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Abstract. We define modal Boolean rings without identity and show that all such
can be embedded in modal Boolean rings with identity. We then show that there are
radical-theoretic ways of viewing many of the most important classes of modal logics,
such as ? and 54.

l-. Introduction

In modal logic, Boolean algebras equipped with additional unary operations
n and Q ("possibly" and "necessarily") and satisfying certain identities are the
natural algebraic models, just as general Boolean algebras are the natural models
in classical propositional logic. Such objects were perhaps first studied in [9],
where McKinsey and Tarski defined "closure algebras" in order to "algebraize"
point-set topology. These Boolean algebras with closure operation (satisfying

the usual Kuratowski sorts of conditions) are also the algebraic models for the

so-called ",S4" version of modal logic, where the closure operation applied to a
proposition p is interpreted as 'rpossibly p".

Now it is well-known that the varieties of Boolean algebras and Boolean rings

with identity are term equivalent, a fact that easily extends to closure algebras
and Boolean rings with identity having closure operation. But Boolean rings
having no identity are of interest, and it is an important fact that every Boolean
ring without identity can be embedded as a maximal ideal in a Boolean ring with
identity. Indeed a similar embedding is possible for general rings without identity
(although the embedded ring is not usually a maximal ideal of the bigger ring).

A big advantage of varieties of rings without identity is that they are closed
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under ideals, and one can do radical theory (see Wiegandt 112]) among other
things.

' 
So far there has been no study of "modal Boolearr rings without identity,', in

which both possibility and necessity operators are present. One reason for this
is that Boolean algebras rather than Boolean rings have traditionally been used
in logic. Also, the identity element is critical in the logical interpretation: it
models the proposition "true", and only if complements exist (which means the
Boolean ring must have an identity) can one define the possibility and necessity
operations in terms of one-another.

We shall define "modal rings" not necessarily having an identity and show
that any such object can be embedded as a maximal closed ideal (an ideal
respecting the closure and interior operations) in a modal ring with identity in a
way that preserves important properties. We then apply radical-theoretic ideas
to establish connections between some of the most important sorts of modal
rings.

For recent references concerning the algebraic study of modal logic, see those
cited in Sections V.4 and V.8 of I5l.

2. Modal Boolean Rings

Throughout this section, let rB be a Boolean ring, that is, an associative ring
satisfying e2 : a. Then ,R is commutative and is of characteristic 2. R is partially
ordered by defining alpb if and only if ab: o; defining aV b: a*b-lab and
a Ab :  ab,  a <-pb i f  and only i f  aY b :b i f  and only i f  a  Ab :o,  and ( ,R,v,n)
is a relatively complemented distributive lattice.

R is a closure Boolean ring if it possesses a unary operation [ ], satisfying
f0 ] . : 0and fo r  a l l a ,be  R , [aVb ] . :  [ o ] " v l b ] " , andweca l l [ ] "  ac losu reope ra t i on .
Up to term equivalence, these are the same objects as Blok's "generalized interior
algebras"l see [1]. See also [2] where the existence of a ring identity is assumed.

R is an ' interior ringif it possesses a unary operation [] i satisfying [0]z:0
and for all a,b e R, labli : l"]n[b]6. We call llt an i.nterior operat'ion.

,R is a mod,al Boolean ring if it possesses a closure operation I l" and an
interior operation | ], linked by the rule

l"l.lbln : fab-r b]r + lblt
for all a,b e 

'R. 
Notation: (fi, [ ]", [ ],;), ot just -R if no confusion can result. We

call [], and l]a the modal operations on (,R, l]", []r).
In the modal Boolean ring R, both modal operations are obviously order-

preserving, and for all a € R, la].la)6 : lah, so fa]a S ["]". Any closure Boolean
ring is a modal Boolean ring in at least two ways: one can define [ala : o for all
a or faft:0 for all a.

If a modal Boolean ring with identity .R satisfies [1]a : 1, or equivalently
la].: la + 1]l + 1 for all a € R, then we say .R is a strong mod,al Boolean ring.
Any closure Boolean ring with identity is obviously a strong modal Boolean ring
in exactly one way.

It is easy to check that normal deontic modal algebras in the sense of 17] are,
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when viewed as Boolean rings, exactly strong modal Boolean rings in the current
sense. The global assumption that [0]" : [0]i : 0 ensures that the objects of
study are mult'i-operator groups in the sense of Kurosh [6].

Let -R be a modal Boolean ring. ft' ! R is a modal subring of rR if it is a
subring which is closed under the modal operations.

We say the modal Boolean ring .R is
c idempotentif l lr l").: lr]" and ["]olo : [c]a for all n e R;
o classicalif lr]": n and, lrlt: r for all r e R;
c of. type T if. rlr]" : r and rlrli : [o]a for all r e R;
o of type ^94 if it is of type ? and idempotent;
o of. type^g5 if it has an identity and 1 * [r]" : [1 * [r]"], for all n e R.

The various types of closure Boolean rings are defined by reference to [ ]"
only, omitting the part of the definition (if any) referring to | ]r.

Denote byT,C,TtS+ and 55 the classes of idempotent, classical ,typeT,
type 54 and type ,95 modal Boolean rings respectively (and similarly for closure
Boolean rings). All of these classes are varieties, and the following inclusions
hold:

C  c 3 + : T l \ ' T '

In the strong modal Boolean ring case, we also have 55 ! 5+. Any Boolean ring
R is a classical modal Boolean ring in precisely one way, and is an 54 modal
Boolean ring if one defines lol. : lol.': 0 for a"ll o e R.

For strong modal Boolean rings, each type may be defined in terms of either
the closure or the interior operation, but even for non-strong modal Boolean
rings having identity, we have the following:

Lemma 2.1. Suppose the mod,al Boolean ring R has identity.
l. If alal. : a for all a € R, then R e T.
2. If lali : a for all a € R, then R e C.

Proof . For all a € R, la -l11"11]4 = [(o + 1)1 * 1]z + [1]; : la]1 * l1la, so

ala l r  + la l i  :  (a+ 1) la l i  :  (a  *  1) [a + 1]" [1]o + (a + 1) [1]6,

s o  - R i s o f  t y p e  T i f . a [ a ] . :  a f o r  a l l a  e  R .  I f  [ o ] a :  a f o r  a l l a  e  f t ,  t h e n

lal.: a + 1+ 1: a so R is classical. I

Example 7. Subsets of topologi,cal spaces.

Let X be a topological space. Letting R:2x, define lo]" to be the closure of
a € R. Then R is a strong ^94 modal Boolean ring with identity. Moreover all
^94 moda,l Boolean rings arise as modal subrings of such modal Boolean rings
(see [e]).

Example 2. Sets of natural numbers.

Let -R : 2N ,l/ the natural numbers. There are a number of ways of making
R into a strong modal Boolean ring. If we define lX\.: {1,2,...,n} if the
Iargest element of X e R is n, with lX]" : 1 if no Iargest element exists,
then the sets of the form [X]" are the closed sets of a topology on the natural
numbers, so R is a strong ,S4 modal Boolean ring. A type 7 example which
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is not,94 may be obtained by setting lXl.: {nln e X and nll e X} and

lXlo: {nln e X or n + 1 € X}. These examples appear in [10].

Example 3.1 Sets of real numbers.

Each of the above examples contains a modal subring without identity, namely
the modal subring of finite subsets of natural numbers. Another ^94 modal
Boolean ring without identity is the Boolean ring of bounded subsets of the
real line together with the usual closure and interior operations, an ideal of the
Boolean ring of all subsets of the rea,l line which is additionally a modal subring.

Exa,mple 4. Subsets under a transformation.

Despite arising quite naturally modal systems weaker than tlpe 7 are seldom
considered; for instance they are not covered at all in [ ]. Let f : X -+ X be
a transformation defined on the set X. Obviously f @) :0, and it is easy to
check that /(S U 

") 
: /(S) U f(T) for all S,T e2x. So defining [S]. : /(S)

for all S € 2x makes 2x into a closure Boolean ring, idempotent if / is, and not
of type ? unless / is the identity transformation, as can be seen by considering
the images of singleton sets.

Modal Boolean rings not of type T rnay also be constructed from type 7
modal Boolean rings as follows.

Theorem 2.2. For R a closure Boolean ring and for a € R, with a not an
i,denti,ty for R, defi,ne lr]i : alrl. for all r € R. Then (R, t 13) ir a closure ring
not of type T. If R is 54, then (,q, []3) 

'is idempotent.

Proof. For any n.A e R,

l"v alZ : alnv Ul": a(frl. v lc/1") : (alrl") v ("[s/]") : l"l?v lylt.
Further, l0l3 : "[0]" 

: 0 and so (fi, t ]3) it a closure Boolean ring.
Also, [r]! 

( a for all r € (rR, []3), so if o, is not an identity, there exists b f a,
so that b fl albl": lb]! and so (rR, []3) it not of type T.

If R is ,94, then for all r e R, lolrl.l" S [["]"]. : lr]. so alalrl.]. < alr].;
further, o[r). < a and alr]" < lol*1.]. so afr]. < alalr].1.; hence afafr]"1. : alr].,
so (rB, l]3) it idempotent. r

The converse process is always possible too. It is routine to show that if
.R is a modal Boolean ring, then defining lrl", : nY lr). and [r]1, : rlr]t,
(,R, [ ].,, [ ]r ) i. a type T modal ring; furthermore, if rR is idempotent or classical,
s o  i s  ( . R , l ] " , , l ] n , ) .

3. Closed Ideals

A closed, ideal I of a modal Boolean ring R is a ring ideal which is closed with
respect to [ ]": li)" e I for all i e ,I. Note that such an ideal is a modal subring
since fa]ilo]" : laft, so closed ideals are exactly modal subrings which are ideals.
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Proposition 3.1-. Suppose I 'is a ring i,deal of R. The followi,ng are equiualent:
7. I is a closed ideal.
2. The ring congruence 'induced by I respects the modal operat'ions on R.

Prool .  Supposel is  ac losedidealof  f tandlet  i  € . I ,  a€R. Then

( [a+ i ] "+ la l " ) [z ] "
: (fa * il. + lil"* [a * i'].lil") + (["]" + [4" + ["].lrl") + lo * il" * lal.
: fo f il.v lil" * fol" v ftl. + fa -f i,]" + fal.
: f(a * i) v il"* la v i). + lo -r il. -r lal.
- lo * i + i + ai. -f i.l.+ [o + i -f ail.* [a * il. + lo].
: [a * i]. _r lal..

Hence la*i,). * [a]": ([a+z]"+ [a]")[i]" € 1, so congruence modulo -I respects

| ]" also. Moreover,

fa + i]6 -r lali : [(a v i) * (a v i)ai]t * lali : lail.la v ilr + la v ili + l"ln.

Now [ai ]" [a,Vi] i  € 1, so la +i l t+lal ie I  i f  and onlyi f  [aV i ] r+lah €.I .  But

lalr + laY ila : lai + i, + (a v i)lr + lav i,l,t
: l(ai, + i,)(a v i,) * (a v i)h + la v ilt
: lai, * i,l"la v i]i e I.

The converse direction is obvious: let o : 0 in the assertion that la + i]" -

l a l " e l  f o r a l l  a e R , i e l .  I

Thus closed ideals are exactly the kernels of modal Boolean ring homomor-
phisms (ring homomorphisms which respect both modal operations), and are the
relevant variant of. rnult'i-operator group i,dealsin the sense of Kurosh [6] for the
variety of modal Boolean rings. The version of this result for strong ̂ 94 modal
Boolean rings was shown in [11].

4. Embedding Modal Boolean Rings in Modal Boolean Rings with
Identity

Let -R be a Boolean ring; then R is a left unital module over 22 in a natural way.
Let R* : R x 22 as an additive group, with multiplication defined as follows:

(a,a)(b, 91 : @b -r otb * l3a,a0)
for all a,b e. R and a, 0 e Zz. Identifying R with its copy {(o,0) | a e .R} in
R*, every element of .R* has one of the two forms a or a * 1 where a € lB and 1
is the identity element of R*.

The modal operations on the modal Boolean ring R may be extended to .R*
as follows: for all a € ft, define

a -t  l ] i :  [a, ]"  *  1,  [a * 1]"  :  [a] i  a 1.
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Theorem 4.1. R* together wi,th the extens,ions of the mod,al operations on R
just defined, is a strong mod,al Boolean ring hau'ing R as a maximal closed, ,id,eal.
Moreouer R* 'is'idempotent/typeT/classi,cal i,f R i,s.

Proof. To show that [a]" v [b]" : [o V b]" for all a,b € fi*, we consider three cases
for a,b. rf. a,b € R, the result is immediate. rf a e R and b: c* l for some
c € R, then

lav (c+ 1)1. : lc -l ac+ 11" : lc + acli* 1 : [a].[c] t 1- lcl i 1 1
: fal. v (1"1,; + 1) : [o]" v [c * 1]".

If. a : c* 1,b : d + 1 for some c, d e -rR, then

[(c + t) v (d + L)]" : lcd+ 11" : lcdlr + | : [c]ild,li t I
:  ( l" lo+ 1) v ([d]o + 1) : [c+ 1]. v [d+ 1]..

closed ideal, so E is a maximal closed ideal of .R*.
Now suppose,R is idempotent. rf a e R then l[o]"]": [a]" is immediate; if

a :b t  l  f o r  some b  e  R ,  t hen  l [ o ] " ] " :  l [ b+  1 ] " ] " :  [ [ b ] z  +  11 "  : f l b ] i l *1 :
[b],i + t : lb+ Ll": lal". But .R* is strong, so [[b]ila : [a]4'for Ai a e h;, and R*
is idempotent.

Suppose R is of type ?. Then for all a € R, ala].: o, and (a+ 1)lot 1]. :
( a+  1 ) ( [ a ]6  +  1 )  :  o fo l ,+a+ la l i t l :  a *  1 ;  so  b lb l " :  b  f o r  a l l  b  €  -h * ,  so ,R*
is of type ?.

Suppose R is classical. Then for all a e R, lali : la].: o) so [a + 1]n :
[o]" + f : a -f I so .R* is classical. I

corollary 4.2. Euery R e s+ may be embedd,ed in (2x,c) for some topolog,ical
space X hauing closure operator C.

5. Radical and Semisimple Classes

Radical theory began as a branch of the structure theory of abelian groups and
rings, but has since been generalized to multi-operator groups and other more
general classes of algebras. There is a notion of ideat in multi-operator groups
which reduces to the usual notion of ideal for rings, normal subgroup for groups
and closed ideal for modal rings; essentially they are kernels of multi-operattr
group homomorphisms. Thus the following generalities in particular apply to
modal Boolean rings. Here we link up various natural classes of modal Boolean
rings by means of radical theory.

Given a universal class z of multi-operator groups (that is, a class closed
under taking homomorphic images and multi-operator group ideals), a rad,ical
class R in U is a non-empty class for which
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1 .  A e R , A o  B  i m p l y  B  e R ,
2. I is an ideal of A e R implies AII e R,

3 .  R (A ) :  t { / : J  i s  an  i dea l  o f  A , J  e  R }  e  R  fo r  any  AeU and ,

4.  R(A|R(A))  :  {0}  for  any A eU.
(See f3].) We call R(A) the R-rad'ical of R; il is the largest R-ideal (ideal in R)
of R. A € U ]s said to be R-rad,'ical lf R(A) : ,4 (equivalently, if A e R) and
R-semis'imple it R(A): {0}.

The first two properties above can be summarized by saying that R is closed
under homomorphic images. An equivalent definition of radical classes which
will be useful is as follows: the non-empty class R of multi-operator groups is a
radical class if and only if

1. R is homomorphically closed;
2. Ris closed under ertens'ions, that is, if 1is an ideal of A and I,AII e R

then ,4 € R; and
3. R contains all unions of chains of R-ideals.

The last condition says that for any chain 11 I Iz e ... of ideals of a ring ,4
in7R-,if all the Ii areR-ideals, then so is their union (itself an ideal as is easily
checked).

Given a universal class of multi-operator groups) a sem'is'imple class'Jl is a
class such that there is a radical class R for which A e'll if and only it R(A) :

{0}, and we say that such A e 
'11 is R-semisimple. For any A, 7l(A) is the

smallest ideal of A which when factored out, makes the factor ring semisimple.
Radical and semisimple classes come in pairs: given a semisimple class '11, the
radical class giving rise to it consists of all .R having no non-trivial homomorphic
images in 71. (See [3] for the details.)

For many kinds of algebraic objects, it is possible to characterize semisimple
classes independently of the concept of a radical class. This is true of modal
Boolean rings.

Theorem 5.L. LetV be a uarietE of modal Boolean rings, H a subclass of l.
Then'lf is a semis'imple class i,f and only if

l.'J[ is closed underideals, that is, A e 
'11 and I 'is an ideal of A imply

I  e ' 11 ;
2. H i,s closed under ertensions; and
3. H i,s closed, und,er subd'irect products.

Proof. Note first that closed ideals satisfi' the transitiui,ty property: if 1 is a
closed ideal of J which is in turn a closed ideal of R then I is a closed ideal of
R. The proof is easy: if I is a closed ideal of .I which is a closed ideal of fi then
in particular 1 is a Boolean ring ideal of -R since ideals in Boolean rings satisfy
transitivity; it is then immediate that 1 is a closed ideal of R. The desired result
is now immediate from Theorem 3.2 in Chapter 3 of [3]. I

Let V be a variety of modal Boolean rings with Fl*,y,2] the free modal
Boolean ring in V on the three generators r, gr, z. Viewing Flr,y] as embedded
in Flr,y,z]in the obvious way, we say / e Fl*,Alis assoc'iating if there exists
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g € Flr, y, z] for which /(/(r, y), z) : f (n, 9(n, y,z)). The following is a special
case of a result appearing in McConnell and Stokes l8].

Lemma 5.2. LetY be a uari,ety of modal Boolean ri,ngs with f e Flr,y,z]
associating. Then the class Ry cons'isting of those A e V for wh'ich, for all
a€  A the re  e t i s t sb€  A  such tha t  f  ( a ,b ) :0  ' i s  a rad i ca l  c l ass .

Here is an example.

Proposition 5.3. The class L, cons'ist'ing of modal Boolean rings R such that

for eaery a € R there es'ists b € R for wh'ich a <lbl., is a rad'ical class.

Prool. Note that L: R/ where f (r,A): rlyl. *4, and

f(f(",y), z) : (rlyl. + *)["]. + rlUl" + n
: r(lal.lzl. * [r]" + lal) + *
: r(lal.v lzl") + r
: n l y v  z ] " + n
:  f  ( r , y v  z )

so / is associating. Hence ,C is a radical class. t

We shall consider the associated semisimple class for the special case of the
universal class of idempotent modal Boolean rings shortly.

Flom the radical class definition and from Theorem 5.L, it follows easily that
a variety of modal Boolean rings which is closed under extensions is both a
semisimple and a radical class, that is, an ^9^9.8 class.

Corollary 5.4. Let f (r) e Flnl. tf f (") 'is idempotent, in the sense that

f  ( f  ( r ) ) :  f  ( r ) ,  thenRy is  an SSR c lass.

Proof. For such an f , R1 is a variety which is also a radical class by Lemma 5.2
and so is closed under extensions, and hence is an SSR class. r

Lemma 5.5. In the uariety of modal Boolean rings, both f (*) : rl*]. + n and

s@) : nlrh + r are idemPotent.

Proof.
f (f (")) : (rlrl. + r)lrlrl. * nl" t nlrl. * r

: nlrl.lr[r]. + rl. * rlnlrl. + rl. + nlnl" + n
: ,(lrl"v fnlrl. + rl.) + r
: rlr Y (rfrl. -l n)1. -t r
: rlr + rlrl. + r -f rlrl. + n). + r
: rlrl. I r
: f(r)

and
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g(")lg(")ln : (rlrl.t + r)lrlnli * nl6 : rlrlilrlrli * rh + rlnlrlr + rlt
: rlr(rln)t + r)]r + rlrlrlr * r]i : rlrlrli 1- rl )- rlrfr]i + rli
- 0

so e(e(r)) :  s@)ls@)h + s(r) :  s(r) '  I

Already we have enough to assert the existence of two SSR varieties of modal

Boolean rings, using Lemmas 5.2 and 5.5.

Corollary 5.6. In the uariety V of closure Boolean rings, T is an SSR class'.

Proof. lnV, R € 7 if and only if R €R1, / as in the previous lemma' By

Corollary 5.4, this is an SSR class. r

It follows that every closure Boolean ring R contains a largest type T closed

ideal, f(.R), the T-radical of R, and RIT(R) has no non-trivial type ? closed

ideals. But conversely, every closure Boolean ring contains a largest closed ideal

having no type ? homomorphic images, the dual T-radi,cal o/ fi, which when

factored out, gives a type ? closure Boolean ring. Denote by 7' the radical class

having ?r as its semisimple class.

P r o p o s i t i o n S . T .  L e t R : 2 x , X  a s e t ,  a n d ,  l e t f  t  X  - +  X  b e a f u n c -

tion. Defi,ning lsl.: /(S) for all S e R, 'in the closure Boolean-rins (R,ll),

T(R) :2M where 114 : {rlr e X, f (n) : r}, and RIT(R) = 2x\s with closure

operation determ'ined by the partial function obtained from f bg the restriction

of f to X\5.

Proof. Let.I be a closed I-ideal of ft (closed ideal of R of type 7). Then for

all V e I,V I /(V), so because l is an ideal, z: f(") for all r e V. Now let

M  :  { n l n  e  X , f  ( n ) :  r } ;  t h e n  f  ( W ) : W  f o r  a l I W  e  2 M ,  s o  J  : 2 M  i s  a

closed I-ideal of .R. Obviously any other such ideal of R is contained in "I which

is therefore the ?-radical of -R. The description of RIT follows easily. I

We give a nice description of the dual radical (for which 7 is the semisimple

class) for the case where / is idempotent in a later section.

Proposition 5.8. Let (R, | ].) e T and let a € R not be an identity for R.

Then in (rR, [ ]3), T(R) : {ra I r e R), the pri'ncipal 'ideal generated by r, and,

RIT(R) sat'isfi,es lr]" : lrlr : 0. If R has an identity then T'(R) : (a i 7), the

closed, 'ideal generated by a -l L

Prool. Now for all t € R, l"l2 : a[r]., as in Theorem 2'2' A closed f-ideaI J

of  (R, [ ] ! )  wi l l  be such that ,  for  a l l  r  €  J ,  r ln l i :  r ,  that  is ,  ra ln] . :  r , that

is, ar : n) or tr ( a. Let .I be the principal ideal generated by o. For s € 1,

["]3 : o["]" € 1, so 1 is closed. Moreover it is immediate that 1 is the largest

closed ideal J of (R, [ ]!) all elements of which are less than or equal to a, that

is, it is the largest ?-radical closed ideal of (R, [ ]3) and hence is 7(,R). The last

oart is clear.

t87
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On the other hand, suppose .tR has an idr:ntity. Then ,.I is a closed ideal of
rR for which (RlJ,l]!) is in ? if and only if rfr] i+r e J for ail r € R, that' is,
r a * r : r ( a +  1 )  €  J f o r a l l  r e  R ,  t h a t  i s ,  a * J , €  J .  T h e s m a l l e s t  s u c h  - I ,
and hence the dual ?-radical of R, will be the closed ideal generated by a I r.t

6. Idempotent Modal Boolean Rings

Throughout this final section, we concentrate on the universal class Z of idem-
potent modal Boolean rings. Let R e I. For a € R, Io : {rfa].lr € rB} is a
closed principal ideal since for all r e R,lrla]"].<n [lo].], : lal., and so we call
Io the princ'ipal closed ideal generated by a.

we begin with the question of simplicity, which in the idempotent case leads
to a result analogous to the familiar one stating that a simple commutative
ring is a field. we define simple modal Boolean rings in the obvious way, and
the usual relationship between maxima,l closed ideals and simple modal Boolean
rings holds. The following result is in effect proved in [11] in the strong ,g4 case;
our proof uses a different method.

Proposition 6.1. R ,is s'imple i,f and only i.f lrl": t wheneuer r + 0.

Proof. Any such R is obviously simple since for all non-zero a € R, ro contains
fo]" : 1. Conversely, if rB is simple and a € -R non-zero, then Io : R by
simplicity, so la]" is the maximal element in .R and hence is an identity for ,R. r

InI, f(r): ln]" and 9(z) : lr] i  are idempotent, so by Corollary 5.4, the
variety 

'P" 
consisting of all .R for which [o]" : O for all a € R is an SSR class, and

similarly for the variety V2 consisting of all .R satisfying [o]r : 0 for all a e R.
Note that V. e Vt.

viewing v. as a semisimple class, the corresponding radical class is all .R
such that there is no proper closed ideal I of rR for which la + Il.:0 *.I for all
a € R, that is for which la]. e I for all a € rR. There is an exactly parallel result
for Va viewed as a semisimple class.

On the other hand, it is easy to check that the subset {"11"].: 0} of ,R is a
closed ideal, so R is }"-semisimple if and only if, for all a € R, [o]" : O implies
a:0.  For  7a,  we have

Proposition 6.2. R is Vi-sem,is'imple if and o;nIA if, for all a € R, [o]"]z : O
i ,mpl i ,es a:0.

Proof. Stppose ,R is V,-semisimple. Suppose ll"]"]o :0 for some a € E. Then
[b],; < [[o]"]o : 0 for all b e Io, so fo is trivial because R is Vi-semisimple, and so
fa]" : 0. But because V.9Vt,, R is P.-semisimple and so a:0.

Conversely, suppose that for all o € R, [o]"lt: 0 implies o : 0. If 1 is a
closed ideal of R and I e Vt, with a € 1, then Io]. e t and so l[a].]a : 0, so
o: 0 and so l is trivial, so R is Va-semisimple. I

Recall the radical class I of rheorem 4.1, consisting of all R such that for
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all a € R there exists b € R for which a < [b]..

Proposition 6.3. InT, R is L-semisimple i.f and only if R e V".

Prool. Suppose R is l-semisimple. Then there is no non-trivial closed ideal ,I of
ft for which, for all o € 1, there exists b e /suchthat a < [b]". Nowfor ae R,
if the closed ideal 1o is non-trivial, then there exists r € 1o such that r I lb]. for
any b € 1o; in particular, r {l["].].:[a]", a contradiction. So 1o is trivial and

fo]"  :0 .  Hence R e 1" .
Conversely, if -R € V", then for all a,b e R, o < lb]" implies o : 0, so in

particular R has no non-trivial closed ideals in Rs and so is Rg-semisimple. r

In the idempotent case, the classes of type ? and classical modal rings turn
out to be SSR classes, as follows from

Lemma 6 .4 .  SupposeRe  X .  ReT  i f  and  on l y  i f  a l a f " : a  f o r  a l l a  €  R .
R e C if and only if afafi: a for aII a e R.

P roo l .  Supposeo [a ] " : a fo r  a l l a  € .R .  Fo ranyb€  f t ,  16  i samoda lBoo lean
ring with identity containing b and is inT by the first part of Lemma 2.1, so in
particular blb]n : [b]2, proving the first part'.

Now suppose a la] i :  a for  a l l  a  € rR.  Now l " ] " lb l l . :  labt-b] r ,+ lb] r  for  a l l
a,b € R, so letting b:1"]n gives [a]"[o]a : lalalt + [o],lo * [a]a. But lal. la]i: lali
so fa[o] i  + l " lo l . :0 .  So a la l i+ [a]a:  (a la l i+ fa l l ) la fa l i+ l " lo ln:0,  for  a l l  o  € f t ,
an identity which therefore holds in 1o also. So by the second part of Lemma
2.1, Io e C andin particular [a]i : la].: a and the second part is proved. I

Corollary 6.5. InT, C andT are SSR classes.

Proof .  Let  f  ( r ) : r ln l .+r  and g(n) : r l r ] ;  * r .  Then R1 and,Rn areT and
C respectively, by Lemma 6.4, and are SSR classes by Corollary 5.4 and Lemma
5.5.  r

Similar comments to those made after the proof of Corollary 5.6 apply: every
idempotent modal Boolean ring contains a largest closed ideal in 7 (resp. C)
which when factored out, leaves a modal Boolean ring with no closed ideals in
7 (resp. C), but also, every idempotent modal Boolean ring has a Iargest closed
ideal having no homomorphic images in 7 (resp. C) which when factored out
gives a modal Boolean ring in T (resp. C).

Proposition 6.6. Let X be a topolog'ical space uith closure operator C, and let
R : 2x. Then in (R,C), C(R) i.s all subsets of X all of whose subsets are both
open and closed.

Proof. Let 1 consist of all subsets of X which are both closed and open and all
of whose subsets are. It is clear that f is a closed ideal of R, I e C, and moreover
any closed ideal J of ,R is contained in 1 since J is closed under taking'subsets
of its elements and all of its elements must satisfy lr]i : lrl": a. r
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If X is finite, C(2x) consists of the subsets of X all of whose elements define
clopen singleton sets. In the semisimple case in which C(2x): {0}, there is no
r e X for which {r} is clopen.

Proposition 6.7. Let R:2x, X a set, and let J : X -+ X be an id,empotent

funct'ion. Then defini,nS [Sl.: f(S) for all S C X and defini,ng lli so that
(ft, [],, [ ]") Zr strong, T'(R) :2M uhere M : f (X)' U f (f (X)').

Prool. Now f (M) : lU6D C M so K :2M is a closed ideal of ,R. For any
W e R,  a €W a f  (W) 'means a eW but  a /  f  (W) so in  par t icu lar  a*  f  (a) ,
so  o ,  €  M .  Thus  i n  R ,W +Wf  (W) :W O f (W) '€  I (  and  so  R IK  i s  o f  t ype
7. But if .I is a closed ideal of rR for which RII is of type 7, then in pa,rticular

f(X)' : X. f(X)' : X t Xf(X) € .I, so f(f(X)') e 1 since r is closed, and
so M : f (X)'U f (f (X)') € 1. Thus K is the smallest closed ideal which when
factored out, gives a modal Boolean ring in T; that is, it is the dual ?-radical of
R . r
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