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Abstract. Using x-product on co-adjoint orbits (K-orbits) of the MDy- groups we
obtain quantum co-adjoint orbits via Fedosov deformation quantization. From this we
obtain the full list of corresponding irreducible unitary representations of the exponen-
tial MDy4-groups. For groups G472,3(%); Gy,2,4; G4,3,4(%) and Gy 4,1, which are neither
nilpotent nor exponential, we obtain also the explicit formulas.

1. Introduction

In the early 70’s Berezin treated the general mathematical definition of quanti-
zation as a kind of functors from the category of classical mechanics to a cer-
tain category of associative algebras. At about the same time, Flato, Fronsdal,
Bayen, Lichnerowicz and Sternheimer considered quantization as a deforming
process of the commutative product of classical observables into a family of non-
commutative x-products which are parameterized by the Planck constant / and
satisfy the correspondence principle. They systematically developed the notion
of deformation quantization as a theory of x-products and gave an independent
formulation of quantum mechanics based on this notion (see [4]).

Tt was proved by Gerstenhaber that a formal deformation quantization exists
on an arbitrary symplectic manifold, see for example [8] for a detailed explana-
tion. It is however formal and quite complicated in general. We would like to
simplify it in some particular cases. From the orbit method, it is well-known that
co-adjoint orbits are homogeneous symplectic manifolds with a flat action. A
natural question is to associate in a reasonable way to these orbits some quantum

* This work was supported in part by the Vietnam National Foundation for Fundamental
Science Research.



132 Nguyen Viet Hai

objects, what could be called quantum co-adjoint orbits.

Let us denote by G a connected and simply connected Lie group, its Lie
algebra g = T.G as the tangent space at the neutral element e. To each element
g € G, one associates a map

Alg):G— G, h— ghg™!

The corresponding tangent map is

A(g)x 1 g =TeG — g =T.G,

d _
X €gr —gexp(tX)g =0 € 9.

This defines an action, called adjoint action and denoted as usual by Ad, of
group G in its Lie algebra g. We define the co-adjoint action of group G in the
dual vector space g* by the formula

(K(g)F, A) := (F, Ad(g™")A)

forall Feg*, Acg, geG.

Group G acts by symplectomorphisms on 2, where & = Qp = {K(g)F |
g € G} C g* is the co-adjoint orbit passing through F, and each element A € g
appears as a C®-function A on Q:  A(F) = (F,A), F € Q.

Let £4 be the Hamiltonian field defined by

(EaN)(F) = 2 F(F.cxp(tADleco, VS € C2(Q).

A is then the Hamiltonian functlon associated to Hamiltonian vector field £4,
Le.: £a(f) ={A f}, feC(Q).

In 1980 Do Ngoc Diep introduced the notion of the MD-groups, MD-algebras
and then Le Anh Vu gave a complete classification of the MD4-groups (see [5]).
In this paper, applying the procedure of deformation quantization we shall obtain
quantum co-adjoint orbits of all MDy4-groups. It is to emphasize here that there
is a general theory for exponential and compact groups. However it is difficult
to calculate explicitly the *-product and the corresponding representations in
concrete cases. Our consideration here concerns not only with these groups but
also with non-exponential and noncompact Lie group G. Our main result gives
explicit x-product formulas and then, all representations of the exponential and
non-exponential groups of the type MDy.

The paper is organized as follows. In Sec. 2 we recall basic definitions,
preliminary results. The full list of irreducible unitary representations of the
real diamond Lie algebra is constructed in Sec. 3, and that of the exponential
MDy-groups is introduced in Sec. 4. Section 5 is devoted to the following non-
exponential groups

Ga23(3); Ga,2,4: Gazaz); Gaane

By direct computations and by exponentiating we obtain corresponding repre-
sentations of the MDy-groups.
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2. Basic Definitions and Preliminary Results
2.1. MDy-algebras and MDy-groups

Definition 2.1. [5] We say that a solvable Lie group G belongs to the class MD
if and only if every its K-orbit has dimension 0 or is mazimal. A Lie algebra is
of class MD if and only if its corresponding Lie group is of the same class.

We also recall the following results for MDy-algebras (i.e. dim g = 4).

Theorem 2.2. Assume g is an MDy-algebra with generators X,Y, Z,T.
I. If g is decomposable then it is of the formg=R" @& g forn =1,2,3,4 and
some indecomposable ideal g.

I1. If g is indecomposable then g is of class MDy if and only if it is generated by
the generators X,Y,Z,T with only non-trivial commutation relation which
is one of following relations defined in each case:

1. gt =[g,g) =RZ =R, and

1l [T,X]=2Z (84,1,1)
12. [T,2]=2Z (84,1,2)
2. gt =g, =RY + RZ = R?, and
21. [TY] = XY, [T, Z] = Z; A € R* = R\{0} (84,2,10))
22. [I,Y=Y;[T,Z]=Y +Z (94,2,2)
cosy sing 0
23. adp=| —siny cosy 0), (E4,2,3(<p))
0 0 0
1 00 0 1 0
24. adr=|0 1 O) ,adx = (—1 0 0) (94,2,4) = Lie(Aff(C))
0 00 0 00
3. gt =[g,9] =RX +RY +RZ, and
Ar 00
31 adr={0 X 0], AL\ eR (84,8100 ,20))
0 0 1
A1 0
32 adr=|[0 A 0),,\eR* (84,3201))
0 01
1 1 0
33. adr=]0 1 1) (g4,3,3)
0 01
cosep singp 0
34. adyr = | —singp cosp 0 |, A€ R*, o€ (0,7) (84,3,400))

0 0 A

4. g = [g,9] = RX + RY + RZ & b3 - the 3-dimensional Heisenberg Lie
algebra and
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0 10

4.1. adT = -1 0 0 f [X, Y] =Z (94,4’1 = Lle(R X4 H3))
0 00
-1 0 0

4.2. adT = 0 1 0 r [X, Y] =7 (94’4,2 = Lle(R X Hg))
0 00

(In this case the group is called the real diamond Lie group, G = R x Hg).

From now on we shall denote by g an MDy- algebra with the standard basis
X,Y,Z,T over R. It is isomorphic to R* as vector space. The coordinates in
this standard basis is denoted by (a,b,c,d). We identify its dual vector space
g* with R* with the help of the dual basis X*,Y*, Z* T* and with the local
coordinates (a, 3,7,d). Thus, for all U € g we have U = aX + bY + ¢Z + dT
and for all F € g*, F = aX* + 8Y™* + vZ* 4 §T*. Finally,

QF is the co-adjoint orbit passing through F € g*.

Theorem 2.3. (The picture of co-adjoint orbit) [5]

1.1. Case G = Gy1,1.

i. Each point F with the coordinate v = 0 is a 0-dimensional co-adjoint orbit
QF = Q(a,8,0,6)-

ii. The subset v # 0 is decomposed into a family of 2-dimensional co-adjoint
orbits'

Qr = Q5" = {(a+7d, 8,7, —va+8)} = {(z, 8,7, t)lz,t eR}, (1)
which are planes.
1.2. Case G =Gy1,2.
i. FEach point F with the coordinate v = 0 is a 0-dimensional co-adjoint orbit
Qp = Qa,5,0)-
ii. The subset v # 0 is decomposed into a family of 2-dimensional co-adjoint

orbits: % n-1
9(F1’2)={a,ﬂ,76d,—wc; = +6}

= {(a,ﬁ,z,t)|z,t€R,’yz>0}, (2)
which are half-planes, parameterized by the coordinates o, 3 € R.
2.1. Case G = G4,2,1()\), A e R~
i. Each point on the plane 8 =~y =0 is a 0-dimensional co-adjoint orbit

QF = Q(a,0,0,5)-
ii. The open set 3% + 2 # 0 is decomposed into the union of 2-dimensional
cylinders o
Qp = Q% ) = {(c, Be**, ve®, t)|s, t € R}. (3)

2.2. Case G =Gy
i. Each point on the plane § = v = 0 is a 0-dimensional co-adjoint orbit

QF = Q(a,0,0,5)



Quantum Co-Adjoint Orbits of MDy-Groups 135

ii. The open set 82 + % # 0 is decomposed into the union of 2-dimensional
cylinders
Qp = QY = {(a, Be’, Bse” +7€", )]s, t € R}. @
2.3. Case G = Gy g3, with ¢ € (0,7). We identify 91230, WthRxC xR
and F = (a, 8,7, 8) with (o, 8 + v, 8). Then,
i. Each point (a,0,9) is a 0-dimensional co-adjoint orbit
QF = Q(a,04i0,5)-
ii. The open set B + iy # 0 is decomposed into the union of 2-dimensional
co-adjoint orbits
= 98V = {(a, (B+7)e™" )ls,t € R}, (5)
which are also cylinders.

—~—

2.4. Case G = Gy 2.4 = Aff(C)
i. Each point (a,0,0,0) is a 0-dimensional co-adjoint orbit

QF = Q(a,0,0,6)-
ii. The open set 3% + 2 # 0 is the single 4-dimensional co-adjoint orbit
Qp = Q8 = {(z,y, 2, t)[p? + 2> # 0} = R x (R2)* x R. (6)

3.1. Case G is one of the groups Gy 3,1(a;,00)s Ga3,200) or Ga33
i. Each point F' = 0T™* on the linea = 3 =7 = 0 is a 0-dimensional co-adjoint
orbit.
ii. The open set a? + 32+ 2% # 0 is decomposed into a family of co-adjoint or-
bits, which are cylinders, coressponding to the groups Ga,3,100,22) G4,3,200),
Ga33

sy

QP = {(ae™, Be™, ve", t)]s,t € R},

tag7
Qg,z) = {(ae”‘,ase”‘ + Be** yes,t)|s,t € R}, (8)
- 1
Qg,s) = {(ae®, ase® + Be*, zas’e® + Bse® + ve°,t)|s,t € R}. (9)

2
3.2. Case G = Gy3400,) for A € R*, ¢ € (0,m). We identify 913,400,) With
CxR? and F = (o, 3,7, 6) with (a +1406,7,6). Then,

i. Each point of the line defined by the condition o = 8 = v = 0 is a 0-
dimensional co-adjoint orbit

QF = 9(070’5) = {(0 + 4.0, 0, 5)}
ii. The open set |a +1iB|? + v% # 0 is decomposed into an union of co-adjoint
orbits, which are cylinders
Qp = Qg”‘l) = {((a +iB)e**” ,ve*  t)|s, t € R}. (10)
4.1. Case G = G4,4’1 =R X4 b3

i. Fach point of the line defined by the conditions a = 8 = v = 0 is a 0-
dimensional co-adjoint orbit
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Qr = Q0,0,0,6) = 1(0,0,0,0)}.
The set o + 3% # 0,y = 0 is the union of 2-dimensional co-adjoint orbits,
which are rotation cylinders
Qg—f’l’a) = {(acosf — Bsind, asind + Bcosb, 0,t)|6,t € R} (11)

s (4,1,a) 2 2 2 2
Qr Y ={(z,y,0,t)|z®> +y* = * + 3% =,y t€ R}

The open set v # 0 is decomposed into a union of 2-dimensional co-adjoint
orbits

Q0 = {(z,y, 7 ) + 2 — 2t =0? + B2 - 296; z,y,t€R},  (12)

which are rotation paraboloids.

Case G = Gy 4,2 = R x H3, the real diamond group.

Each point of the line o = 8 = =0 is a 0-dimensional co-adjoint orbit
QF = Q0,0,0,6)

The set o # 0,3 = v = 0 is union of 2-dimensional co-adjoint orbits, which

are just half-planes

Q2 — {(2,0,0,¢) | z,t € R, az > 0}. (13)

The set oo = =0, 3 # 0 is union of 2-dimensional co-adjoint orbits, which
are just half-planes

9(4)27b) = O,y,o,t) | y,t S R) /By > 0}. =
F

. The set a8 # 0,7 = 0 is decomposed into a family of 2-dimensional co-

adjoint orbits, which are just hyperbolic-cylinders
9(4’2’0) {(z,y,0,t) | z,y,t € R& az > 0, By > 0, 2y = o} (15)

. The open set vy # 0 is decomposed into a family of 2-dimensional co-adjoint

orbits , which are just hyperbolic-paraboloids

Q29 = {(z,y,7,t) | 7,9, € R& 2y — aff = ~(t — §)}. (16)

Thus, we have 15 families of 2-dimensional co-adjoint orbits and a single
4-dimensional co-adjoint orbit QgA) = C x C*. They are strictly homogeneous
symplectic manifolds with a flat action (see [12]).

2.2,

Moyal %-product and quantum co-adjoint orbits

Let us denote by A the 2-tensor associated with the standard form w = dpAdg =

o

1 dpj Adg; of the symplectic space R?". We consider the well-known Moyal

x-product of two smooth functions u,v € C>(R?"), defined by

u*v_uv+z < )P’"uv)

where

with

Pl(u,v) = {u,v}; PT(u,v):=AnrA22 AIrQl o udf v,

1182...0p Jij2---Jr
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87‘
azrng g T ma T = (paq):(pla“-apn)qla---yqn)'
It is well-known that this series converges in the Schwartz distribution spaces
Rzn). Furthermore, the following results are known (see e.g. [1]): If u,v €

S(
S(R?"), then

U*xV=v*u,

o [(uxv)(€)d¢ = [uvde,

e /,: S8 (R2") — S(R?™), defined by £, (v) = uxv is continuous in L*(R?", d¢)
and then can be extended to a bounded linear operator (still denoted by £,,)
on L2(R2?", d¢).

Let now G be an MDgy-group, g = LieG. For each A € g, the correspondmg
Hamiltonian function is A and we can put £4(u) = A x u, u € L2(R?, £%4). I

is then continuated to the whole space LZ(R?, é%‘l). Let us denote by F,(f) the
partial Fourier transform of the function f from the variable p to the variable z,

D@0 == [ .0

and by F,'(f) the inverse Fourier transform.

Now we put 4 := Fpofly ofp_l with A € g.

Definition 2.4. Let Qp be the K-orbit of the co-adjoint representations of Lie
group G passing through a point F' € g* = Lie(G)*. With A running over the
Lie algebra g = LieG, [Qp, £4] is called a quantum co-adjoint orbit of Lie group
G.

2.3. Some known results for special classes of groups

We recall some results which will be used frequently in this paper.

Theorem A. (B. Kostant, L. Auslander), (see [12,p.241]) Let G be a connected
and simply connected solvable Lie group. The following assertions hold.

1. The group G belongs to type I if and only if the space O(G) is Ty and all
forms Bq (Kirillov forms) are ezact.

2. If G is of type I, all irreducible representations of G are obtained by the
orbit method. To every orbit ) there corresponds a family of irreducible
representations, parametrized by the characters of the group w1 ().

3. Representations that correspond to different orbits or different characters of
the fundamental group of the orbit are necessarily inequivalent.

We note that if the group G is exponential then all G-orbits in g* are home-
omorphic to euclidean space. In particular, it follows from the above theorem
that exponential groups are of type I and that for these groups, there is an
one-to-one correspondence between the sets G and O(G).
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Theorem B. [2, Proposition 2.6] Let G be an ezponential connected and simply
connected Lie group. The operator iy = FpolaoF, L A€ g, is the differential
form of the unitary irreducible representation ™ of the group G corresponding
to an orbit Q € O(G) by the Kirillov-Kostant method.

In other words, the unitary irreducible representations of the exponential
Lie group obtained from *-product are isomorphic to the unitary irreducible
representations obtained from the Kirillov-Kostant method. It is to emphasize
that if /4 is a representation of the Lie algebra g of a connected and simply
connected Lie group G, then the representation of G (obtained from *-product)
is constructed by the formula

T(exp A) = expla,

where exp is the canonical mapping of the Lie algebra into the group.

3. Representations of the Real Diamond Group

First, consider the real diamond group G = R x H3. This group has a lot of non-
trivial 2-dimensional co-adjoint orbits, which are the half-planes, the hyperbolic
cylinders and the hyperbolic paraboloids.

3.2. Quantum co-adjoint orbits of the real diamond group

Each element A = aX +bY +cZ +dT € g4.4,2 = Lie(R x H3) can be considered
as the restriction of the corresponding linear functional A onto co-adjoint orbits

(Cg*), A(F) = (F, A). We have

Proposition 3.1. There is a diffeomorphism ¢ from R? onto Qg,(p,q)

¥(p,q) such that

1. Hamiltonian function A in canonical coordinates (p,q) of the orbit QO is of
the form

dp + acce™" if Qp = le,l,a)
- A dp + bBe? if Qp = Q;jl,l,b)
Aoylp.g) = ! (4,1,c)

dp + ace™ + bfel if Qp = Qb

(d + bye?)p + ae~? £ b(af — yd)ed + oy if Qp = QMY

2. In the canonical coordinates (p,q) of the orbit Qp, the Kirillov form w coin-
cides with the standard form dp A dq.

Proof. 1. We adapt the diffeomorphism 1 to each of the following cases (for
2-dimensional co-adjoint orbits, only).

o With a # 0,8 =7 = 0, set
¥: (p,9) € R? = ¢(p,g) = (2e79,0,0,p) € Q>
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Element F' € g* is of the form F = aX* + Y™* + yZ* + §T™, hence for
A=aX+bY +cZ+dT € g, A(F) = (F,A) = (aX* + BY* +~vZ* +
0T*,aX +bY +¢cZ + dT) = aa + Bb + e + 4d.
It follows that F' = ae™9X* + pT™* € Qg‘,z,a)’
Aop(p,q) = (F', A) = ace™ + dp. (17)
o Witha=v=0,0+#0, set

¥: (p,g) € R? = %(p,q) = (0,8e%,0,p) € Q.
A(F) = (F, A) = aa+ f8b+ e+ dd. From this, F' = BetY* 4 pT* € Q2P

Aoy(p,q) = (F', A) = bBe? + dp. (18)
e With a8 # 0,y =0, set

¥Y: (p,q) € R~ (p,q) = (ae™?,Be%,0,p) € 42,

Aoy(p,q) = ace™ + bBe? + dp. (19)
o At last, if v # 0, we consider the orbit with the first coordinate x > 0, set
¥: (p,g) €R? - 9(p,g) = (€7, (@B +vp — 7d)ed, v,p) € Q>
We have
Aoiy(p,q) =ae 9 +blaB+yp—vd)e? +cy+dp
= (d+ bye!)p+ ae™? + b(afB — v)e? + cy. (20)

The case z < 0 is similarly treated: set

v (p.g) €R? = 9(pq) = (7% —(af +1p— 1), v,p) € Q>
Aotp(p,q) = —ae™? — b(aB + vp — ¥8)e? + cy + dp (21)
= (d —bye?)p —ae™? — b(af — vd)e? + cv.
2. We consider only the following case (the rest are similar): set

¥: (p,q) €RZ Y(p,q) = (7% (@ +vp — 10)e?, 7, p) € Q2D

Aot(p,q) = (d+bye?)p+ ae™? + b(af — vd)e? + cv.
In canonical Darboux coordinates (p, q),
F'=e™ X" +(af +7yp = 10)e?Y" + 72" +pT* € Qi>?,
and for A=aX +bY +¢cZ+dTl, B=ad'X+bVY +Z+d'T, we have

af)={A f}=(d+ bveQ)g—f; — | - ae7t +b(aB + 10— 10)e?] ZTJ;’

&5(f)={B,f}=(d + b'veq)g_g - [_ a'e™ +b'(af +yp — 75)e‘5] g_i.

From this, consider two vector fields

fa=(d+ b'ye")a% — [~ ae™? + b(aB +yp — v6)e!] %,
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) 0
A B e L [ et gt S
¢ =(d +b'ye)6q [—dle ‘+b(aﬁ+'yp vd)e]ap.

On one hand, (see [12]) wrr(€4,€B) = (F',[A, B]) = (¢79X* + (af + vp — 79)
eIY* + 42" + pT*, (ad' — da') X + (b — bd')Y + (abl — ba') Z).

It follows therefore that
wr (€a,€8) = (ad’ — da’)e=9 + (db' — bd’)(af + yp — v8)e? + y(ab’ — ba’). (22)
On the other hand,

dp A dq(§a,€B) = dp(§a)dq(£p) — dp(¢B)da(€a)
= —[—ae™ 7 + b(aB + vp — )€ (d' + b/ ye?)
+ [—d'e™? + b'(af + vp — vd)e?|(d + bre?)
= [(ad’ — da’)e™? + (db’ — d'b)(aB + vp — vd)e? + y(ab' — a'b)].

(23)

From (22) and (23) we conclude that in the canonical coordinates the Kirillov
form is just the standard symplectic form w = dp A dq. ™

Definition 3.2. The chart ¥~ on Qp, given in Proposition 3.1, is called the
adapted chart on Qp.

In the next subsection we shall see that each adapted chart carries the Moyal
x-product from R? onto Q.

3.2. Irreducible unitary representations of G = R x Hj3

Proposition 3.3. In the above mentioned canonical Darboux coordinates (p,q)
on the orbit Qp, the Moyal x-product satisfies the relation

iAxiB —iBxiA =i[A, B],VA, B € g = Lie(R x Hj).

Proof. We prove the proposition for the K-orbit Qp = Qg’2’d), A = (d+byet)p+
ae™? + b(afB — v8)e? + cy (the other cases are proved similarly). Consider the
elements A =aX +bY +¢cZ+dT,B=d X +VY +Z+dT € g. Then as said
above, the corresponding Hamiltonian functions are

A= (d+byel)p+ ae~+ blaf — y8)e + ¢,
B=(d+byel)p+ade 1+ (af —vde? + .
It is easy then to see that
PO(A, B) = A.B,
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PY(A,B) = {A,B} = 8,A8,B — 8,A8,B
= (d+byef)[-d'e™? + b/ (af + vp — y0)e”]
—(d' + b/ ve?)[—ae”? + b(af + yp — v8)e]
= [(ad' — da')e™? + (db' — d'b)(af + vp — vd)e? + (ab’ — ba')7],
P*(A,B) = A'2A'202,A82, B + N A" 2 AD%, B + A A'20}, A0 B
+ AP AT P2 AD2 B = —2bb'y%e?,
P3(4, B) = AAAYS3,,A0% B + AVPAPA Y, DY B

ppp 999 ppq aqp
+APAPARY B, B+ AAYAY?G], ABS, B
+ APATIA2HS ABS, B+ APAY AT, AD] B
+APATAR S A0S, B+ AP APAGS ABS, B =0.

By induction on k we have P*(4,B) =0, Vk > 3.
Thus,
iAxiB-iBxiA = L[P'iA,iB)-P'(iB,iA)]
= i[(ad’ —da’)e~9 + (db' —d'b)(af + yp—5)e? + (ab' —a'b)y].
On the other hand, as
[, B] = [aX +bY + cZ +dT,d'X + VY + ' Z + d'T]
= (ad' — da')X + (d¥ — d'B)Y + (ab — a'b)Z,

we obtain zLx/LlT_B/l =i[(ad’' —da')e” 1+ (dV —d'b)(af+yp—b)e? +(ab —a'b)y] =
1A% 1B — iB % iA. The proposition is hence proved. ™

Consequently, to each adapted chart, we associate a G-covariant x-product.
Then there exists a representation 7 of G in Aut{C>°(Q, R)[[v]]), such that (see
[9], here v =i/2)

T(g)(u*v) = 7(g)u*7(g)v.
Because of the relation in Proposition 3.3, we have

Corollary 3.4.
Z[A,B] =£A°€B_€B OZA = [fA,KB]. (24)

This implies that the correspondence

A £y =iAx
is a representation of the Lie algebra g =Lie(R x Hjs) on the space C*(Qr, R)
[[%]] of formal power series in the parameter v = /2 with coeflicients in

C*(Qp, R).

Lemma 3.5. We have
L O F; M) = iFy Ha.f),
2. Fp(pv) = i0,Fp(v),
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3. For all k > 2, then P*(A, FoH) =

(ace™20% F7HS) if A is defined by (17)

(~1)*bBet8% F 1 (f) if A is defined by (18)

=< [ace™?+ (—1)*bBe?)|0F F, 1 (f) if A is defined by (19)
(-1 hbretdl, T 1)+

| +Hlae™® + (<1)*b(aB + 7p— 10)e0E Fy () if A is defined by (20)

Proof. The first two formulas are well-known from the theory of Fourier trans-
forms. We shall prove the third. Remark that A = ((1) —01> in the standard

symplectic Darboux coordinates (p, q) on the orbit 5, we have
o If A=aae 9+ dp then

P* (A, F7Y(f) = A12A126,2,pA8~2qf;1( £)) + AN B2 ABZ, F(f))
+ARAVOL AL F () + AP AP ADL T (f))
= aae‘q(?zpfp_l(f),
P3(fi, .7-'_1(f) = (—1)6aae_”76]‘°,’ppfp_1(f) = aae_qagppfp_l(f),
P*(A, F7H(f) = ace™88 F,H(F), VE>2,

o If A =>bBe? + dp then
P*(A, F71(f) = (1) b0} F, (f), Yk > 2.
o If A=ace 7+ bBe? + dp then

qq© p
+ AP A0, AL FH(f)) + AP AP0, ABL, F N (F))
= [ace™? + (—1)%bBe?| 02,7, ().

P3(/i,]-'p‘1(f)) = [ace™? + (—1)°b8e9)83 . F, H (f):

P4, () = N2AR8, 405, () + AAR 0, A0, 7 (£))

By induction on k we have
PY(A, F7U(f)) = [aae™ + (—1)*bBe?] 0 FU(f)), k> 2.

o If A= (d+ bye?)p+ ae~+ b(af —v6)e? + cy then

P4, F7 1 (f) = APARO A8 M () + AP AR 92 AD2, F (f)
+ APARS AS2 F(f)) + AP AP BZ ADL FA(f))
= (—-1)2.b7e%0, F;  (f)
+ [ae™? + (—1)%b(aB + vp — 18)e?| 02, F, M (f).
PYA, F (1)) = (=1)%.307e0gpp F, ()
+ [ae™® + (=1)b(aB + vp — ¥6)e?) 85,75 1 (f).
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From this we also obtain :
PEA,FH) = (F1)* Lkbryedg, o7, (f)
+[ae™? + (=1)*b(af + vp — 78)e] B Fi 1 (f) VE > 3.
The lemma is proved. s
We study now the convergence of the formal power series. In order to do

this, we look at the x-product of iA as the x-product of symbols and define the
differential operators corresponding to ¢ A.

Theorem 3.6. For each A € Lie(R x Hj3) and for each compactly supported
C>™-function f € CP(R?) we have

( [d (5384 — 0z) + iace = 7)]f if A is defined by (17)
[d(20, — Oz )+ ibBeld— )] f if A is defined by (18)
[d(38, — 8;) + i(ace (%) + bBela=B))] f if A is defined by (19)
a(f) =1 [d—i—bfyeq £)(18, — 8.)] f
+iae™ (@=%) £ b(afB — v8)e? % +cv|f if A is defined by (20)
[(d—bye? %)(30; — 0:)|
+i[ —ae @ %) _p(af - v6)ed™ % + c'y]f if A is defined by (21).

Proof. Applying Lemma 3.5 we obtain
1. If A = ace™? + dp then

La(f) = Fylid» FIA() = ifp(Z (3) w75 ) -

r!
= iFp{(ace 0 + dp)F, 1 () + 1'—2—[d6 F5H(f) + aoe 98,5, (f)]
+ %(%)2.aae“‘18pp2f— (f)+-+ %(212) ace™10; F o (f)+ ... }

= i{aoze_qf—i—d]-'p(p.]: (rH+ 1'2—[(13 f+ace™ UFp(0pF, (f))]
1

2 1
L] 5(2%) aae ™ F, (02,55 (f)) + +; (55)° 00 Fp (@3, ()

+ L (LY aaeim, 3 0 0) + )

0y — )f+zaae q[1+2+21'<$)2+"-+rl(£)r+...]f

O, — c')z)f +iace e f

-«

2. If A=bfe? +dp then £4(f) = d(30; — 0;)f +1ibBeI % f.

0y — 6z)f +iace” 178 f,
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3. If A=ace9+bfBe?+ dp then

£a(f) = iF,{ (ace™ + bBe? + dp) F; ()
+ %[daqu‘l( f) = (—ace™ + bBe?)d, 7, ()]
+ %(%)2 [ace™® + (—1)%68e%] 82, F; L (£) +
+ %(%) [aae™ + (—1)"bBe%) 0y L F M (f) + - .. }
= iaae™0.f + idF,(p.F,; ' (f)) + ibBel f + —2-d0q f
+ %aae“q}'p (0,7, 1(f)) — %bﬂeq}'p (0 F;1(F))
. 1 1
+ ... iﬁ(i)raae_q}'p (6;._4,.7-';1(]‘))
+ z% (—;Tl)rbﬁequ((?;mpfp_l(f)) i

=d(%6q—Bz)f+iaae"q[1+-§+---+ %(g)w.ﬁ.]f

17—z

+ibﬁe"’[l+ (_?L) + ---+ﬁ(7)r+...]f
= d(50 = 0:) 1 +iface™(78) +oger=1] .

4. For each A is as in (20), remark tilat
PY(A, F7H(F) = AF () PHAFH () = {A 771 ()}
= (d +bye?)0,F, H(f) — [~ae™ + b(aB + vp — 18)e”|8pF ().
Applying Lemma 3.5 we obtain

La() = i{ Fyp(dp + ae™® + b(a + 1p = ¥)e” + )7, ()
+ —21—-11-,f ([d+brer)o, 71 (0)
~ [~ ae™ 7+ b(aB +vp — ¥8)e?| 8 F, (f))
(337 (e o
[ae™? + b(af + 1o — 18)e) 03, (F; (1))
4 (3) 55 (0 rbend o ()
+ (=1)7[(~1)ae™ + b(aB + yp — 18)e)0,_,F (1)) + .. }

+
+
+
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= i{ae‘qf + b(af — yo)elf + dfp(Pf;l(f))
F 01T, (0F; () + o (d-+ bre?) B,
1

— 5[ —ae™tizf + b(af — yO)etizf + byeF,y (pF; ()]

+(2) 2 (-2 Fy (02,7 ()
112

+(55) 3lae™ () S +b(aB — ¥8)e?(12)*f + bre" 7, (pi®F; (&2 )]
1

bt () S e B () + (52) Slae0Gia)

+ (~1)"b(aB — 18)et(ia)" f + byet By (pliz) F; M (£)] + .. |
=i[ae‘q(1+l£+---+ ! (E)T)f]

212 ri\2
1=z 1 r
+i[b(aﬂ—75)eq(1 “505 +-t (_l)r;‘,(g) )f]
+icyf +i2doL f + %dc’)qf + ibyed x
1 I | ;
[0 = 570 (i @) + -+ (5) OF 0 7 @) + -

= d(%aq — Bz)f + [iae_ (q—%) + ib(af — ’yd)eq_%]f
+ievf + %e_%b'yeqaqf —byele 30, f
= (d + b'ye"_%) (%Bq - 8z)f + [iae_ (%) + ib(af — y6)e?™ % + ic'y] f

5. At last, if A is defined by (21) then
T

La(f) = (4 bre" 2) (58— 8:) f + [~ iae™ @D — ib(af — y3)e % +icy] .

The theorem is proved.

Remark. Settinig new variables s =q — %,t = ¢+ %, we have

( (dOs + iace™) fl(s,1) if A is defined by (17)
(dds + ibBe?) fl(s,b) if A is defined by (18)
(dO, + ilace™* + bBe®]) fl(s.t) if A is defined by (19)
. d + bye®)0,
i = (@+oe) .
+ifae™® + b(afB — vd)e® + c'y])f[(s,t) if A is defined by (20)
((@—brena,
+i[—ae™® — b(af — y8)e® + c'y]) oy if 4 is defined by (21)
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Theorem 3.7.
1. With above notations we obtain the operators
i g(‘” (dBy + iace™) (5.0,
O = (d, + ibBe®)|(s ),
iy = = (dds + ilace™ + bBe®])|(s.0),
((d—{—frye , +ilae™® + blaf — yd)e® +(’T])|{s £,

F.Ff )= ((d — bye® )0, + i|—ae™* — b(af — yd)e® + c*y‘]) l(s.t),

“

which provide the representations of the Lie algebra g = Lie(R x Hj).
2. For all A,B € g, ZA OéB Y éB OEA L= Z[A,B]-
We call
[9(4 /2,0) é(a)] [9(4 2:b) é(b)] the quantum half-planes,
° [Qg;1 = C), éf:)] the quantum hyperbolic cylinder,
. [Q;ii); éff),éff’)] the quantum hyperbolic paraboloid,
with respect to the co-adjoint action of real diamond group G.
As G = R x Hj is an exponential, connected, simply connected Lie group,
we obtain all irreducible unitary representations T' of G (see Theorems A, B)
defined by the following formula
T(exp A) := exp(f4), VAeg.
More precisely,

(exp(dds + iaae™?)|(s,1) if A defined by (17)
exp(dds + ibBe®)|(s,1) if A defined by (18)
exp(dds + ilace™® + bBe®])|(s,1) if A defined by (19)

exp(fA) = { exp((d + bye®)Ds
+ilae™® +b(aB —v8)e* + c1])|(spy  if A defined by (20)
exp((d — bye*)0s
{ +i[—ae™® — b(af —vd)e® + c))|(s,ey if A defined by (21)

This means that we find out all representations T'(exp A) of the real dia-
mond Lie group R x Hj, those could be implicitly obtained using the orbit
method. However, our result here gives more precise analytical formulas than
those obtained by the orbit method.

4. Quantum Co-Adjoint Orbits of the Exponential MD4-Groups

Throughout this section, we denote by G one of the following groups: (with
o #7/2)
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Gu1,1;Ga1,2 Ga2,1005 Ga,2,25 Ga,2,3(0)s Ga,3,100,02)5 Ga,3,200)5 Ga,3,35 Ga3,400,0).
These are exponential groups (see [5]).
4.1. Hamiltonian functions in canonical coordinates of Qp

Denote by Q1 the co-adjoint orbit at F' € g*, g = LieG, A = aX +bY +cZ +dT
€g.

Proposition 4.1. Each nontrivial orbit Qp C g* of the co-adjoint representa-
tion of G admits a global diffeomorphism i

¢v:  (p,q) e R?*+— 9(p,q) € Qr, such that
(i) Hamiltonian function A= (F',A), (F' € QF) is of the form

Z © 'l/)(pa q) = q)(aa Bty 6> Q)p i \I](aa B, Y, 6a q)a
where ®(a, 3,7,94,9), ¥(a,B,7,d,q) are C*-functions on R.
(ii) The Kirillov form w 1s

w =dp Adq. (25)

Proof.
(i) The diffeomorphism 9 will be chosen case by case.
1. Case G4,1,1 and QF = Qg’l). We chose the diffeomorphism:

y: R2— QY (p,g) — (¢,6,7,p). Then,
Aop(p,q) =dp+ (ag+b8+cy). (26)
2. Case G412 and Qp = Qg,z)‘ Then we take
v: REP— Q0P (p,q) — (a8, 7¢%,p),
Aoy(p,q) = d.p+ (cye? + ao + bP). (27)
3. Case Gy1(x) and Qp = Q0.
p: R2— Q8 (p,q) — (o, 8e, el p),
Aop(p,q) = dp+ (cve? + ac + bBe?). (28)
4. Case G422 and Qp = Qg,z)‘
$: R2— %Y (p,q) — (0, Be, Bge? + e, p),
Aop(p,q) = d.p+cBge? + (b3 + cy)e? + aa. (29)
5. Case Gq23(¢), ¢ # 7/2 and Qp = Qg,a)
v: R2—a%% (p,g)— (a(B+iv)e™”,p),

Aov(p,q) = dp+ (b+ic)(B+iv)e®” +ac. (30)
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6. Case G4,3,1(A1,A2) and QF = Q(F:?’l).

(U R? — Qg’l); (p, Q) e (aqulaﬁqu2’7eqap)7

Ao ¢(P, g)=dp+ ace? + bﬂe‘l)‘2 + cyel. (31)
7 Case G4 3 2()‘) and QF = 9(3’2)
v: R2— 0V (p,q) — (ac™, age™ + fer, 7et,p),
A g ¢(p1 q) dp + (aa + bqa =+ bﬂ)qu + C’)’Cq (32)

8. Case G4,3’3 and QF = Qg’s).
%: R®— 8p; (p,q) — (ae?,aqe? + fe?, Jag?e? + Pge? + ved, p),

- 1
Aoy(p,q) =dp+ (aa+ba+ b6 + Ecaq2 + cfq + cy)el. (33)

9. Case Gaz4(r) @ # 5 and Q5
¥: R2— %Y (p,9) — ((a+iB)e™" , ve™, p),

Aot(p,q) =d.p+ (a+ib)(a+ iB)e?®” + cye?. (34)

(ii) We prove for the case Gy42,3(0)s9 # 5, that the Kirillov form on Qp is
dp A dgq. _
From the Hamiltonian function Ao y(p,q) we have

¢af) =1{A f}= d — (b+ic)(B+ iv)ee qev‘;ﬁ

withA:aX+bY+cZ+dT69423(<p)
,6f ’ ] . ip qei"af
£6(f) ={B, f} =d' 7= — (t/ +ic)(B + iv)ee B’

with B =a’X + Y +'Z 4 d'T € g4,3(,)- Thus,
dp N dq(€4,¢B) = dp(£a)dq(¢B) — dp(¢p)da(€a)
= [(db' — d'b) + i(dc’ — d'c))(B + iy)eere”?
On the other hand, (see [12])
wr(§4,€8) = (F',[A, B]) = [(dV' — d'b) + i(dc’ ~ d'c))(B + iv)e?Pese™
This implies (25).

The other cases can be proved similarly.
The proposition is hence completely proved. )

4.2. Computation of operators £ 4

Since the Hamiltonjan function is of the form ®(a, 3,7, 4, q).p + ¥(a, 3,7, §, q),
one can prove that

P"(A,B)=0 Vr>3, VA,Beg.
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From this we have the following proposition.

Proposition 4.2. With A, B € g, the Moyal x-product satisfies the relation
iAxiB —iBxiA =1i[A,B]. (35)

This implies that the correspondence
At A= ’Lz‘i * .
is a representation of the Lie algebra g on the space C°(Qr)([%]] of formal

power series.
Putting ®(q) = ®(a, 8,7,6,9); ¥(¢) = ¥(a, 8,7, 0,q), we have

Lemma 4.3.
P (A, F;H(f) = (F1) 0, (D)0,F,(f) Vf € A*(R?,dpdg/2m) Vr > 2.
Proof: The proof is straightforward. n

Theorem 4.4. For each A € g and for each compactly supported C*°-function
f € C(R?), we have

a(f) = ®(q— §)(30, — 8:)f +i¥(q — §)f.
Setting new variables s =q — 5,t = q+ §, then

() = 2L+ i@ I, 10 b= (B(0) 2 +iEGwo  (36)

Proof. PO(A’ ]:z;-l(f)) = [®(q).p + ‘I’(Q)]fp—l(f)‘

PYA, F;H(f)) = 9(@)0.F, () — [p0,2(a) + 8, % ()] F, 1 (f)-
P (A, F7A(f)) = (-1)" 85 F, 1 (f) vr > 2.
From this and Lemmas 3.5 and 4.3, we have:

£a(f) = Fpolao Fy ' (f) = iFp(Ax F M (f))
' IN"1 . 0
=zfp(§)(g> EP (4,7, (f)))
= i]—'p{ [®(q)-p + ¥(a)] F; 2 (f)
+ m-(cp(q)a F ) - [pO,¥(a) + 8,%(a)] 7 ()
( )( —1) Lt (f))+...}
-9

‘I’(q—-)(- )f +i(a-3)f

The theorem is proved. n

As a direct consequence of the definition of {4, we have
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Corollary 4.5. For all A,B € g,
éAoéB_éBoéAzé[A,B]-

From Theorems 3.7 and 4.4 we obtain the quantum half planes, the quantum
planes, the quantum hyperbolic cylinders, quantum hyperbolic paraboloids ...
of the corresponding groups. At the same time, we have all irreducible unitary
representations of these groups (see Theorems A, B)

Texp 4) = exp(ia) = exp ([8(s) o + %(s)]s0)-

Thus, we obtain the full list of irreducible unitary representations of exponential
MDy-groups.

5. The Case of Groups Gg4,2,3(x/2)» G4,2,4, G4,3,4(1r/2), Gyg,4,1

5.1. The local diffeomorphisms

For the group of affine transformations of the complex straight line Ggo4 =

———

Aff(C) in [7], we replaced the global diffeomorphism 1 by a local diffeomorphism
and obtained

Proposition 5.1. [7] Fizing the local diffeomorphism vy (k € Z)
’(/Jk:CXHk——)CXCk
(z,w) — (2,€"),
where Hy = {w = ¢ + g2 € C| — 00 < ¢1 < +00;2kT < g3 < 2km + 27}, we
have

1. For any element A € aff(C), the corresponding Hamiltonian function Ain
local coordinates (z,w) of the orbit Qr is of the form

= 1 IR e
Aotp(z,w) = §[az + Be¥ +az + fe”]
2. In local coordinates (z,w) of the orbit QF, the Kirillov form w is of the

form
o = %[dz/\dw—l—dz/\dw].

Analogously, for the groups G4 2 3(,), G4,3,4(0) With ¢ = 7/2, we also replace
the global diffeomorphism 1) by local diffeomorphisms ¢ (k € Z).

Let us denote Ij, = (2kw, 27 + 2kn), k € Z.

e For G = Gya3(3); Qr ={(a,(B+ iv)et, t)|s,t € R},
d’k ‘R x Ik — QF
(p,q) — (e, (B +i7)e', p).
Then the corresponding Hamiltonian function is
Aoy(p,q) =dp+ (b+ic)(B +iv)e" + aa.

e For G = Gy34(n/2); Or = {((a+iB)e®,ve*,t)|s,t € R},
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’lpk RXIkI——>QF

(p,q) — ((a +iB)e', ve™, p).
We have A o 9x(p,q) = dp + (a + ib)(ca + iB)e™ + cye?*.
At last, for the Lie group G441 = R x; H3, which is not exponeatial group,
we have

Proposition 5.2. Each non-trivial orbit Qr (in g*) of co-adjoint representa-
tion of Gy41 admits local charts (R x I, ") or (Re x Xi, ;") such that

1 IFQp = 03" and A € gaqn, then
= 1 : ol
Aoy(p,q) =dp+ 3 [a(a +183) + b(8 — za)]e q
1 '
t3 [a(a —iB) + b(B +ia)]e™*
=dp + (aa + bB) cos g + (ba — af) sing (37)

and the Kirillov form then is w = dp A dgq.
2. IfQp = Q8N and A € gygq1, then

Ao Yr(p,q) = %p + (e“l + *"1) + i(eiq - e—iq):lp

21
a? + 32
2y

2

+cy+dé—d

2y

d
= 2—p2 + (acosq+bsing)p+cy+dé—d
Y

(38)
and we have the Kirillov form to be w = (7y/p)dp A dg.

Proof. 1. We consider the following diffeomorphism
I/)k : R x Ik — QF
1 1 2l 1, . .

(p,q) — ( (a+if)e’t + S(a —iB)e™"; 5 (B — ia)e™ « (B +ia)e™%; 0;p).

With each F' € Qp,
1 ) 1 . 1
= 2@+ i8)e + (o — )e X" + [5(5 — ia)eis + (0 +io)e Y
+pT* '
andA:aX+bY+cZ+dT€g441, we have
A(F'y = (F', A) = 2 [(a + i) + (o — iB)e ]

b
+ [(ﬁ —ia)e'? + (B + ia)e‘iq] + dp.

N | o

It follows that

£a(f) =

Z_g ~{la(a+i8) + b(8 — ic]e + 5 1a(a— i8) + b(B -+ ia))e™

of
Op’
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By analogy,
£B(f) = d’g_'(); { [a'(a-l—lﬂ)—l—b’(ﬂ za)]ezq+ [ ,(Ot Zﬂ)+bl(,3+la)]6fzq}0£

Consider two vector fields

a = d(% - {%[a(a +18) + b(B —ia)]e™ + %[a(a —i8) +b(8 + ia)]e‘iq} 58];

g5 = g0~ {5lo (ot i8) +¥(B—icllet + [ a—ip) +¥(5 + i}
We have

dp Adq(§a,¢8) = dp(€a)de(€s) - dp(¢p)dg(€a)
= S {l@ —av)(e+iB) + (ad — D)5 — ia))e™

+ [(db — d'b)(a —w)+(ad'_a'd)(ﬂ+ia)]e—iq}. o

On the other hand, [4, B] = (db/ — d'b)X + (ad’ — a’d)Y + (ab’ — a/b)Z implies
(see [12])

,[4, B])
[(a — d'b)(a+ i) + (ad' — a'd)(8 — ia)]e™

Wr (6.47 £B)

(F'

1

2

i %[(db’ — d'b)(a —iB) + (ad’ — a'd)(B + ia)] e~
= H{{(@ - d¥)(a +i8) + (ad - dd)(5 - ia)] "

+ [(@' ~ d'b)(@ ~ iB) + (ad’ ~ a'd)(8 +ic)] e~}

(40)
Then, (39) and (40) imply that the Kirillov form is w = dp A dg.
2. For the case v # 0 we chose
Y (R+ X Ik) — QF
. 1
(p,q) — (pcosg,psing, 7, 5(1)2 +270 — o — %))
(OI' ’l/)k E (R_ X Ik) — QF) .
Then, for all F/ € Qp,
1
F'=pcosqX* +psingY™* +~v2Z* + %(p2 + 295 — a? - BT
and A =aX +bY +cZ + dT € g4,4,1, we have
i = ‘ d, 9 2 _ 2
Aoy(p,q) = apcosq + bpsing + cy + ﬂ(p + 276 —a® — 3%)
d 3 . b X i a2 _._162
2l g p—iay 4 2 (oia _ ,—iq , A
27p +[ (e +e )+2i(e e )]p—i—c'y—l—dé d 2
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It follows that

€a(f) = [ P+—((az+b)e"1+(az—b)e “1)] g[(ai+b)eiq—(ai—b)e—iq]a_f_

Op
By analogy,

€8(f) = [—p + ((a i+b')e' + (a'i — bl)e—zq)] of

I AP T R —iqﬂ
2[(az+b)e (ai —b)e ]ap.

From this,
/

dp A dq(€a, €5) = dp(€a)da(€s) — dp(€p)da(Ea) =
- {% [((da' — d'a)i + (db — d'b))e? — ((da’ — d'a)i — (db' — d’b))e-iq]

+ p(ab’ — a’b)}.
Thus,
)/ —
Edp Ndq(€a,éB) =
= 22'1 [((a'd — d'a)i + (db' — d'b))e"? — ((da’ — d'a)i — (db — d’b))e-"q]
+ y(ab’ — a'b). (41)
On the other hand,

wF’(EA,gB) = (Flv [A’ B]) =
= (db' — d'b)pcosq + (ad' — a'd)psing + (db’ — d'b)y

= g[((a’d — d'a)i + (db' — d'b))e*? — ((da’ — d'a)i — (db’ — d’b))e""’]
+ v(ad’ — a'b). (42)

From (41) and (42) we see that w is of the form (y/p)dp A dg. =

5.2. Computation of operators éf)

It is easy to prove that

e IfG=G x then P = (d +4[(b+ic)(B + z'y)e” + aa])
423(3) 0

(s,8)

e IfG=G m then Z(k) = (d— +i[(a + ib)(a + iB)e'* + c'ye”\])

134(3) 0s (s:it)

From this we obta.m the (loca.l) representations T(exp A) =exp é(k)

In [7], we proved the following result for G4,2,4.
Let F,(f) denote the partial Fourier transform of the function f from the

variable z = p; + ips to the variable £ = &1 + @£y, i.e.
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FDew) =5 [ [ e (e, w)dprd

and

P D) = 5 [ [ 4D pe wdeades

the inverse Fourier transform. Remind that the subindex in the formula of F;!
indicates that it is the inverse of the Fourier transformation F,.

Theorem 5.3. (see [7, Proposition 3.4]) For each A = (g g) € aff(C) and

for each compactly supported C*°-function f € CF(C x Hy), we have

ED(f) = Foo b 0 FH(f) = ; 1
1 1 i, Wb = Tk
S -8, — al =65 — A 2 2
o500 - 0)F+a(300—0)F +5(0 2 +Be” 27)7]  (@3)
= 8 _ o i 1 1
ik _ 9% =9 Lt BeT)- b I 3
y _a6u+a¢?ﬁ+2( .
From this we obtain (directly) all irreducible unitary representations of the

———

group Aff(C), the universal covering of Aff(C). Now we consider the group
Gya1-

Theorem 5.4. For each A € gss1 and for each compactly supported C>-
function f € CP(R x I), the following holds.
1. If A is defined by (37) then
l?ff)(f) = (dds f + i[(ac + bB) cos s + (ba — af) sin 8] )| (s 4)-
2. If A is defined by (38) then
LA(f) =FpolaoFy (f)
rd . 1 9
- z.(;y—(z@z + 500,711 + l".f)‘

(z.q)

= %(az[(a—bz')A(f) + (a+bi) A7 (f)]

+ 5-0:((a-t)O(f) + (a + )0 (£)])

(@q)
uhere I‘=c*y+d5—da2;yﬁ2,
an=eo fia+a((3) )] = T () ),
oty = () 20)] -+ £ S (2 )

To prove the theorem, we need the following obvious lemma, which is a
direct consequence of the definition of F, and F, .
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Lemma 5.5. Forallr > 1
o 5 (FHS) =7 F "),
o Fp(p"F M (f)) = i85 (),
o Fp(pr Ol A F H(F)) =i t0n (a7 ). .

prl

Proof of Theorem 5.4.

The proof for the first case is quite similar to that of Theorem 4.4. We prove
only the second case.
One can write (38) as

P . . 2 2
Aot(p,q) = %pz + (@~ bi)ei® + (a+ bi)e ] + oy + 6 - a2 ;yﬁ
and remark that b+ TR
A=f = 7
Y

corresponds to the form w = (/p)dp A dg. Denoting F,(f) = v, we have

az +/62}
'U,

d . L
P = {—7p2 - [(a —bi)e*? + (a + bie ™| +cy+dé—d >

2
P = [ 1 B (- bi)e' + (a+ bi)e )] 0

v 2y
1 2 . .
- % [(a —bi)e'? — (a + bi)e_“’] Opv,
P? = 2—32-{12 [(a— bi)e' + (a + bi)e "] p*Oav
— 2[(a — bi)e"! — (a+ bi)e ]p%82, } + —0%v,

7= 2%3{(—%')3 [(@ — bi)e’® — (a+ bi)e™]p*OFov
+3(—i)?[(a — bi)e" + (a + bi)e‘iq]paagzqv},
O
+4(=i)P [(a— bi)e’ — (a + bi)e™ PO 0}
By analogy, for all 7 > 4 we have

1
297

" ——’"(;3: — (i(a = bi)e + (~1) @+ bi)e ™ pr B g0).

IR™=

(=9 l(a - bi)e™ + (1) (a+ bi)e™)p" 1050

As A is defined by (38), we obtain
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25N = Fd» 5 (05 Y () 7 (PAE (D)

r>0
2 2
=i(c'y+d6—da +ﬁ )Fpv
. d 1. 25 1 = o
+’L|:.F(2_p )+1'2 ( 2p U) 2( ) ( 3p qz’l))]

& Z ! (22) 2')'

X {(—z) [(a — bi)e*? + (=1)"(a + b’i)e_“’] ("1 )
+ T(—i)r—l [(a = b’i)eiq + (—1)T_1(a + bi)e—iq]]:p(pra;r_lqv)}

2
=i(ey +dd - da +ﬂ )f+z—(za +5 aaq)f
i 1/-1 r
o =T e T iq 741
+2§>r!(2v) a = bi)e" Fp(p"" 0 0)

i 1/1yr .

+ = = (—) a+ bi)e M F, (p'r‘+larr,v)

2 &2\ 2y ( ) P L4
r—-11

. 1 e .
- — [ == —A(a — bi)e*? T or
T3 2. (r— 1)!(27) 5 (@~ B Fp (0 O 00)
r>1

11 1 1\7-11 \ g o
*3y 2 (r— 1)!(%) 23 (@ + BT Fp (070 nyav)
r>1

= ifey + ds — 42 ’;ﬂ (16 +5 aa)]f
<a—bz>e“’21.(—) p—

(a+bz)e_“’z ( ) 2Tl (a7 f)

I\DI

]. —1\r—
+ gy(a b Z = 1)' (3 ) #0278, f)

1 (a+b1)e_"lz (1-_ 1)'( 1 )r 1 j2r- 16;,_1( ';l.aqf)

=i[07+d6—d 2;ﬂ2+z—(za + aa) ]f

- 50 [(a—bi)eiq-Zl(i)raif‘x’-f )

= ri\2y

+ (a + bi)e™ ™. Z ( 7) . (z".f)
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o i _l_ir_lr—l r—1
+ 5 (e = bi)e .g(r_l)!(%) a7 (@ 1.0, f)

+ %(a + bi)e ™. Z (rTll)_' (i)r_la;7}1 (-"’r_l'a‘lf)]

r>1 2y
— i[c'y+d6 & df‘%ﬁ + %(i@z + %ama,,)z]f

= %fh{(a — bi) exp[iq+ am((%)f)]

+ (a + bi) exp [—iq + 0z ((;—:)

N}
_ %aﬁ{(a — bi)exp [iq + 8, ((%) ~3qf)]

—Z

+ (a + bi) exp[—iq + 8, ((E).qu)] }
The theorem is completely proved. ™}

From this, we have [Q(F‘.l’l’a); fff)] are the quantum rotation cylinders;
[ng’l’b); /:',ff)] are the quantum rotation paraboloids.

At last, as £ A,éff),ﬁff) are (global or local) representations of the MD,-
algebras (for all the cases, Moyal *-product is G-covariant), we have operators
exp(fa); exp(éff) ); exp(/:',ff)) are representations of the corresponding connected
and simply connected MDy-groups.

We say that they are the representations of MDy-groups arising from the
reduction of the procedure of deformation quantization.
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