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Abstract. In this paper we study calibrated foliations on a smooth manifold X where
there is an action of a compact Lie group G. We extend the results of R. Harvey and
H. B. Lawson Jr. in [5] for calibrated foliations in the generalized case.

1. Introduction

The interest in theory of calibration and its various applications have been
increasing in recent years. The idea of Calibration Theory is contained in
Huyghens algorithm for the family of light rays in a non-homogeneous envi-
ronment (see [15]). Dao Tfong Thi used covariant constant forms as calibration
forms to examine globally minimal currents and surfaces in Riemannian man-
ifolds. In particular, covariant constant forms have been used to study the
minimality of such important classes of surfaces in compact Lie groups as to-
tally geodesic submanifolds and primitive cycles, constructed by Pontryagin (see

19, 11, 12]). R. Harvey and H. B. Lawson Jr. were the first to use the terminolog'y
"Calibrat'ion" and they have conducted a systematic investigation of theory of
calibration (see [3]). In particular, they have studied and used calibrations for
studying foliations. In this paper, the theory of calibration is used for the study
of invariant foliations on Riemannian manifolds. We consider here a problem,
which seems particularly well suitable for studying the internal dynamics of a
foliation.

Problem. Giuen an act'ion of a compact Lie group G on a smooth manifold, X,
and let f be an oriented, G-inuariant, k-d'imensional foliation of class Cr on
the mani,fold, X.

Can one fi,nd a closed k-form a and, a G-'inuariant Riemann'ian metric w'ith
respect to whi,ch w becomes a cal'ibration for F ?
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This paper has two aims, first to establish sufficient conditions for an affirma-
tive answer of the Pioblem, and then to investigate the relationship of tightness
with the existence of invariant metrics and the exponential growth of leaves.

Ifofe. When G is trivial, the problem was answered by R. Harvey and H. B.
Lawson Jr. in l5].

This paper is organized as follows. Section 2 is preliminary. In Sec. 3, we
establish the relationship of homologically tight and geometrically tight foliations
with the existence of invariant metrics. In Sec. 4, we apply our results obtained
in Sec. 3 to the investigation of calibrated foliations on symmetric spaces. In the
last section, we establish the relationship of the existence of invariant metrics
with the exponential growth of leaves of a tight foliation.

2. Preliminaries

In this section we briefly recall some of the important ideas and results of Geo-
metric Measure Theory (more detail see [1,14]).

Let lR' be the n-dimensional Euclidean space. We denote by Ap,,lR' and
1/c'npn the space of k-vectors and k-covectors respectively. The direct sums

A*,, : O A*,,R"
/c>0

and

I\*,n : O Ar,"1q"
/c>0

form respectively the contravariant and covariant Grassmann algebras of IR'
with the operation of exterior multiplication A. The inner product (. , .) of IR"
and the corresponding norm | . I i" IR" induce the inner product and norm in
A*,, and A*,', which wil l be also denoted by (.,.) and | . l . Below, we wil l
identify A*,, and A*,' by means of the scalar product.

Deffnition 2.L. The cornass of the k-couector a is defined by

l l r l l -  :  sup{r . r ( { ) ;  {  i 's  a s imple k-uector  and l ( l :1}

and the mass of the k-uector ( i,s defined by

ll(ll : ."p{r(O , ,., . trk'npn and' llull. < 7}-

Let X be a Riemannian manifold. We denote the real vector space of dif-
ferential k-forms of class oo on X by Ek X, and we equip it with the topology
of compact convergence of all partial derivatives. Thus, the convergence of a se-
quence of k-forms in Ek X means uniform convergence, on each compact subset
K c X, of each partial derivative of any order. The direct sum
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E"x :  @"r*
k

is a graded differential algebra with exterior multiplication A and exterior dif-
ferentiation d.

Deffnition 2.2. The support sptp of a k-form g e EkX i,s defi,ned as the
closure of the set

{ r e X : e , 1 0 } .

Definition 2.3. A k-current S (with compact support) on a R'iemann'ian man-
ifol,d, X 'is a real continuous I'inear funct'ional on Ek X.

Definition 2.4. The support spt S o/ a k-current S is the smallest closed set K
such that S(d : 0 for att I € EkX with sptg c X \K, and, the mass of S i,s
defined by

M(S)  :sup iS( .p )  :  e  €  Ekx ,  l lp ' l l .  <  rYr  e  x \ .

We see that the set spt,S is always compact. We denote by EpX the space
of k-currents (with compact support and) with fi.nite mass on X, equipped with
the weak topology which is given by the seminorms

^9---+ sup lS(p)| ,
eeA

where A is an arbitrary finite set of k-forms in EkX.
The direct sum

E*X : @ "*'k

is a chain complex with boundary operator 0 defined by the formula

as@): s(dp).

Clearll', d and d are continuous.

Definition 2.5. A current S i,s called closed i,f 6^9 : 0 and eract if S i,s a
boundary, i.e., S : AT, whereT ' is some current.

Definition 2.6. The topologi,cal dual space II\1"(X) c EnX i,s the space of k-
d'imens'ional currents represented by 'integrat'ion. A current S belongs to lJt.(X)
i,f S has compact support and has rneasure cofficients in ang local coord'inate
system.

To any k-current S e iJtn(X), there corresponds a local Radon measure

llsll (called the uariat'ional measure of ^9) on X such that for an arbitrary real
nonnegative continuous function f on X,

I  ta ls l :  sup{s(e) ' .  e € Ekx, l lp" l l -  < f  ( r )  Yr e x} .
J X
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Note that when ̂ 9 erJtk(X), M(S): /rdllSll. Furthermore, if S is a cur-
rent defined by integration over a compact oriented ft-dimensional submanifold
with boundary Lk c X, then llSll it just Hausdorff k-measure restricted to Lk.
Namely, Ix f dllsll: [" f duol In particular, M(S): vol(trk).

Ftom Radon-Nikodym theorem, with any current S e lJIp(X) one associates
a measurable field of tangent k-vectors ,S,, defined llSll-a.e. and for arbitrary
k-form I e Ek(X) such that

(More briefly we denote S : SllSll.) Here the vector i 
" 

e LbT*X and ll 3" 11 : r
a lmosteverywhereinthesenseof  themeasure l lS l l .  I f  ^9 isg ivenbyintegrat ion

over a submanifold .Lk as above, then 3" is the unit simple k-vector representing
the oriented tangent space to Lk at r.

It was shown in [1,2] that certain compact families of currents can be used
to define the homology of a Riemannian manifold X. We denote by ft1'X the
set of all rectifiable k-currents. This is defined as the closure in the M-topology
on lJtp(X) of the integral Lipschitz k-chains.

Further, we put

N n X : { S e  E p X :  M ( S ) + M ( A S )  ( * } ,

IpX :  {S efrnX: 0,9 e f tn-tXh

the direct sums

ano
I*X : @'r'

k

form, respectively, chain complexes of normal and integral currents with bound-
ary operator 0. It was proved by Federer and Fleming in l2l that there are

natural isomorphisms

H;(N.X) o f l t (X;R)

and
H;Q.X) e H6(X;Z) .

It is known that Geometric Measure Theory is fit for the inverstigation of
foliations. Suppose the F is an oriented k-dimensional foliation of class C"
(r  > 1)  onamani fo ldX.  GivenaRiemannianmetr iconXandletP € f (AkTX)

be the field of unit k-vectors tanqent to the foliation .F.

Deffnit ion 2.7. A current S eiJtn6) such that

f +
s(p) :  

J  v{  s-)d l ls l l ( r ) .

N*X:O"* "
k

3, : e1"1 f or llSll-a.e. r
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is called, a foliati,on cur-rent for F. If i'n addi'tion dS : 0 then S i's called a d-
closed, (or closed,) foliation cunent. A foli'ati'on current S which i's recti'fiable is
called a foli,ati,on cha'in, or, 'in the case d'S : 0 a foli'ation cycle.

3. Tightness and the Existence of Invariant Metrics

Definition 3.1. Suppose a Lie group G acts on 0' R'iemann'ian mani'fold X. We
say that a foliati,on f of rnani,fold X is a G-'inuariant foli'ation if the map

fIn: X '-----+ X

takes leaues of F to leaues of F for any S e G.

Definition 3.2. Let a Lie group G act on a R'iemannian mani'fold X and P

is a k-plane field on X. The k-plane fi'eld P i's called, inuariant under action
of Li,e group G, or s'i,mply a G-inuariant plane fi'eld' if P(gr): S"P(x) for euery
n € X  a n d g € G .

Definition 3.3. Suppose F is an oriented, k-d''irnens'ional foliation on a R'ieman-
nian manifold, X, and let P denote the unit oriented k-plane field determined by
F. Then acalibration for F is ad-closedk-fomnu of comass one suchthat

w(P) = |

on  X .

We note that there is a more general concept of a calibration that has been
introduced and studied in detail by R.Harvey and H.B.Lawson, Jr. (see [3]).

Our first result is the following.

Proposition 3.4. Suppose we are g'iaen an act'ion of a compact Lie group G
on a Riemann'ian man'ifold X. Let F be an oriented, G-'inuariant, calibrated,
k-d,'imensional foliati,on of class CL on X defined by an oriented, Ic-plane field,
P. If there erists o number l/ e IR+ such that on each princ'ipal direction P(r)
of each leaf F of the foli,ati.on F , one of the following cond,itions 'is satisfi,ed:

I. lg.P(n)1". < ,^'r fur all po'ints r e X and for all g e G,

2. lg"P(r)1". > l/ for all po'ints r e X and, for all g e G,

where s" 'is an inner product 'in I\*X, which is 'induced from a Riemann'i,an
metric on X in whi,ch the foliati,on ? can be cal'ibrated.

Then there erists a closed k-form 6' and a G-'inaariant metric w'ith respect to
wh'ich 6' has comass one and 6' restricts to be the R'iemann'ian uolume form on
the leaues.

Proof. 7. Assume that T is calibrated with calibration r,' in a Riemannian metric
s. By definition of the calibration, we have

(u) t..'(€) S l(1". for all simple k-vectors {
and

(b) u"(P(r)) : lP(r)1". for all points r e F.
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Two conditions (a) and (b) are equivalent to the following conditions
(u') u(€) < l(1". for all simple k-vectors {

Iemma.

Now we construct 3' as follows

ano

(b ' )  u"(P(r) ) :  l  for  lP(") | " .  :1  and for  a l l  po ints r  € F.

Since the group G is a compact Lie group, there exists on G, as it was known,
a unique bilateral invariant Haar measure such that the measure of the whole
group G is equal to unity. Now we rvill use the method of integral average to
construct the desired metric.

For each u.r, we put

f f
6( i l :  I  s. r ! )ds:  I  ,@.€)dg

J G  J G

and we construct 3 as follows

i (u ,u ) :  I  g*s (u ,u )dg  fo r  a I lu ,u  €  X , .
JG

3 induces, as it is known, V* on ItpX, defined by the following equality

3*(€,rl) : I g.r.(t,r)d,g for alI {, q € l\1"X,.
JG

Lemma 3.5.
(i) 6 is a closed k-form.

(ii) If u i,s a G-'irutariant forrn, then 6 : a.

Proof. (i) Since ru is a closed ,k-form and the action of g* commutes with operator
d, we have

t f
df i (€) :  I  ds.w({ )ds:  I  s"du(€)ds:0

J G  J G

for any {e l\pX,, which impliesthat dfi:0, that is, D is aclosed k-form.
(ii) If or is a G-invariant form, then g*a: w for any g e G. Consequently,

6 : u .  r

Lemma 3.6. 3 'is a G-'inuariant metric.

Proof. It is obvious that 3 is a Riemannian metric. AIso, for each g € G we
have

f f
g* i (u,u)  - -  i (g . (u,u))  :  I  h*  s(g*(u,u))dh :  I  O"h* s(u,u)dh

J G  J G

I

:  |  (hs).  s(u,u)dhs :  V(u,u)
J G

for all u, u € Xr, that is, g*i : V. Thus, 3 is G-invariant. This proves the



Cali.brated, Foliations and Inuariant Metrics 59

- t ,  1  f  *  ,  1
i ' ( u ,u ) :  p  J "g *s (u ,u )dg :  n rg@,o )  

f o r  a l l  u ,u  €  X , ,

and we construct D' as follows

6' ( t ) :  |  [^n. " t t lan:  *aG).1 \  J G

By the construction of 6' and 3', and from Lemmas 3.5 and 3.6 we conclude
that 6 ' is a closed k-form and 3/ is a G-invariant metric. Indeed, we see from
Lemma 3.6 and the construction of 3', that 3' is a bilinear, symmetric, positive-
defi.nite form.

Now we only need prove the G-invariant property of 3'.
We consider

g*E'(u,a) : i '(g*(u,'u)) for aLl u, u € X" and for any g e G.

By definition of 3/,

i '(g*(u,rD : 
*;Ek*(u,u)) 

for all u, u € X, and for any g € G.

Flom Lemma 3.6, we have

1 1

nri(n-(",u)): *s(u,r. ') 
for allu, u € X" and for anv I € G,

and by the construction of 3',

1 .

fuU(",u):E'(u, 'u)  
for  a l l  u,  u € X" '

Hence g*i ' (u,u) :T'(u,'u) for all u, u € X, and for all g € G, as we wanted to
prove.

In the following, we will show that 3' is the desired metric.
Since .F is a G-invariant foliation and from conditions (a) and (b), we have

conditions (a") and (b") as follows
(r") ,r(g.€) S lS.€1". for all simple k-vectors ( and for all g eG;
(b")  ws"(g*(P(r) ) ) : ls .P(r )1" .  for  a l l  po ints r  € F and for  a l l  s  e G.
Fhom condition (a"), we have

*  [ , k - e ) a g < *  [ b . i ; l " . o n .  ( 3 . 1 )
1 \  J C  1 \  J G

Using H6lder's inequality for integral, we obtain

I  f  ,  r  f  -  . t 1 / 2 t  f  l . t 1 / 2

fr J"ln.el""ag < ( J"ls-tl i.as) \J"pon) (3'2)

But
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/  f  . "  : , 1 / 2 t  f  1  r 1 / 2  |  t  f  ^  . r L / 2

\J"b.t l?.as1' lJ"pon) : i lJ. lo.cl?-as1 : lcl ; ,"  (33)

Flom (3.2) and (3.3) it follows that

* / tn.e t". d,g < ltl;,- (3 4)
1 \  J G

Flom (3.1) and (3.4) it follows that

t f
fi J"'G-)dg 

< l€l;,-. (3'5)

Since 6/(O : * I*s-u(t)dg: # Ica(s.€)ds, we deduce from (3.5) that

a'(€) S l(l;,. (3.6)

Assuming now that lP(")l;,-: 1 we must show that

6, (P(r ) )  :  L .

Indeed , by condition (b')

1 1

*us ,@"P( r ) )  
:  

, l a - (P ( " ) )1 " . ,  
( 3 .7 )

and by the assumption of Proposition 3.4, lg"(P("))1"- ( ,A[ for all points r e X
and for all g e G, we have

for all points n € X and for aIl g e G.
Flom (3.7) and (3.8) it follows that

for all points z € X and for aII g e G.
Since 6'"(P(r)) : Ic g.u,(P(r))dg : ; ["as"G.(P(r)))ds and fromthe

construction of 3', we deduce from (3.9) that

u'"(P(n))  > lP(") l  , . .  (3.10)

By assumption lP(r)l;,. : 1, and from (3.10)

6,(P(r)) 2 r.

On the other hand, in the previous proof we have

w,(P(r)) < lP(z)l-, .  :  1.

Hence, we obtain

6"(P(r) )  :  |  (3 .11)
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as claimed.
Since 3' is a G-invariant metric we conclude from (3.6) and (3.11) that 3/ is

the desired metric.

2. We proceed as above in this case' we construct 3'and 6'bylhe method

of integral average mentioned above, i.e.,

t 1 l

" 'G): 
"oiel  

:  
*  J.g"u(t)dg,

a n d l f

3' (u.o)  :  V(u,u)  :  
i  J .g"s(u,u)dg

for all u, a € Xr.
Hence, as before, we conclude that 6 ' is a closed k-form and 3/ is a G-

invariant metric.
Analogous to the case 1 of Proposition 3.4, we use Hcilder's inequality for

integral and we also obtain

6' (€)  S l€ l ; , -  (3 .12)

for all simple ,t-vectors (.
Now suppose that lP(r) l?,. : 1, we must show that

6,(P(r))  :  L

Indeed, by assumption of Proposition 3.a lg.(P(r))I". > N for all points
r € X and for all g e G, we have

le.(P(r))1". > 1 (3.1'3)

for all points r e X and for all g e G.
By condition (b" )

Flom (3.13) it follows that

1 f f

x J* ls. {e{r) ) l " .dsa J" t  
ds:r '

Hence

* [ ,n*b.e@)))dg>- 1. (3.14)
1 \  J G

Since 6i(P(")) : + [cg.u"(P(r))ds : L ["wn,(g*e@D)ds, we deduce
from (3.14) that

6 , (P ( r ) )  /  L .

On the other hand, in the above proof we have

6*(P (r)) < lP(r) l ; , .  :  L,
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- ' r o r - t t - t
w t \ r  \ & ) )  

-  L (3 .15)

as claimed.
Since 3' is a G-invariant metric we conclude from (3.12) and (3.15) that 3/

is the desired metric.
The proof of Proposition 3.4 is complete. I

Remark 1. If X is a compact Riemannian manifold, then'there always exists a
closed k-form 6' and, a G-invariant metric on X with respect to which 6t has
comass one and 6' restricts to be Riemannian volume form on the leaves of f.

Indeed, since the map "f : G x X ------+ IR defined by

f  G," )  :  lg .P(n) | " .

is a continuous function of g and r, we conclude from the above assumption
that there always exists a number I/ which satisfies conditions of Proposition
3.4. Thus, there exists a closed k-form 6' and a G-invariant metric on X with
respect to which 6' has comass one and 6' restricts to be the Riemannian
volume form on the leaves of f.

Definition 3.7. A k-d'imens'ional current S (wi,th compact support ) on a Ri,e-
mannian mani,fold X i,s said to be homolog'icallE mass min'im'izing if the mass of
current S, M(S) <a and M(S) < M(S') for euery k-current St homologous
to S.

Definition 3.8. An oriented k-d'imensi,onal foliati,on F on a R'iemannian man'i-

fold X is said to be geometri,cally ti.ght if euery fol'iation current,is homologically
n'Lass n1?,nxn'nzxng.

Note that if .F is geometrically tight then every leaf in f is a minimal sub-
manifold of X.

Definition 3.9. An oriented k-d,imens,ional foli,ati,on F on a mani,fold X ,is sai,d,
to be homologi,cally tight if no (non-zero) closed foliation current'is homologous
to zero as a cornpactly supported de Rham current 'in X.

We note that the calibrated foliation is always geometrically tight.
In Proposition 3.4, we have established sufficient conditions for an affi.rmative

answer to the Problem. However, the arguments presented there actually prove
much more, namely:

Theorem 3.LO. Suppose we are gi,uen an act'ion of a compact L'ie group G on
a Riemann'ian mani,fold, X. Let T be an oriented, G-,inuariant, k-d'imens'ional

foli,ati,on of class CL on X defined, by an oriented, k-plane field P. Cons'ider the

following cond,itions.
(1) F is homolog'ically ti,ght.
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(2) f i,s a cal'ibrated foliati,on and' there erists a number l/ e lR.+ such that
on each princ'ipal d,irect'ion P(r) of each leaf F of the foli,ati,on F, one of the

followi.ng cond'it'ions'i,s sat'isfied:
(a) l9.P(r)1". < lI for all po'ints r € X and for all g e G,
(b) l9.P(r)1". > Lr for all po'ints r € X and for all g e G,
where s* 'is an 'inner product 'in l\1"X", whi'ch is i'nduced from a R'iemann'ian
metric on X in whi,ch the foli,ati,on F can be calibrated.

(3) There erists a closed, k-form6' and a G-'inuariant metric with respect to
whi,ch it' has comass one and 6t restricts to be the R'iemannian uolume form on
the leaues of F.

(4) There erists a G-'inuariant metric on X 'i'n whi'ch f is geometrically ti'7ht.
Then (2) + (3) =+ ( ) + (t); and if X is compact the cond'it'ions are equ'iu-

alent.

Corollary 3.11. Suppose we are g'iuen an act'ion of a compact Lie group on
a R'iemann'ian manifold X. Let f be an oriented, cal'ibrated, k-d'imensional

foli,ati,on of class Cr on X defined by an oriented and G-'inuariant plane fi'eld P.
Then there erists a closed k-form d and a G-inuariant metric on X with respect
to which 6 has comass one and restricts to be the R'iemannian uolume form on
the leaues.

Proof. We can prove Corollary 3.11 directly from Theorem 3.10. Here N: 1.
We see, therefore, that 6 is the desired ft-form and 3 is the desired metric. t

4. Calibrated Foliations on Symmetric Spaces

Let X be a compact Riemannian symmetric space. It is known that X admits
a representation in the form G f H, where G : I0({) is a connected group of
isometries of X, and fI is a stationary subgroup. Suppose that o is an involutory
automorphism of G, whose set of fixed points coincides with fI. It is known
that, for a compact symmetric space X, every G-invariant generalized k-form
is a closed differential form and is identified with the }I-invariant k-covectors
determined by it at an arbitrary fixed point. Further, there is a unique G-
invariant form in every cohomology class such that the group of G-invariant
forms is isomorphic to the cohomology group.

Definition 4.L. A foliati,on T of a Riemannian mani.fold X i.s called a totally
geodes'ic foli,ati,otr, if each leaf of the foli,ati'on F is a totally geodes'ic submani,fold
of the Riemann'ian man'ifold X.

Theorem 4.2. Let X : G lH be a compact R'iemann'ian symmetric space, F is
a totallE geodes'ic fol'iat'ion, G-'inuariant, on X. Then there erists a G-'inuariant
metric on X 'in whi,ch the foli,ati,on f can be calibrated.

Proof. This theorem is a direct consequence of Theorem 3.10 and Remark 1. I

Now we apply Theorem 4.2 to the investigation of compact Lie groups.

63
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Let G be a connected compact Lie group. It is known that G admits a
representation in the form GfH, where the group G x G acts on G by the
formula

( g r ,  g z ) h  :  9 t . h '  g ; t  :  L n , .  R n - t h (4  1 )

for any h e G.
The stationary subgroup ff is a group of the inner automorphisms of G, that

is, fI acts on G by the following formula

Intnh: ghg-' for any h e G. (L r \

Lemma 4.3. (see l73l) Let X be a R'iemann'ian globally symmetric space and po
any po'int in X . If G : Io(X), and H 'is the subgroup of G wh,ich leaues ps fired,
then H i,s a compact subgroup of the connected group G and G I H is analyti,callE
di,ffeomorphi,c to X under the mapping gH * g.po j g € G. Identi,fy'ing as usual
the tangent space Xoo with the subspace p of the L'ie algebra of I (X), let s be a L,ie
triple system conta'ined i,np. Put,9 : Exps. Then S has a natural differentiable
structure i,n whi,ch i,t i,s a totally geodes'ic submanifold of X satisfy'ing Sro : s.

On the other hand, i,f S i.s a totallE geodes'ic submani,fold of X and po € S,
then the subspace 5 -- Soo of p is a L'ie triple system.

Now we will consider a foliation of a connected compact Lie group G.
Suppose that K is a closed Lie subgroup of G. Then the Lie algebra t. of K

is a subalgebra of g, the Lie algebra of G. We may identify g : G" and t : Ke,
where e is the unit element of Lie group G. trlom Lemma 4.3, we conclude that
K is a totally geodesic submanifold of G. Assuming now that dim K : k we
consider the /c-plane field P on G determined by the formula

Pb): Ln.R" for anv g e G, (4.3)

where K" is the simple unit k-vector associated to K..
It is easy to prove that the k-plane field P on G defined by the formula (4.3)

is completely integrable.
We conclude from the Robenius theorem that there exists a Cr foliation f

of dimension k on G such that Tn@) : pk) for every S € G. Further, the
foliation f is unique.

Remark 2. We see that each leaf .F' of the foliation f, corresponding with the
k-plane field P defined by the formula (a.3) is a coset gK, g e G.

Theorem 4.4. Suppose f ts a k-di,mens'ional foliat'ion of Lie group G, corce-
sponding wi,th the k-plane fi,eld P defined by the formula

P(s) : Ln-17" for any g € G,

where I(. 'is the s,imple unit k-uector assoc'iateil to K", and, K ,is a closed, L,ie
subgroup of G, e 'is the uni,t element of Li,e group G. Then there eri,sts a G-
'inuariant metric on G 'in whi,ch the.foli,ati,on f can be cal'ibrated.
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Proof. The proof of Theorem 4.4 follows immediately from Theorem 4.2 and
Remark 2. r

5. The Exponential Growth of Leaves of Invariant Foliations

In this section, we investigate the relationship of tightness with the existence of
G-invariant metrics and the exponential growth of leaves.

Theorem 5.L. Let a compact L'ie group G act on a comytact manifold X and
Iet F be a t'ight, G-'inuariant foliati,on of d'imenqi,on k on the mani,fold X whose
kth homologA group (ouerR) 'is zero. Then there eu'ists aG-inuariant rnetric on
X i,n whi,ch the growth of each leaf of F must be erponenti'al.

Prool. Assume that .F is calibrated with calibration u. By Theorem 3.10 and
Remark 1, there exists a closed k-form 6' and a G-invariant metric .i/ with
respect to which &'becomes a calibration for F.In the following, we will show
that 5/ is the desired metric.

Let f(r) denote the volume of a geodesic ball B" of radius r in the leaf
f' (centered at some point a e F). Then /'(r) is the volume or mass of the
boundary of this ball. By the construction of Gt', andsince Hp(X;lR) :0, thete
exists a form tlt with dtl,t : ur, consequently

\o . r  /

Since the action of g* commutes with operator d, we deduce from (5.1) that

f(,): l".o' : * 1". l"n.,on: l" I.g.dttdg

f l
f ( ,) :  J",J"dg*tdg-

FYom F\rbini's theorem, we have

I [ f  f  f

N J s. J"on.'l'on 
: 

J" J 
""dg.'!dg'

Ilom (5.2) and (5.3) it follows that

t f
f (r) :  J"J".dg.rhds.

Using Stokes'theorem, we obtain

(5 2)

(5.3)

(5.4)

g. tbdg. (5 5)

From (5.4) and (5.5) it follows that

. f ( r ) : + t t  s . l t ds .r \ /  N l c J a n ,

Since we have used the method of integral average to construct the metric
,i' and the form C.tt , we have /" dg : I, consequently

* l"l,,dg.'t'dg: * I"L,
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1 r f 1 f
t0) :  I  |  |  s.tbds < * I c1f '(r)de : czf '(r),

N  J c J a n " "  "  -  
N  L c

which integrates to f (r) > ls6, where c1 is the supremum of comasses of the

forms g*ry' with V9 € G, and c1 ) 0 .

The proof of Theorem 5.1 is complete. r
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