Obviously, if. F : X -+ 2x" is a strictly monotone operator then the problem

(1.3) has at most one solution. Indeed, suppose that 11, rz € K a,re two solutions

of (1.3). Then there exist 11* e F(r1), 12* e F(r2) such that

(* f  , * ,  -  , t )  > 0,  (*z* ,q -  rz)  2 0.

Therefore (*r* - nr*,&2 - 
"t)S 

0. By the monotonicity of F, (*r* - nr*,n2 -

"t) 
> 0. Hence (*r* - xr*,$2 - ,r) :0. Then, by the assumed strict mono'

tonicity of F, 11 : n2.

Definition 2.5. [1] Let w be a non-d,ecreasing real function defi'ned on the set

f t 1  :  { t  € R : t > _ O }  s u c h t h a t u ( t ) > 0 f o r e u e r y t  >  0 .  G ( . )  i s s a i d t o b e

u-unifornrly monotone if, for any (*r,*i), @r,*i) € grG, one has

l* i - , i ,nz - rr) 2 r(11", - 
"r l l) l l"z - 

"t l l .
Foru(t):et, ot >0, (2.1) becomes

@i - * i ,rz - rt) > ol lrz - *r l l ' .

In this case G(.) is said to be a strongly monotone operator.

(2 .1 )

(2 .2 )

3. Continuity Properties of the Solution to a Parametric GVI

Consider a parametric generalized variational inequality in the form (L.5), where

F(*,tt),K(^),M,A are defined as in Sec. 1. Suppose (ro,po,)6) e X x M x It '

is such that
0 e F(cs,  po)  *  NK11oy(cs) . (3 .1)

Our first result on the solution sensitivity of the problem (1.5) ca'n be stated
as follows.

Theorem 3.1. Suppose that the following conditions are fulfiIled:
(a) For euery p, e M, F(',p) is a mo,ximal rnonotone operator.
(a2) There eri,sts a neighborhood U of rs such that, for eaery e ) 0 there etists

6 > O with the property that if ("t, 
"i), @z,xi) € Cr ,F'(', p) n (U x X*) for

sonxe Lt € M, and ll*z - *rll > e, then (*i - ri,n2 - n) ) 5.
(a) There erist a neigborhoodU' of rs, a neighborhood,W of tto and a constant

1)  0  such tha t  F(x , t )  +0  fo r  eaery  @,p \  eU '  xW,
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(3.2)s u p { l l r . l l  i  n *  e  F ( r , t t ) , n  € U ' ,  F  e W }  < 1 ,

and for euery fr e U, F(r,') is lower sernicontinuous in the sense of Haus-
dorff at euery p, eW

(aa) There etist a real function 0 t R+ -+ E+ withlimlas 0(t) :0, a neighbor-
hood(Jt' of rs and a neighborhoodV of ),s such that

K()') n U" c K(\) + P(d,(^',I))Ex (3.3)

for all X, .\ € V , where B y denotes the closed, unit bo'll in X .

Then there erist a neighborhood,W of lto, a neighborhoodV of ),s such that, for
euery (pt,,\) efr ,7, th"r" erists a unique solution r : r(p,\) e U of the

f ollowing g eneralized uariational inequality

0 e . F ' ( a , p ) + N 1 6 1 1 ; ( z ) . (3.4)

P3sidyt, r(po,tro) : ixo and the function (p,)) *+ rA.t,A) is continuous on

W  x V .

The following remarks allow us to have a closer look at the assumptions
( " t )  -  ( " 0 ) .

Remark 1. If there exists a constant o ) 0 such that, for any p' € M and
(q,ri),@z,r\) € gr.F'(.,pr), inequality (2.2) holds, then (42) is fulf i l led. The
proof is obvious. Note also that if there exists a nondecreasing real function

a ; R+4 R+,,!(t) > 0, for every t > 0 such that for every p e M andfor any
(*r,*i),@2,*i) € grF(.,p) inequality (2.1) holds true, then (42) is fulf i l led.

Remark 2. If (a1), (a2) are valid then, for every F € M, the restriction of the

map F(., p,) onU is strictly monotone. Indeed, by (ot), F(',tt) is monotone'

Suppose that  for  some (r1,  * i ) , ( rz , r i )  e  grF( ' ,  p)n(U,  X*) ,  r r  *  nz,  one has

\* \ - r i , rz- r t )  :  0 .  Let  , :  l l rz-" t l l l2 .  For  any d > 0,  one has l lz2 - " t l l  >  .

but (ri - nl.,nz - rr) :0 < d. This contradicts (42).

Remark 3. If. F(r,p): {f(r,pr)}, where I t X x M -+ X* is a continuous

single-valued map, then (a3) is fulfiIled.

Remarkl. Suppose that A is a subset of a normed space and 0(t) : kf, where
k > 0 is a constant. Then (3.2) becomes

K() ' )n U" c K(\)  + k l lX -  I l lBx
for all ) ' , \ eV.In this case, one says that K(') is pseudo-Lipschitz at ()o,ro).

In the terminology of [11], the map .ff (') has the Aubin property at ls for cs. We

have seen that if If (.) ha"s the Aubin property at 16 for 16 then (aa) is fulfiIled.

Sufficient conditions for the Aubin property of implicit set-valued mappings can

be found, for instance, in [5, 11, 14].

Remark 5. If for every p € M the map F(r, p) has nonempty closed convex

values and it is monotone and hemicontinuous on X, then (o1) holds. For the
proof, it suffices to apply Lemmas 2.1 and 2.2.
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Remark 6. Theorem 1of [6] corresponds to Theorem 4.1below, which is a special
case of Theorem 3.1 above where .F is single-valued. A detailed comparison of
our Theorem 4.1 with Theorem 1 from [6] will be given in Sec.4.

The notion of uniformly monotone operators (w.r.t. a certain gauge function
a.') has proved to be very useful in functional analysis (see [16]). In [10] and l7],
it is shown that one can characterize the uniform convexity ofBanach spaces by
using uniformly monotone operators. Note that the class of strongly monotone
operators is too small and not suitable for obtaining such characterizations.

It is not difficult to give examples of c.r-uniformly monotone operators which
are not strongly monotone.

Example 1. [16, pp.502-503] Consider the set-valued map F : R -+ 2R defined
by the formula F(u): {lrlo-'") for all u e R, where p > 2 is a fixed constant.
Since there exists c ) 0 such that

( lu l ' - 'u  -  lo lo- 'u ,u -  u)  > c lu  -  u ln
for all u,u € R, then ,F.(.) is a aruniformly monotone operator, where a(t)::
cfP-r. Meanwhile, it can be shown that f'(.) is not a strongly monotone operator.

Example 2. Let g : R -+ R, p(r): oa. Obviously, cp is a convex function and
09@):  {p ' ( " ) } .For  a l l  r ,y  € R we have

(p' (y) - p' (r),y - n) : (+at - +rs)(y - r)
: 4 ( y 2 * r y r r ' ) @ - d '

>  @ - * ) n .

So F(.) ,:0p(.) is o-uniformly monotone, where w(t): t3. Note that it is not
a strongly monotone operator.

Example 3. Let X : LP(10,11), p > 2, be the Banach space of all measurable
functions defined on [0,1], for which f, 1"1";;oa" ( *oo. By definition, llrll :

1f ;1r1s;;ras) ' /o.  L"t  6@): l l " l lo lp for al l  n € x.  Let F: x -+ 2x. be the
set-valued mapping defined by the formula ,F'(.) : A@(.). In fact, F(.) is the
normalized duality mapping on X (see [Z]). eV Corollary 2.1 from [9],

1
l l t r+ (1  - t )a l lp  <  t l l " l l o+(1- t ) l l y l lo  -  *c ( t ) l l r -a l le

for al l  r ,  A e X and t  e [0,1],  where c(t) : : t (L-t)e +P(l  - t ) .  Using this fact
and arguing similarly as in the proof of Proposition 5.1 below, we get

( r *  -  y * , r  -  y )  >  o l l "  -  y l lo

for al l  r7A e X1r* e F(n),  A* e F(A),  where a:2/p22P. This impl ies that
F is a a.,-uniformly monotone operator with a.'(t) :: etP-r. However, F is not
strongly monotone. Indeed, suppose to the contrary that there exists B > 0 such
that

(**  -  A*,r  -  a l  > 0l l "  -  y l l '
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for  a l l  n1a € X1r*  e F(r ) ,  y-  e F(y) .For  r  : :  2a,  a *  0,  we have

( * *  -a " , i l >g l l v l l 2

for all U e X, n* e F(2y),A- e F(A).By Theorem 2'1 from [7],

F(n) :  { r *  €  X*  :  \ r * , r ) :  l l z l lo , l l " . l l  :  l l " l l o - t } .

Consequently,

7llvll '  s \** - a" ,a) -- 20-' l lsl lo - l lvl lo : (2n-r - t)l lvl lo.

Therefore

13<(2o-t -t) l lyl lo- ' .

Since this inequality does not hold for A e X with llyll sufficiently small, we have
arrived at a contradiction.

Proof of Theorem 9.-1. (This proof is based on some ideas of [6]). Let the as-

sumptions (ot)- (on) be satisfied. By (os) and (oa), there exist positive constants

s,  d,  such that  B(a6,  s)  c  tJ  )U'  etU' !  ,  B( \s ,d)  c  V,  and

Bd(),)o) < s,  for al l  )  e B(^o,d). (3 .5 )

It follows from (3.2) and (3.3) that

sup{l lz. l l  :  r .  € F(r, t i ,r  eB(rs,s), pr e W} < l ,  (3'6)

K(I/) n a(r6, s) c l(()) + Pd(^',))Br, (3.7)

for all ) ' , ) e B(.\s,d). Putting )': )o in (3.7), we see that for each,\ €
B()0, d) there exists z^ € K(^) satisfying

l l "x - rol l  < pd(^,lo) < r.

Hence I{(I) n B(rs,s) * A for all .\ e B(^0'd). Fixing any pair (p',\) e W x

B(^0, d) we consider the inclusion

0 e  F( r ,p ) *  Nr ( r )nE1*o , "1 (4 .

Since K()) rt B(rs,s) is a closed convex set, the normal cone operator

'+  Nr ( r )n r1" ' , " ; (u ) ,

is maximal monotone (see 116, p. S59]). By (or), F(', tt) is also a maximal mono-
tone. According to (a3) and the choice of s, we have E(us,s) c int F(',tt).

Since the effective domain of the operator in (3.9) is a bounded nonempty set

l((I) n B(rs, s), by Lemma 2.3 the set-valued map

r r+ F(r,p) * Nrtr)nE1,o,"y(r) (3.10)

is a maximal monotone operator with a bounded effective domain. Lemma

2.4 shows that there must exist a vector r : r(F'.\) satisfying the inclusion
(3.8). Since F(., tt) is a strictly monotone operator (see Remark 3.2), such vector

(3.8)

(3.e)
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n: r(p,.\) is uniquely defined. By (3.8), there exists some zj,,.r e F(nfu,,\),11,)
such that

(z i , ,s ,z- r (p,^) )  > 0 for  a l l  z  e  K( \ )  nB(zs,s) ( r ) .

In particular,

(2i,7, zx - r(p, ))) > o. (3 .11)

By (3.7), since z(p,)) € K(,\) nB(ns,s) then there is zs e Ked satisfying

l l"(p, )) - ,ol l3 d(I,  ̂ o).

By (3.1) there exists rf, e F(rs,trrs) such that

@ 6 , r - " 0 )  > 0  f o r a l l  z e K } , s ) .

In particular,

( 1 6 , z o - " 0 ) > 0 . (3.12)

As F(', p) is a maximal monotone operator, its values must be convex weaklyx
closed sets in X* (see [16, Proposition 32.6]). Thus F(r6, p), fi e M, are convex
weaklyx closed subsets in X*. In addition, by (os), F(ro,ti 10. Since X is
a reflexive Banach space, X* is also a reflexive Banach space, hence there is
ai e F(ro,p) satis$ring

d(r[, F(rs, p)) :: u.rfrl",rtllr6 
- ,.ll : ll"6 _ yill. (3.18)

Using (3.11), (3.12), and the monotonicity property of F(.,p), we get

o ! (zi,x - ai,, x(u, r) - 
"o)

3 (zi,>, - ai, ,r(u,)) - ,o) + ("6, 
"o 

- ,o) -f (z\.x, zy - r(p,\))
: (zi,,x, 

"x 
- *ol + ("6, zo - ro) - (yi,r(p,,\) - ns)

: (zi,x, rs - *o) + ("6 - ai, zo - 
"o) 

- (yi,,n(tr,, \) - ns)

< ll"i,xllllrx - 
"oll + ll"6 - aillllzo - 

"oll + llaillllrlp,)) - 
"oll.

By (3.6),

ll1,,xll s t,llvill< t,

ll*0', ̂) - zoll 3 pd(^, ̂o),ll"x - *oll < Bd(^, )0),

l l"o - "oll S l lro - r(p, ))l l  + l l*0',)) - "oll < pd,(^,\s) + 2s < 2s.

Therefore

0 ! (zi",x - ai, r(u,I) - 
"o) ! 

21Bd(),)o)) + zsllrfi - yfill. (8.14)

We claim that llcfi - yI,ll -+ 0 as p -+ tto. Indeed, by (as) the set-valued
map F(2s,.) is HJ.s.c. at l-to. Then for any € > 0 there exists d'l > 0 such



Solution Sensitiuitg of a Generalized, Variational Inequalitg 105

that ,F(zs, po) C F(*o,tt) * eBsl* for all p, e BQts,6'). As rfi e F(ro,po),
d(r f , ,F(rs ,p))  < €.By (3.13) ,  l l "6-a i l l  (  e  for  every p € B(po,d/) .  Thus we
have proved that llrfi - Ai"ll -+ 0 as p -+ ps. We get from (3.14) that

ki,^ - ui, ,r(u,.\) - zs) -+ 0 as (p,.\) -+ (p6,.\6). (3.15)

Now we can take the advantage of the assumption (a2). Let e > 0 be given.
Choose 6 > 0 such that the property stated in (o2) is valid. By (3.15), there
exists d > 0 such thar (zi,^-ui,r(u,I) -ro) < d for any pair (pr,)) satisfying
d (p , t t o )  <  e ,d ( ^ , . 10 )  <  d .As  ( z (p ,  A ) , z i , x ) , ( a f r , r o1  €  g rF ( . , p ) ,  t he  p rope r t y
in (a2) implies that

l l "(p,  ̂)  - rol l  ( e,

for any pair (pr,.\) satisfying d(p, t"o) < 0,d(A,)o) < d. This shows that r(ps,.\s)
: n0 &rd n(p,A) -j * (p,)) -+ (po,)o). As a coruequence, there exists an

gren neighborhood I,7 of ;.rs, an open neighborhood I/ of & such that W C W,
V c B(As,d)3d {p,\) € B(rs,s) for any pair (pr, A) e W x I/. Then, for any
pair (p, \) e W x V, since n : r(p,)) satisfies (3.8) and

Nr1.x;. 'r-1,o, 
"1n(P" 

\) : ' l [611;r(P' )) '

we have

0 e F(n(p, , I ) )  + l I7611y (" (p,  ̂ ) ) .

This shows that r : n(F,.\) is a solution to the GVI problem (1.4).

We now prove that the function (p,I) *+ n(lr,\) is continuou" onfr ,t.
Let  (p, \ )  eW ,V b"g iven arb i t rar i ly .  Put t ingE:  r (F,A) ,  we get

0€r ' (u,p)+I{61;;(z) .

Now, instead of the triple (rs, po, )o) we shall deal with the triple (A,F,T).
Observe that the assumpiions (or), (or) do not depend on the choice of

(ro, po,)s). As concerning (o3) and (aa), we note that W and, I/, respectively,
are also neighborhoods of p and ); while I/, U' andU" are neighborhoods of Z.
Therefore, the assumptions (a1) -(on), where (16, po, )o) is replaced by (r,p,\),
remain valid. Then, by the result established in the p:eceding part of this proof,
there exist open neighborhoods W c W and V C V ofE and,\, respectively,
such that for each (p,)) e V xW one can find a unique vector u: u(p,,\)
satisfi i ing (3.4), so that u(p,,.\) -+ z as (p,)) -+ 0t,.\) and u(tt,r):7. For
every pair (p, )) e M x lt, since (3.4) has at most one solution then we get
u(p,A): r(p,,\) for every (p,)) e W xV. The desired continuity of the func-
tion r(p,, )) ut (F, )) follows from the above-mentioned continuity of the function
u(lt,\) at (p,  ̂ ). The proof is complete. r

We now show that under a strengthened version of (a1) - (on), the solution
map u : n(F,.\) of the pararnetric problem (3.4) possesses a finer continuity
property than that described in the conclusion of Theorem 3.1.

Theorem 3.2. Suppose that (ay) and the followi,ng cond'itions are fulfilled:
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(al) There en'ist a ne'ighborhood U of ns and, a constant o > 0 such that, iJ
( r t , r l ) , (nz, r \ )  €  grF( ' ,  u ' )n(U x X.)  for  sonxe p € M then

\*\ - ri,, nz - rt) > c]l*z - *rll' ; (3.16)

(a's) There erist a neighborhoodU' of rs, a neighborhoodW of t"o, and a con-
s t a n t l > 0  s u c h t h a t  F ( r , D  + A  f o r  e u e r y  @ , p )  e U t x W  a n d

h(F(r1, Fr),F(nr, pr)) 3 ,(ll"t - n2ll + d(p,1, p,2)) (3.17)

for atl (rt, ttr), (rz, pz) € U' x W , where

h(A, B) :: max{sup it_tl l lo - bll, sup igf. lla - bll}
a € A o e b  b e B a e a

denotes the Hausdorff distance between two subsets A, B C X* ;
(a!) There erist a neighborhood(J" of p,s, a neighborhoodV oJ ),s, and a con-

s t a n t k > 0  s u c h t h a t

K(^') n (1" c K(A) + kd(^',  ̂)B x (3.18)

for all ),, \' e V .
Then there etist a ne'ighborhoodW of pto* neishborhoodV of As, and constants
k1,k2 ) 0 such that, for anA 0t,\) e W xV, there ex'ists a unique solution
*:  r ( t t , ) )  e  U of  problem (3.1.  Besid 'es,  r (p,s , \o) :  no and

l l r0r ' ,  \ '  )  -  r ( t " , l )  l l  S k l  d(p ' ,  t  )  + k2d(A' ,  ̂)+

for  a l l  (p ' , \ ' ) , (p ,  ) )  €  f r  
"  

V.

Proof. Firstly, we shall show that the assumptions (or)-(on) of Theorem 3.1
are fulfilled. It is obvious that (ai) implies (42) and (oi) implies (aa). trlom
(ai) it follows that re € int(domF'(.,p0)). Since F(',pe) is maximal monotone
then F(ze, ps) must be a bounded set (see [16, Proposition 32.33]). By (oi) and
the boundedness ofthe set F(ro,po), there exists a constant 7 > 0 such that
requirements stated in (a3) are fulfilled. Therefore the proof of Theorem 3.1 is

applicable to the case we are considering.
By Theorem 3.1, there exist_neighborhoods I4l, I/ and a unique continuous

function r(ft, \) defined onW xV such that, for each (pr., \) e W xV , n : r(p, \)
solves the inclusion (3.4).

Let s and d- be'chosen as in the proof of Theorem 3.1. Let neighbor-
hoods I,7, V and function r : n(H,)) be the ones obtained in that proof. Let

(p,)), 0"',\ ') efr x7 be given arbitrari ly. Since c(p, )) e lf(I) l^t B(rs,s) c
K()) n (J" , by (3.18) there is some z e K(A') such that

l l "(p, I) - zl l  S kd(^,  ̂t) . (3.1e)

Similarly, since r(p, )') e K()') nB(ns,s) c K(,\') n U" then by (3.18) we must
find some a e K(^) such that

l l"(p, )') - sll < kd'(^,^').

As n(p,, )) (resp. *0t, \')) solves the inclusion

(3.20)
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0 e F ( r , p ) + N 6 1 1 ; ( r )

(resp., 0 e F(r,p) * I[rtyl(r)), there exists some y. e F(r(p,)),p) (resp.,
z" e F(r(p,,)'), p)) such that

(A* ,y -  
"0t ,  

\ ) l  )  0,  (z* , ,  -  *( l t , l ' ) )  > 0. (3.21)

By (3.16) and (3.1e)-(3.2r),

o l l * j t , \ ' )  - ,0 t , ) ) l l '  <  ( r *  -  a* , r (p , \ ' )  -  r (p , I ) )

3  ( r *  -  U* , r (F , \ ' )  -  r0 " ,A) )  +  (g . ,  y  -  n (p , \ ) )

*  (z*  ,2  -  r (P ,  \ ' ) )
:  (z * , ,  -  * ( l t , l ) )  +  (y - ,  a  -  r (p , \ ' ) l

S l lr . l l l l ,  -  ,0r, I) l l  + l ls. l l l ls -  ,(p, ) ' ) l l
<21kd (A , \ ' ) .

Therefore

wi. r , \ ' )  -  r ( t , \ l l  s {2+d() , ) ' ) } t .  Q.22)" - L a  ' )

Now, since r(p,\') (resp., rAt',\ ')) solves the inclusion

0 e F(2, p') * Ny6,1@)

(resp., 0 e F(c, p,') * Ny6,y(r)), there exists u* e F(n(p,\'),t") (resp., u* €
F(*(tt' , \'), tt')) such that

(u*,*( l t ' , \ ' )  -  r j t , ) ' ) )  > 0, (o*,  r(p,^ ' )  -  n( l t ' , , \ ' ) )  > 0. (3.23)

By (3.17), there is some u;* e F(r(p,t,\'),lt) satisfying

llr* - .*ll, < d(p', p). (3.24)

Bv @) and (3.23),

o l l r j t '  , \ ' )  -  ,0 t , ) ' ) l l '  <  ( . "  -  , * , rA t '  , \ ' )  -  ,0 t , \ ' )

< ( .*  -  u* ,n(F'  , ) ' )  -  r(p,  ) ' ) )

*  ( r * ,  *0 t ' , \ ' )  -  r (p , \ ' ) )

*  (u",r(p, ,) ' )  -  o(p' ,  A'))
: \w* - u* , r(p,' \ ') - r(p,, \ ')) .

< ll-. - o.l l l l* jt '  ,) ') - z(p, ) ') l l .

Therefore, using (3.24) we have

olln(p' ,  \ ' )  - * j t ,) ' ) l l  < ld(p' ,  t").  (3.25)

As

ll* j t '  , \ ' )  - njr, I) l l  < l lr(p',  \ ' )  - *0",I ') l l  + l l"(tr,  ) ')  - 
"(p,I) l l ,
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l lr0r', )' ) - r(tt, lllt < *air', t ) * 
{Tor^',^, } 

t

Putting k1 : I f a, k2 : (21k I a1r/2 , we get (3.13). The proof is complete.

4. Special Cases

In this section we study the parametric problem (1.5) in the case F(r, p,) :

{f@,p)}, where / : X x M -+ X* is a single-valued map. Let (re,/-ro,lo) €
X x M x A b e s u c h t h a t

0 e / (16,  ps)  + NKl , roy(zo) .

Flom Theorem 3.1 we can deduce the following result.

Theorem 4.1. Suppose that (aa) and the following conditions are satisfied:
(b1) For euery p,e M, f (.,p,) is ahem'icontinuous monotone operator.
(b2) There erists a neighborhood U of rs such that for euery e ) 0, there erists

6 > 0 with the property that if ry,r2 € U, F € M, and lln2- "tll 
> e, then

\ f  ( "2 ,  t " )  -  f  ( * t ,  u ) , r z  -  , r )  ,  6 .
(fu) There erist a ne'ighborhoodU' of rs, a neighborhood,W of p,s d,nd a constant

7 > 0  s u c h t h a t

sup{ l l / (2 ,  t " ) l l  t  r  Q (J ' ,  F e W} l  1

and, for eaery n e U, f (r,.) is continuous onW.

Then there exist a neighborhood W of po, a ne'ighbourhood V of ),s such that,

for  eaerg (p, ) )  e  f r  , t ,  there er is ts  a unique solut ionn:  n(F, \ )  eU of the

f ollowing parametric u ariational inequal'ity

0e  f  ( r , p r )+N7s11y ( r ) .  ( 4 .1 )

B:sidy;, r(/ lo,tro) : no and the function (p,)) -+ r(p,A) is cont' inuous on
W  x V .

Proof. For the proof, it suffices to note that (b1) implies (a1) (see Lemma 2.1
and Lemma 2.2) and apply Theorem 3.1. r

The following theorem was obtained in [6].

Theorem 4.2. Suppose that (aa) and the following cond,itions are sat'isfied:
(b'r) There erist a neighborhoodU of rs, a neighborhoodW of tto such that f

is cont'inuous on U x W.

@) fhe mapping f(.,tt) are strictly-monotone for aII p,€W, and

ff(a, D - l@, tt),y -r) -+ 0 + a -+ r,

uniformly with respect to p, e W.
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Then there etist a neighborhood,fr of ps, a neighborhood't of ),s such that, for
euery (p",\ efr xt, there erists a un'ique solut'ion *: *(p,\) e U of the

f ollowi,ng parametric a ariat'ional inequality

0 e f ( r , p ) + 1 f 7 6 1 1 ; ( r ) . (4 .1 )

B:si'dy;, u(p0,)0) : ro and, the function (p')) '+ rAt,\) is cont'inuous on

W  x V .

Condition (bi) is rather difficult to understand. Its exact meaning is ex-
plained in condition (bz) of. our Theorem 4.1. Note that Theorem 4.1 extends
Theorem 4.2. Indeed, if one assumes that f(",tt) is continuous on a neighbor-
hood of (ro, po) then it is obvious that condition (b3) in Theorem 4.1 is satisfied.
As it has been said in Introduction, the'proof in [6] has some inaccuracy. Namely,

in our notation, to prove that the function r(p, \) is continuous at (p, ,\) efr 
"7

the author proves that r(.,)) (reps., r(F,')) is continuous at p (resp., ,\) then
he concludes that r(p,)) is continuous at (p,)). This argument is, of course,
incorrect! As an example, consider the function

(  3l '  -  i r  u2 +u2 +og \ u , D ) : \  u ' + u '

| . o  i f  u : u : o

of two real variables u and o (see [3, p.a6+A65]). Observe that p(',o) is contin-
uous for each o fixed, and p(u,') is continuous for each u fixed. Since tp(0,0) : 0
andg(u,o) :1 i f  u :u anduf  0,  p is  d iscont inuous at  (0,0) .  In  the proof  of
Theorem 3.1, by introducing some modifications to the proof scheme proposed
in [6] we have shown that the above.mentioned inaccuracy can be eliminated,
and the result of [0] can be extended to the case of generalized variational in-
equalities.

The following result follows directly from Theorem 3.2.

Theorem 4.3. Suppose that (b1),(a!) and the following assumptions are satis-

fied:
(bi) There enist a neighborhood U of rs and a constant o ) 0 such that for

eaery (n1,  p) , ( rz ,  d € U x M, i t  ho lds

U@r, t") - f (*t, tt),rz - r) 2 allr2 - rt l l ' .

(b!) There exist a neighborhoodU' of rs, a neighborhoodW of p,s, and a con-
s t a n t l > 0  s u c h t h a t

l l/("t, p) - f (rz, pr)l l 3l(l l"t - r2ll + d(1t1, p'2)),

for all (*t, ltt),(*r, ttz) € U' x-W.

Thenthere en'ist a neighbourhoodW of Fo2-9' neighbourhoodV of )'s, and con-
stants k1,kz > 0 such that for any (lr, )) e W xV, there etists a unique solut'ion
n: r(F,)) e t/ of the parametric problem (1.1). Besides, n(p,s,\o): no and
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l l * j t ' ,  \ ' )  -  r(p, I) l l  S k1d(p' ,  t")  I  k2d(X, A)i

for  aI I  ( t ' , \ ' ) , (p,  I )  e f r  
"  

V.

For X : /{, where If is a real Hilbert space, Theorem 4.3 recovers Theorem
3.1 of 112] except for one thing: We have to impose the additional condition
(b1). Therefore, Theorem 4.2 extends Theorem 3.1 of 112] to the case of vari-
ational inequalities in reflexive Banach spaces. The proof in [12] allows one to
avoid using the extra condition (b1), and get the conclusion of Theorem 4.3 by
using only the assurnptions (o,a),(b2) and (b3). Note that, in order to follow the
Domokos scheme [6], one has to assume that the operators f (',tt), p' Q. M, are
maximal monotone. This is the reason why we cannot omit the assumption (b1)

in Theorems 4.1 and 4.3.

5. Applications

In this section we want to explain how the obtained results can be applied to
study the solution sensitivity of parametric convex programming problems.

Deffnition 5.L. A funct'ion g : X -+ R U {+oo} 
'is said to be strongly conuer if

there erists a constant p > 0 such that

p(tq + (L -  t )r)  < tp(r)+ (1 -  t )p(rz) -  pt( t  -  t ) l l r ,  -  rr l l ' ,

for aI I  t  € [0,1] and, r1,rz € X.

There exists a tight relation between strong convexity of a function and
strong monotonicity of the subdifferential map.

Proposition 5.1-. tf gO is strongly conue:x then there erists a constant a ) 0
such that for all n1,n2 € X, ri e \p(*t), ri e 09@2) one has

@i - *i, rz - rr) > oll*z - *rll' (5 .  1 )

Proof . (This simple proof is presented here for the completeness of presentation).
For every r,y e X, r* e 0g(r) we have

e@ + t(y- 
")) 

- p(n) 3 t(e@) - e@D - pt(I - t) l la - 
"l l ' .

Therefore

t ( r* ,a -  r )  ! t (e@) -  e@D - pt(r  -  t ) l ls  -  * l l ' ,

and hence

(r*,y - 
") 3 p@) - p(n) - p(r - t) l ly - 

" l l '  
(5.2)

for all n,A e X and r* e 0g@). Suppose that c1,n2 € X, ri e 09@1),
ni e 9@2). Ihom (5.2) we have
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\r i ,rz - rr) < e@2) - e@L) - p(r - t) l l r2 - rr l l2,

( * i , * ,  -  * r l  .  e@L) -  e@z) -  p(7 -  t ) l lq  -  r r l l ' .

Adding these inequalities yields

\*i - ri, rz - rt) > zp(l - t)llr, - *rll'.

Letting t -+ 0 and putting a:2p we obtain (5.1). The proof is complete. r

Note that it p(.,1t) is not assumed to be FY6chet differentiable on X then the
correspondence r r+ 0g@) defines a set-valued map.

Now we can formulate two results on solution sensitivity of convex program-
ming problems which work for the case of parametric strongly convex program-
ming problems.

Let g: X x M -+ RU {+-} be a real function such that, for every pe M,
p(,tr) is a convex function. Denote by }p(',p) the subdifferential of 9(,p').
Consider the problem

p(n, p) -) min, n e K(^). (5.3)

Here (p, \) e M x A is a pair of parameters. Let ns be a solution of (5.3) where
(p, , \ )  :  (po, lo)  e M xA is  a g iven pai r .

Theorem 5.1. Suppose that (aa) and, the followi'ng assumpt'ions are fulfi'lled:
(c1) For eaerA p € M , g(, p,) is a lower semicontinuous funct'ion on X ;
(c2) There eri,sts a nei,ghborhood U of rs such that, for eaery e > 0 there edsts

6 > 0 with the property that, for any ni € 0*9(r1,p), r\ e 0,9(n2,p),
n y , r 2 € U  a n d  F €  M ,  i f  l l " r -  r t l l  > .  t h e n  ( r i - n l . , r z - r )  >  5 ;

(ca) There erist a ne'igborhoodU' of rs, a ne'ighborhoodW of 1L,s and a constant

1 ) 0 such that 0*9(n, d + A for euery (r, p) e U' x W,

sup{ l l r - l l  :  z "  €  O ,p (n ,L r ) , r  e  U ' ,Fe  W}  < ' y ,

and, for anA r e U, 0rg(r,.) i,s lower sernicont' inuous'in the sense of
Hausd,orff at euery p e W; _

Then there eilst a ne.'ighborhood W of 11,s, a neighborhood V of )'s such that,

for euery (p,)) e fr *V, there erists a un'ique solution r: r(p,)) e t/
of the optim'izat'ion problem (5.3)_Beildes, r(po, )o) : no and the function
(p , I )  -+  r (p , \ ) ' i s  con t ' i nuous  onW xV .

Proof. It suffices to note that r is a solution of (5.3) if and only if z solves the
following variational inequality:

0  e  0 ,p (n ,p )+  N611 ; ( r ) .

Put F(r, p) : 0,p(r,p). By a result of Rockafellar (see [16, PropositionS2.LT,
p.860]), for every F € M, F(-,lt) is a maximal monotone operator. Hence we
can apply Theorem 3.1 to get the desired conclusions.

Theorem 5.2. Let (a!) and the followi,ng cond,it'ions be fulfi,lled:

1 1 1
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(c!) There erist a ne'ighborhood U of ns and a constant a ) 0 such that, i,f
ni € 0"g(r1, F), ni € 0*g(r2, p) for sorne LL € M, where r1,T2 € U, then

@i - *i ,  rz - rr) > ol l*z - *r l l2;

(cls) There erist an openne'ighborhoodU' of rs, aneighborhoodW of p"s, and, a
constant I > 0 such that, for euery (n, p) e U' xW, g(, p) has the Fr6,chet
deriuatiue g'r(r, p,) , and

l lp',(rt, pt) - p',(rz, pz))ll < l(ll"t - ,rll + d(pr, ttz))

for all (*r,ltr),(*r, ttr) € U'*x W .
Then there erist a neighborhood W of 1ts,-g neighborhood V of ),s, and constants
k1,k2 ) 0 such that, for anA 0r,A) e W xV, there erists a unique solut'ion
r : n(F, A) e U of the parametric problem (5.3). Besides, r(trrs,Ao) : ro and

ll*0"', A') - r(tr,A)ll < k1d(p', t ) I k2d(^',  ̂)+

for  a l l  ( t ' ,A ' ) , (p, I )  e f r  
"  

7.

Proof. This theorem follows from Theorem 3.2 in the same manner as Theorem
5.1 follows from Theorem 3.1.
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