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1. Introduction

In this paper, we present our new results on robust stability of linear retarded sys-
tems described by general linear functional differential equations (briefly, FDE)
of the form

£(t) = Ao(t) + / dO)e(t +6),

by using the state space approach based on the notion of stability radii. A
formula for the complex stability radius of the system with respect to struc-
tured affine parameter perturbations is derived. Then, the class of positive
linear retarded systems is studied in details. It is shown that for this class,
real and complex stability radii coincide and can be computed by simple for-
mulae expressed in terms of the system matrices. The results of this paper
extend to general FDE the previous results for linear ordinary differential equa-
tions of the form #(t) = Az(t) (see [4,5]) and those for linear retarded systems
&(t) = Aoz(t) + A1z(t — h) (see [6,7]). Throughout the paper, the inequal-
ities between real matrices (vectors) are understood elementwise. The set of
all nonnegative matrices (nonnegative vectors) is denoted by ]qu (R7, respec-
tively). For P € C'*4,||P|| will stand for operator norm of P associated with
a given pair of monotonic vector norms on C' and C¢. We call A € R*x»
a Metzler matriz if all off-diagonal elements of A are nonnegative . We de-
note by NBV([—h,0],C™*") the set of all matrix functions 7(-) which are of
bounded variation and continuous from the left (c.f.l. for short) on [—h, 0] sat-
isfying n(—h) = 0. Then NBV{([-h,0],C™*") being endowed with the norm
|Inll = Var(n; —h,0) is a Banach space.
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2. Complex Stability Radius

Consider a linear retarded system described by the following general functional
differential equation
0

#(t) = Agz(t) + / din(0)|z(t +8), t>0, z(t) € R"
—h

'T(O) = ¢0(0)7 IS [_ha O]a

where A9 € R**" and n(-) € NBV([—h,0],R"*") are given. The definition of
7 is assumed to be extended to R by setting n(6) = n(—h) = 0 for all § <
—h,n(0) = n(0) for all # > 0.

It is well-known (see, e.g. [3]) that, for any given ¢° € C := C([~h,0],R™),
the system (1) has a unique function z(¢°, ) defined and continuous on [—h, co).
The system (1) is said to be exponentially asymptotically stable or, more simply,
Hurwitz stable, if there are constants ¢ > 0, > 0 such that for all ¢ € C, the
solution z(¢,-) of (1) satisfies

(1)

z(8, )| < ce™**|l¢]l, t=0.

The necessary and sufficient condition for the system (1) to be Hurwitz stable
is that the set o(Ag,n) of all roots of its characteristic quasi-polynomial H(s) is
located in the open left half-plane C™ := {s € C : Res < 0}, where

0

H(s)=sl — Ag — / e?dn(9)]. (2)

—h

Assume that the retarded system (1) is Hurwitz stable and subjected to affine
parameter perturbations of the type

g —+ Mon'= Ag 4 DpAEy,  AECH*T,

T 1 1 (3)
n—ns =n+ D16E,, &€ NBV([-h,0],C"*9),

Hete D; € C**V'| E; € CT'*™ i =0, 1 are given matrices determining the struc-
ture of perturbations, A and 6(-) are unknown disturbances. We shall measure
the size of perturbation A := [A, 4] by phce norm ||A[ := ||A|l + 1|4, |4 ==
Var(8; —h,0). Then the complex ~stability radius of the system with respect to
perturbations of the form (3), is defined by

rci=r(Ag,n) := mf{||Al; A= [A, ], 0(Aoa,15) ¢ CT}. (4)

If the disturbance matrices in (3) are restricted to the real spaces R’*4¢° and
NBV([—h, 0], RY' X4"), then we obtain the real stability radius rg. If o(Aga,ns) C
C~ for all A € C"%¢° § € NBV([~h,0],C" *?") then we shall write rc = +o0.
To derive the formula for the complex stability radius, we define the associated
transfer functions by setting

Gij(s) = E;H(s)™'D; e CT ¥V 4,5 € M := {0,1}.
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If the system (1) is Hurwitz stable then G;; (s) are analytic on the closed half-
plane C* := {s € C: Re s > 0}. The following theorem can be proved similarly
as in [7], using the maximum modulus principle for the analytic functions Gi;(s).

Theorem 2.1. Let the retarded system (1) be Hurwitz stable and be subjected
to structured perturbations of the form (3). Then

1 1

<rc< ' 5
s gert s G ] et ex | Goul1) | i
In particular, if Do = D1 or Eg = E1, then
1
T = (6)

maxiep wer [|Gai (W)l

Furthermore, it can be shown that if DO = D1 or By = Ey therll tI}ere always
exists a destabilizing perturbation A € Cixe’ x NBV([~h,0],C" *9") which is

either of the form [A*,0] or [0,6%] such that Al = ||A*]| = [|6*|] = rc¢ and,
moreover, A* is of rank one and ¢* is a step function of the following type:

6*(9)—{0 if 6 =—h 3

Tl Ay if §&(=h,0], 7

where A; is also of rank one.

3. Real Stability Radius of Positive Systems

Consider a linear system described by the functional differential equation of the
form

0
i(t) = Aox(t) + / dn(@))z(t +6), t>0, z(t) e R" (8)
—h
m(@) = ¢0(9)7 NS [—h,O],
where Ay € R**" and n € NBV(|—h,0],R™"*") are given. The solution of the
system (8) will be denoted by z(¢",-). System (8) is called positive if for ev-

ery nonnegative initial function ¢° € C([—h,0],R%), the corresponding solution
z(¢°, ) satisfies z(¢°,t) € R7: for every t > 0. We have the following

Lemma 3.1. The system (8) is positive if and only if Ag is a Metzler matriz
and n(.) is an increasing matriz function.

In particular, from Lemma 3.1 it follows that the linear retarded system
i(t) = Aoz (t) + Arx(t —h), t>0

is positive iff Ag is a Metzler and A; > 0 (see [2]).
Let the system (8) be positive and subject to perturbation of the form (3),
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where the structure matrices are nonnegative: D, € RT(“, FE; € R‘_’:X". In this
case, it is easy to prove that the transfer functions G;; defined by (5) have the
following monotonicity property:

Gij(tl) > Gij(tg) >0 for ty >t > to, 4, € M = {O, 1}, (9)

where pg := max{Res; s € a(40,7)}.
Define the stability radius of the system (8) subjected to nonnegative perturba-
tions of the form (3) by setting

ry =inf{||A: A =[A,d] € Dy,0(Aoa,n5) 7 C™}, (10)

where

D, ={A=[Ad]:Ac ]Rlixqo, de NBV([—h,O],]Rllqu) and § is increasing}.

Using the monotonicity property (9) and Perron-Frobenius theorem for Metzler
matrices (see, e.g. [5]), we can prove the following main result of this paper.

Theorem 3.2. Let the linear system (8) be positive and Hurwitz stable. Assume
Ao, n are subjected to parameter affine perturbation of the form (3) where D; €

R E; €RI*", i€ M :={0,1}. If Dy = Dy or Eg = E; then, we have
1
maxien |G (0)]]

re =TR =T+ =

We illustrate the above result by the following simple example.

Ezample. Consider a positive linear time-delay system described by the following
scalar equation

0
z(t) = —z(¥) +/ fr(t+86)dd t>0, z(t) eR. (11)
—1
The characteristic equation of (11) is given by (s2+2s)e®+e~! = 0. By Theorem
13.9 in [1], it is easy to verify that all roots of this equation have negative real
parts and hence the system (11) is Hurwitz stable. Assume the system (11) is
perturbed as follows

() = (=1 + &)a(t) + / ¢ (e® + A(0)z(t + 0)do, (12)
-1

where § € R is a unknown parameter and A(#) is a unknown integrable function
on [—h,0]. By Theorem 3.2, we conclude that the perturbed system (12) is
Hurwitz stable for all § € R, A(-) € L1([-1, 0], R) satisfying

0
1
6—1—/ A(f)|df <R = ———— =" L.
B+ [ 1A@Id0 < = s
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