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Abstract. In this paper we study calibrated foliations on a smooth manifold X where
there is an action of a compact Lie group (G. We extend the results of R. Harvey and
H.B. Lawson Jr. in [5] for calibrated foliations in the generalized case.

1. Introduction

The interest in theory of calibration and its various applications have been
increasing in recent years. The idea of Calibration Theory is contained in
Huyghens algorithm for the family of light rays in a non-homogeneous envi-
ronment (see {15]). Dao Trong Thi used covariant constant forms as calibration
forms to examine globally minimal currents and surfaces in Riemannian man-
ifolds. In particular, covariant constant forms have been used to study the
minimality of such important classes of surfaces in compact Lie groups as to-
tally geodesic submanifolds and primitive cycles, constructed by Pontryagin (see
[9,11,12]). R. Harvey and H. B. Lawson Jr. were the first to use the terminology
“Calibration” and they have conducted a systematic investigation of theory of
calibration (see [3]). In particular, they have studied and used calibrations for
studying foliations. In this paper, the theory of calibration is used for the study
of invariant foliations on Riemannian manifolds. We consider here a problem,
which seems particularly well suitable for studying the internal dynamics of a
foliation.

Problem. Given an action of a compact Lie group G on a smooth manifold X,
and let F be an oriented, G-invariant, k-dimensional foliation of class C* on
the manifold X .

Can one find a closed k-form w and a G-invariant Riemannian metric with
respect to which w becomes a calibration for F?
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This paper has two aims, first to establish sufficient conditions for an affirma-
tive answer of the Pioblem, and then to investigate the relationship of tightness
with the existence of invariant metrics and the exponential growth of leaves.

Note. When G is trivial, the problem was answered by R. Harvey and H.B.
Lawson Jr. in [5].

This paper is organized as follows. Section 2 is preliminary. In Sec. 3, we
establish the relationship of homologically tight and geometrically tight foliations
with the existence of invariant metrics. In Sec. 4, we apply our results obtained
in Sec. 3 to the investigation of calibrated foliations on symmetric spaces. In the
last section, we establish the relationship of the existence of invariant metrics
with the exponential growth of leaves of a tight foliation.

2. Preliminaries

In this section we briefly recall some of the important ideas and results of Geo-
metric Measure Theory (more detail see [1,14]).

Let R™ be the n-dimensional Euclidean space. We denote by Ag ,R™ and
A*"R™ the space of k-vectors and k-covectors respectively. The direct sums

A*,n = @ Ak,an

k>0

and
AP = @Ak’an

k>0

form respectively the contravariant and covariant Grassmann algebras of R"
with the operation of exterior multiplication A. The inner product (.,.) of R®
and the corresponding norm | . | in R” induce the inner product and norm in
Ay n and A®™ which will be also denoted by (.,.) and |.|. Below, we will
identify A. , and A*™ by means of the scalar product.

Definition 2.1. The comass of the k-covector w is defined by
lw||* = sup{w(§); € is a simple k-vector and || = 1}
and the mass of the k-vector £ is defined by

€]l = sup{w(€) : w € AP"R™ and ||w||* < 1}.

Let X be a Riemannian manifold. We denote the real vector space of dif-
ferential k-forms of class oo on X by E*X, and we equip it with the topology
of compact convergence of all partial derivatives. Thus, the convergence of a se-
quence of k-forms in F*X means uniform convergence, on each compact subset
K C X, of each partial derivative of any order. The direct sum
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E'X =PEX
k

is a graded differential algebra with exterior multiplication A and exterior dif-
ferentiation d.

Definition 2.2. The support spt of a k-form ¢ € E*X is defined as the
closure of the set

{zeX: o, #0}

Definition 2.3. A k-current S (with compact support) on a Riemannian man-
ifold X is a real continuous linear functional on E¥X.

Definition 2.4. The support spt S of a k-current S is the smallest closed set K
such that S(p) = 0 for all ¢ € E*X with spt C X \ K, and the mass of S is
defined by

M(S) = sup{S(p) : ¢ € E*X, |lg:|* < 1Vz e X}.
We see that the set spt S is always compact. We denote by FxX the space

of k-currents (with compact support and) with finite mass on X, equipped with
the weak topology which is given by the seminorms

S — sup |S(¢)|,
pEA

where A is an arbitrary finite set of k-forms in E*X.
The direct sum

E.X = @Ekx
k

is a chain complex with boundary operator @ defined by the formula

9S(p) = S(dp).

Clearly, d and 9 are continuous.

Definition 2.5. A current S is called closed if S = 0 and exact if S is a
boundary, i.e., S = 0T, where T is some current.

Definition 2.6. The topological dual space MM (X) C ExX is the space of k-
dimensional currents represented by integration. A current S belongs to M. (X)
if S has compact support and has measure coefficients in any local coordinate
system.

To any k-current S € 9 (X), there corresponds a local Radon measure
||S]| (called the variational measure of S) on X such that for an arbitrary real
nonnegative continuous function f on X,

/X FdlS) = sup{S(p) : ¢ € E*X, llgall* < f(z) Vo € X},
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Note that when S € My (X), M(S) = [ d||S||. Furthermore, if S is a cur-
rent defined by integration over a compact oriented k-dimensional submanifold
with boundary L* C X, then ||S|| is just Hausdorff k-measure restricted to L*.
Namely, [, fd||S|| = [, fdvol. In particular, M(S) = vol(L*).

From Radon-Nikodym theorem, with any current S € (X)) one associates

a measurable field of tangent k-vectors ?z, defined || S|-a.e. and for arbitrary
k-form ¢ € E*(X) such that

S(¢) = / (5 )dl8] (@),

(More briefly we denote S = ?HSH) Here the vector S, € A*T, X and ||§)z|| =1
almost everywhere in the sense of the measure ||S||. If S is given by integration
over a submanifold L* as above, then TS?I is the unit simple k-vector representing
the oriented tangent space to L* at z.

It was shown in [1,2] that certain compact families of currents can be used
to define the homology of a Riemannian manifold X. We denote by X the
set of all rectifiable k-currents. This is defined as the closure in the M-topology
on M (X) of the integral Lipschitz k-chains.

Further, we put

NeX = {S € EoX : M(S) + M(9S) < oo},
I X = {S e R X : 05 e ka_lX};

the direct sums
N.X = P NeX
k

and
X = QB %
k

form, respectively, chain complexes of normal and integral currents with bound-
ary operator 9. It was proved by Federer and Fleming in [2] that there are
natural isomorphisms

He(N.X) = Hy(X;R)

and
Hy(I.X) = Hy(X;Z).

It is known that Geometric Measure Theory is fit for the inverstigation of
foliations. Suppose the F is an oriented k-dimensional foliation of class C"
(r > 1) on a manifold X. Given a Riemannian metric on X and let P € T(AFTX)
be the field of unit k-vectors tangent to the foliation 7.

Definition 2.7. A current S € M (X) such that

—

Sy =P(x) for|S|-ae x
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is called a foliation current for F. If in addition dS =0 then S is called a d-
closed (or closed) foliation current. A foliation current S which is rectifiable is
called a foliation chain, or, in the case dS = 0 a foliation cycle.

3. Tightness and the Existence of Invariant Metrics

Definition 3.1. Suppose a Lie group G acts on a Riemannian manifold X. We
say that a foliation F of manifold X is a G-invariant foliation if the map

Mg: X — X
takes leaves of F to leaves of F for any g € G.

Definition 3.2. Let a Lie group G act on a Riemannian manifold X and P
is a k-plane field on X. The k-plane field P is called invariant under action
of Lie group G, or simply a G-invariant plane field of P(gx) = g.P(x) for every
re€X and g € G.

Definition 3.3. Suppose F is an oriented k-dimensional foliation on a Rieman-
nian manifold X, and let P denote the unit oriented k-plane field determined by
F. Then a calibration for F is a d-closed k-form w of comass one such that

w(P)=1
on X.

We note that there is a more general concept of a calibration that has been
introduced and studied in detail by R.Harvey and H.B.Lawson, Jr. (see [3]).
Our first result is the following.

Proposition 3.4. Suppose we are given an action of a compact Lie group G
on a Riemannian manifold X. Let F be an oriented, G-invariant, calibrated,
k-dimensional foliation of class C' on X defined by an oriented, k-plane field
P. If there exists a number N € Rt such that on each principal direction P(x)
of each leaf F of the foliation F , one of the following conditions is satisfied:

1. |g<P(x)|s+ < N for all points z € X and for all g € G,

2. |g«P(z)|s» > N for all points x € X and for all g € G,

where s* is an inner product in AxX, which is induced from a Riemannian
metric on X in which the foliation F can be calibrated.

Then there exists a closed k-form &' and a G-invariant metric with respect to
which @' has comass one and &' restricts to be the Riemannian volume form on
the leaves.

Proof. 1. Assume that F is calibrated with calibration w in a Riemannian metric
s. By definition of the calibration, we have

(a) w(€) < ¢, for all simple k-vectors &
and

(b)  wgx(P(z)) = |P(z)|,. for all points z € F'.
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Two conditions (a) and (b) are equivalent to the following conditions
(a") w(§) <[], for all simple k-vectors £
and
(b)) wx(P(x)) =1 for |P(x)|,. =1 and for all points z € F.
Since the group G is a compact Lie group, there exists on G, as it was known,
a unique bilateral invariant Haar measure such that the measure of the whole
group G is equal to unity. Now we will use the method of integral average to
construct the desired metric.
For each w, we put

and we construct s as follows
s(u,v) = / g*s(u,v)dg for all u, ve X,.
e
§ induces, as it is known, §* on A X, defined by the following equality

) = / §"s*(€,m)dg for all €, 7€ ApXe.
G

Lemma 3.5.
(i) @ is a closed k-form.
(ii) Ifw is a G-invariant form, then @ = w.

Proof. (i) Since w is a closed k-form and the action of g* commutes with operator
d, we have

() = [ dgw(©ds = [ g"du(e)dg =0
G
for any ¢ € AxX;, which implies that d& = 0, that is, & is a closed k-form.
(ii) If w is a G-invariant form, then g*w = w for any g € G. Consequently,

w=w. [}

Lemma 3.6. 5§ 15 a G-invariarit metric.

Proof. 1t is obvious that 3 is a Riemannian metric. Also, for each ¢ € G we
have

g"3(u,v) = 5(g«(u,v)) = /G h*s(gs(u,v))dh = /Gg*h*s(u,v)dh
= /G li) (e )dhs =tia.o)

for all u, v € X,, that is, g*s = 3. Thus, § is G-invariant. This proves the
lemma. [

Now we construct 3’ as follows
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= 1 1
5 (u,v) = e /(;g*s(u,v)dg = ms(u, v) for all u, v € X,

and we construct &' as follows

5(6) = 5 [ o"w(Eda = 53

By the construction of @’ and 5/, and from Lemmas 3.5 and 3.6 we conclude
that @’ is a closed k-form and 5’ is a G-invariant metric. Indeed, we see from
Lemma 3.6 and the construction of 5/, that 5’ is a bilinear, symmetric, positive-
definite form.

Now we only need prove the G-invariant property of §’.

We consider

5" (u,v) = 3'(g«(u,v)) for all u, v € X, and for any g € G.

By definition of 5/,

- 1 _
5'(gu(u,v)) = —ﬁis(g*(u, v)) for all u, v € X, and for any g € G.
From Lemma 3.6, we have

1 1
m?(g*(u,v)) = —ﬁi'g(u,v) for all u, v € X, and for any g € G,

and by the construction of §7,

—]\%E(u, v) =8 (u,v) for all u, v € X,.
Hence ¢.5"(u,v) = 5'(u,v) for all u, v € X, and for all g € G, as we wanted to
prove.
In the following, we will show that §” is the desired metric.
Since F is a G-invariant foliation and from conditions (a) and (b), we have
conditions (a”) and (b”) as follows
(87)  w(gu&) < |g«€| . for all simple k-vectors £ and for all g € G;
(b”)  wgax(g«(P(z))) = |g+P(x)|,. for all points z € F and for all g € G.
From condition (a'), we have

%/Gw(g*é“)dgﬁ %/Glg*ﬁ

Using Holder’s inequality for integral, we obtain

% /G 19-£l-dg < ( /G g.¢dg) /G o) (32)

o ag. (3.1)

But
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([ loweieas) ([ ate)” = ([ loitae) " = lelp- @9

From (3.2) and (3.3) it follows that

1
= .dg < €]~ _
N/Glg*éls dg < [&l5- (3-4)
From (3.1) and (3.4) it follows that
1 .
AT * d < e .
5 | wto-61d0 < et (35)
Since &'(£) = % [ 9" w(€)dg = & [, w(g«E)dg, we deduce from (3.5) that
&'(€) < |€ls. (3.6)
Assuming now that |P(z)|>,» = 1 we must show that
@y (P(z)) =1
Indeed , by condition (b”)
1 1
~toga(0.P(&)) = elos (P, 3.7

and by the assumption of Proposition 3.4, [g.(P(z))|,» < N for all points z € X
and for all g € G, we have

] 1 2 o
1. (P@)],- > 319+ (P@)LE (38)
for all points z € X and for all g € G.
From (3.7) and (3.8) it follows that
1 1 f 2
[ nloP@)de = 55 [ lo.(P@))2dg (3.9)
Ja N Je

for all points z € X and for all g € G.
Since @}, (P(z)) = & [ 9" wz(P(x))dg = % [ wee(9+(P(z)))dg and from the
construction of 5§/, we deduce from (3.9) that

5L(P@) = [P(@)|5-- (3.10)
By assumption |P(z)|~,» = 1, and from (3.10)
y(P(z)) 2 1.
On the other hand, in the previous proof we have
G, (P(@) < |P(@)ly» = 1.

Hence, we obtain

B.(P(z) =1 (3.11)
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as claimed.
Since 3’ is a G-invariant metric we conclude from (3.6) and (3.11) that 3/ is
the desired metric.

2. We proceed as above in this case, we construct 5’ and &' by the method
of integral average mentioned above, i.e.,

5'(6) = 1(6) N/ g*w(E)dg,

and
1

s 1 __/*
5 (u,v) = e $(u,v) = e Gg s(u,v)dg

for all u, v € X;.

Hence, as before, we conclude that &’ is a closed k-form and 5’ is a G-
invariant metric.

Analogous to the case 1 of Proposition 3.4, we use Holder’s inequality for
integral and we also obtain

@) < ez (3.12)

for all simple k-vectors &.
Now suppose that |P(x)|7,» = 1, we must show that

&, (P(z)) = 1.

Indeed, by assumption of Proposition 3.4 |g«(P(z))|,. > N for all points

z € X and for all g € G, we have

S19-(P@))],e 21 (313)

for all points z € X and for all g € G.
By condition (b”)

1 1
ul 1o (G lg=— .d
NL»MM()W@ th (@)l dg-

From (3.13) it follows that

5 | lo®

i / wee (9 (P(x)))dg > 1. (3.14)

Since &,(P(z)) = + [o g*wz(P(z))dg = % [ wez(g+(P(x)))dg, we deduce
from (3.14) that

dg>/1dg=1.
e

Hence

o, (P(z)) > 1.

Wy

On the other hand, in the above proof we have

5, (P(2) < |P@)z- =1,
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hence we obtain
W, (P(z)) =1 (3.15)

as claimed.

Since 5/ is a G-invariant metric we conclude from (3.12) and (3.15) that 3’
is the desired metric.

The proof of Proposition 3.4 is complete. .

Remark 1. If X is a compact Riemannian manifold, then there always exists a

closed k-form @’ and a G-invariant metric on X with respect to which @’ has

comass one and w ' restricts to be Riemannian volume form on the leaves of F.
Indeed, since the map f: G x X — R defined by

f(g,2) =19, P(z)|,

is a continuous function of ¢ and z, we conclude from the above assumption
that there always exists a number N which satisfies conditions of Proposition
3.4. Thus, there exists a closed k-form @’ and a G-invariant metric on X with
respect to which &’ has comass one and @’ restricts to be the Riemannian
volume form on the leaves of F.

Definition 3.7. A k-dimensional current S (with compact support ) on a Rie-
mannian manifold X is said to be homologically mass minimizing if the mass of
current S, M(S) < oo and M(S) < M(S’) for every k-current S’ homologous
to S.

Definition 3.8. An oriented k-dimensional foliation F on a Riemannian mani-
fold X is said to be geometrically tight if every foliation current is homologically
mass mINImizing.

Note that if F is geometrically tight then every leaf in F is a minimal sub-
manifold of X.

Definition 3.9. An oriented k-dimensional foliation F on a manifold X is said
to be homologically tight if no (non-zero) closed foliation current is homologous
to zero as a compactly supported de Rham current in X.

We note that the calibrated foliation is always geometrically tight.

In Proposition 3.4, we have established sufficient conditions for an affirmative
answer to the Problem. However, the arguments presented there actually prove
much more, namely:

Theorem 3.10. Suppose we are given an action of a compact Lie group G on
a Riemannian manifold X. Let F be an oriented, G-invariant, k-dimensional
foliation of class C* on X defined by an oriented, k-plane field P. Consider the
following conditions.

(1) F is homologically tight.
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(2) F is a calibrated foliation and there exists a number N € R* such that
on each principal direction P(z) of each leaf F of the foliation F, one of the
following conditions is satisfied:

(a) |g«P(z)|s+ < N for all points x € X and for all g € G,

() |g«P(z)|s« > N for all points z € X and for all g € G,

where s* is an inner product in ApX;, which is induced from a Riemannian
metric on X in which the foliation F can be calibrated.

(3) There exists a closed k-form @' and a G-invariant metric with respect to
which &' has comass one and @' restricts to be the Riemannian volume form on
the leaves of F.

(4) There exists a G-invariant metric on X in which F is geometrically tight.

Then (2) = (3) = (4) = (1); and if X is compact the conditions are equiv-
alent.

Corollary 3.11. Suppose we are given an action of a compact Lie group on
a Riemannian manifold X. Let F be an oriented, calibrated, k-dimensional
foliation of class C' on X defined by an oriented and G-invariant plane field P.
Then there ezists a closed k-form & and a G-invariant metric on X with respect
to which @ has comass one and restricts to be the Riemannian volume form on
the leaves.

Proof. We can prove Corollary 3.11 directly from Theorem 3.10. Here N = 1.
We see, therefore, that @ is the desired k-form and § is the desired metric. m

4. Calibrated Foliations on Symmetric Spaces

Let X be a compact Riemannian symmetric space. It is known that X admits
a representation in the form G/H, where G = Iy(X) is a connected group of
isometries of X, and H is a stationary subgroup. Suppose that ¢ is an involutory
automorphism of G, whose set of fixed points coincides with H. It is known
that, for a compact symmetric space X, every G-invariant generalized k-form
is a closed differential form and is identified with the H-invariant k-covectors
determined by it at an arbitrary fixed point. Further, there is a unique G-
invariant form in every cohomology class such that the group of G-invariant
forms is isomorphic to the cohomology group.

Definition 4.1. A foliation F of a Riemannian manifold X is called a totally
geodesic foliatioh if each leaf of the foliation F is a totally geodesic submanifold
of the Riemannian manifold X .

Theorem 4.2. Let X = G/H be a compact Riemannian symmetric space, F is
a totally geodesic foliation, G-invariant, on X. Then there exists a G-invariant
metric on X in which the foliation F can be calibrated.

Proof. This theorem is a direct consequence of Theorem 3.10 and Remark 1. m

Now we apply Theorem 4.2 to the investigation of compact Lie groups.
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Let G be a connected compact Lie group. It is known that G admits a
representation in the form G/H, where the group G x G acts on G by the
formula

(91,92)h = g1.h.g5" = Lg, . Ry-1h (4.1)

for any h € G.
The stationary subgroup H is a group of the inner automorphisms of G, that
is, H acts on G by the following formula

Intyh = ghg™' for any h € G. (4.2)

Lemma 4.3. (see [13]) Let X be a Riemannian globally symmetric space and pq
any point in X. If G = Iy(X), and H is the subgroup of G which leaves py fized,
then H is a compact subgroup of the connected group G and G/H is analytically
diffeomorphic to X under the mapping gH — g.po , g € G. Identifying as usual
the tangent space X, with the subspace p of the Lie algebra of I(X), let s be a Lie
triple system contained in p. Put S = Exps. Then S has a natural differentiable
structure in which it is a totally geodesic submanifold of X satisfying Sp, = s.

On the other hand, if S is a totally geodesic submanifold of X and py € S,
then the subspace s = Sp, of v is a Lie triple system.

Now we will consider a foliation of a connected compact Lie group G.

Suppose that K is a closed Lie subgroup of G. Then the Lie algebra ¢ of K
is a subalgebra of g, the Lie algebra of G. We may identify g = G, and ¢ = K,
where e is the unit element of Lie group G. From Lemma 4.3, we conclude that
K is a totally geodesic submanifold of G. Assuming now that dim K = k we
consider the k-plane field P on G determined by the formula

P(g) = Lg*K"e for any g € G, (4.3)

where K, is the simple unit k-vector associated to K.

It is easy to prove that the k-plane field P on G defined by the formula (4.3)
is completely integrable.

We conclude from the Frobenius theorem that there exists a C! foliation F
of dimension k on G such that T,(F) = P(g) for every g € G. Further, the
foliation F is unique.

Remark 2. We see that each leaf F of the foliation F, corresponding with the
k-plane field P defined by the formula (4.3) is a coset gK, g € G.

Theorem 4.4. Suppose F is a k-dimensional foliation of Lie group G, corre-
sponding with the k-plane field P defined by the formula

P(g) = Lg*Ife for any g € G,

where K, is the simple unit k-vector associated to K., and K is a closed Lie
subgroup of G, e is the unit element of Lie group G. Then there exists a G-
mvariant metric on G in which the foliation F can be calibrated.
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Proof. The proof of Theorem 4.4 follows immediately from Theorem 4.2 and
Remark 2. [ ]

5. The Exponential Growth of Leaves of Invariant Foliations

In this section, we investigate the relationship of tightness with the existence of
G-invariant metrics and the exponential growth of leaves.

Theorem 5.1. Let a compact Lie group G act on a compact manifold X and
let F be a tight, G-invariant foliation of dimension k on the manifold X whose
k" homology group (over R) is zero. Then there exists a G-invariant metric on
X in which the growth of each leaf of F must be exponential.

Proof. Assume that F is calibrated with calibration w. By Theorem 3.10 and
Remark 1, there exists a closed k-form &’ and a G-invariant metric § with
respect to which @’ becomes a calibration for . In the following, we will show
that § is the desired metric.

Let f(r) denote the volume of a geodesic ball B, of radius r in the leaf
F (centered at some point @ € F'). Then f'(r) is the volume or mass of the
boundary of this ball. By the construction of &', and since Hy(X;R) = 0, there
exists a form ¢ with di = w, consequently

sy = | kS 5/ : Lorwda=5 [ : Loawds 6

Since the action of g* commutes with operator d, we deduce from (5.1) that

flr) = %/T/Gdg*wda (5.2)

From Fubini’s theorem, we have

! dg*pdg = — dg*adg. 5.3
NBTng)g NGBTgwg (5.3)

From (5.2) and (5.3) it follows that

sy =5 [ [ dovaa (5.4

Using Stokes’ theorem, we obtain

L ng*«pdg:% o 6o (5.5)

From (5.4) and (5.5) it follows that

Since we have used the method of integral average to construct the metric
§ and the form &', we have [, dg = 1, consequently
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s =5 [ [, ovts < 5 [ erers=arie)

which integrates to f(r) > lez, where ¢, is the supremum of comasses of the
forms ¢g*¢ with Vg € G, and ¢; > 0.
The proof of Theorem 5.1 is complete. ]
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