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Abstract. A characterization is found for multi-dimensional Hardy operators to be
bounded from the weighted Lebesgue space LP(]0, oo™, v(Y1, --n s Yn)dY1 ... dyp) into
!
L9(]0, oo[™, u(21, ..., Tn)d21 ... dxy) provided the weight v' 7 satisfies some doubling
and reverse doubling conditions and where 1 <p < g < o0, p=p/lp-—1).
1. Introduction and the Results

For each integer n > 1, the n-dimensional Hardy operator H,, is defined by

(an)(xl,...,:vn)z/o 1.../0nf(yl,...,yn)dyl...dyn

for z1,...,Zn > 0 and all measurable functions f(z1,...,2zn) > 0.
Throughout this paper it is assumed that
1<P§Q<00a pI:_p—,
p—1

and
u=u(x1,...,2n) and v = v(Y1, .., Yn) aTE weights in the sense that
R =
0< [y Jo vt (s oo, Yn)dyn - Y < 00 and [7° ... [a ul@1, .., zn)
dxy...dz, < oo for all Ry,..., R, > 0. ’

The boundedness of H, from the weighted Lebesgue space LP(v) =
L2(10, 00[", (1, < s yn) s .. dim) into L3(w) = L0, 00[", (1, ., 8n)d1 .. dTn)
is also denoted by H, : L?(v) — L(u) and means that for some constant C>0

1/q
(fOOO fOOO(an)Q(zl, ooy T )U(Z1y o, B )T dmn>
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1/p
< C’(fooo e S5 FP(ys e YR )V (Y, - ,yn)dyl...dyn> (1.1)

for all functions f = f(y1,...,yn) = 0.

Interest on (1.1) comes from the fact that this inequality often arises in
n-dimensional weighted norm inequalities for many classical operators such as
strong maximal operators, Fourier and multiple Hilbert transforms [2, 3, 7].

Our purpose in this paper is to characterize weights v = u(zy,...,z,) and
v = 9(yY1,..-,Yn) on ]0,00[" for which (1.1) does hold and provided that w =
V1P (yq, ..., yn) satisfies both the doubling condition

2Ry 2R,
/ / WY1, -+ s Yn)dY1-.- dyn
0 0

Ry R,
< cd/ / w(y1, . s Yn)dY1... dyn (1.2)
0 0

and the reverse doubling assumption

27*1 R, 27*2 R,
/ / WYLy ooy Yn)AY1--- AYn
0 0

Ry R,
< cr2_(k1“1+"'+k"“")/ / w(y1, ., Yn)dy1-.- dyn.- (1.3)
0 0

In (1.2) and (1.3) the nonnegative constants cq, ¢y, @1, ..., an are fixed and
do not depend on the arbitrary reals Ry, ..., R, > 0 and integers k1, ..., k, > 0.

A characterization of (general) weights u and v for which H,, : LP(v) — L9(u)
are well-known for n = 1 [1,5] and for n = 2 [7]. But the problem remains
unsolved for n > 3, expect when the weights are of product types in the sense
that
T, o, Tn) = Ur(T1) X oo X Un(@n) and v(yi, ..., Yn) =v1(y1) X ... X Un(yn).

Indeed for such weights the problem is reduced to a superposition of one-
dimensional boundednesses H; : L?(v;) — L(u;), ¢ € {1,...,n}. Another ap-
proach can be found in [4]. By this note we expect to bring a little contribution
to the aforementioned open question, by completely solving the case when the
weight v!~P satisfies (1.2) and (1.3). Particularly a full solution to the bound-
edness H,, : LP(1) — L%(u) is obtained here.

In order to give an example of weights satisfying (1.2) and (1.3), let us
consider an increasing function ¢ :]0,00[—]0, 00 with ¢(.) € Az in the sense
that for some constant ¢ > 0

©(2t) < cp(t) forallt > 0.
And define

WY1y, Yn) = @1 + ... +yn) forallyy,..,yn >0. (1.4)

Then such a weight w (not necessarily of product type) satisfies (1.2) and (1.3)
with @; = 1,...,a, = 1. This claim will be justified in the proof of the below
Proposition.
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A natural necessary condition for H, : LP(v) — L%(u) is that for some
constant A > 0

oo o] 1/gq
(/ / u(xl,...,zn)dml...dwn> X
Ry
Ry 1/p'
(/ / (v, -~,yn)dy1--.dyn> <A (1.5)

for all Ry,...,R, > 0. For n = 1 (1.5) is also known, [1, 5], to be a sufficient
condition for (1.1). However this is not the case for n = 2 as was proved in
[7]. For m > 2 it can be easily proved, by applying induction arguments and
Minkowski inequality, that (1.1) is equivalent to (1.5) whenever the weights are
of product type.

Our main result of this paper states that condition (1.5) is equivalent to the
boundedness H,, : LP(v) — L9(u) whenever the weight w = v1~7 satisfies (1.2)
and (1.3).

Theorem. Assume that v'=F satisfies both the doubling condition (1.2) and the
reverse doubling assumption (1.3). Then a necessary and sufficient condition for
H, : L?(v) — L%(u) is that for some constant A > 0

2R 2R, 1/q
(/ / u(z1, - ,xn)dxl...dxn> X
Ry n
Ry Rn 1/p

for all Ry,...,R, > 0. Precisely, the boundedness (1.1) with some constant
C > 0 implies condition (1.6) with A = C. And conversely, (1.6) with some
constant A implies (1.1) with C = cA where ¢ > 0 depends only on n, p, g and
the constants cq, ¢y, a1, ..., an nvolved in assumptions (1.2) and (1.3).

Since (1.1) = (1.5) = (1.6) then our task here will remain to prove
the implication (1.6) = (1.1). Readers who are familiarized with weighted
inequalities theory may observe the similarity between our above result with that
for maximal operators [6] for which some Ao Muckenhoupt condition (see [2] for
the definition)} is required for v 1-7 to get the boundedness. Both assumptions
(1.2) and (1.3) are somewhat weaker than A% condition generally introduced
and used to study behaviour of classical operators on product spaces [2].

The above Theorem can be used to derive boundedness results for variants
of the operator H,, like

(H: f)(z1,..., @ / / Fy, -y yn)dyr ... dyn

(Hf)(z1,..., = / / / -/:n_1 /: 1, e s yn)dys .. dyn.

and
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For instance, by dua,hty argument, the boundedness H: : LP(v) — LY u) is
equivalent to H, : L (u1~7) — LP (v!177") with ¢/ = q/ (g — 1). Consequently
if u(.) satisfies both (1.2) and (1.3) then a necessary and sufficient condition for
Hy: LP(v) — L (u) is

Ry R, l/q
(/ / u(zy, ... ,:cn)dasl...d:cn) X
2R1 2Rn 1/p'

for all Ry,..., R, > 0. For the operator H, changes of variables lead to see that
H:LP(v) — Lq( ) is equivalent to H : LP(y, 2-1) 2(p 2 (Y1, Yzh U3y s Yn—1,Yn' )
— L9z %z 2u(xy, 25t 3, ooy Tn1, z;l)).

We will end with an explicit example of weights u and v (not necessarily of
product types) for which (1.1} is true.

Proposition. Let ¢ :]0,00[—]0,00[ be an increasing function with p(.) € Na.
Define the weights

wW(T1, oy Tn) = zl_(q/p"H) x . ox g WP AN (g 4 ogy)

and -
(Y1, s Yn) =@ P(Y1 + o+ Yn).

Then the boundedness H, : LP(v) — L%(u) holds.

2. Proofs of Results

Since, for the n-dimensional setting, things are often heavy to write then it is
better to shorten by introducing some notations as

(0, 00) =]0, 00["=]0, oo[x... x]0, 00],
(O,R) =|0, R1[X... X]0, Ry,
(R, 00) =Ry, 00[X... X]Rp, 00|

for R = (Ry, ..., Rn) € (O, 00)

/ dx——/ / (T, .o, Tn)dxy ... d2p,
(O

[, 1oy = [ [ Sl don = B

With these notations the boundedness Hy, : LP{v) — L9(u) can be written as

(/xe(o’oo) {/yem’x)f()')dy] qu(X)dx) e < C</<o,oo) fP(y)U(y)dy) 9 (2.1)

and
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for all functions f = f(y) > 0.

Proof of Theorem

This result will immediately follow from the next two Lemmas.

Lemma 1. If for some constants A>0ande>1

(/(0 & e (z)dz) gge x
/xeaoo [/ye 0,%) / o) dz) o Py )dyr/plu(x)dxsﬁq (2.2)

for all R €< 0,00 >, then the boundedness Hy : LP(v) — L%(u) holds with the
constant C =

(p—1)/e
) and

Proof. For y, x €< 0,00 >, let us define ¢(y) = (f(O:Y> v (z)dz

’ ’ N -1/e o
O(%) = [ig @ P NP (¥)dy = 5o (fzem,y) vlP (z)dz) v (y)dy.

With these notations, condition (2.2) is the same as
ple  ~
oly) [/ @I’q’(x)u(x)dx] < AP for all y € (0,00).
{y,00)

And this last inequality implies H, : L?(v) — L9(u) or (2.1) since

( / ot [ / " f(y)dy]"u<x>dx)p/q

1 </"€<°v°°> Uyewm PR ef <x>u(x>dx) "

by the Holder inequality

]p/q

<[ Fowe ] [ e wutad ™ oy

by the Minkowski inequality since % >1
< Zp/ Fyv(y)dy
(0,00)

Lemma 2. Suppose that assumptions (1.2) and (1.3) are satisfied with w =
v*=? . Then condition (1.6), with some constant A > 0, implies (2.2) (for all
€ > 1) with the constant A = cA; where ¢ depends onn, p, ¢ and ¢r, €4, Q1, ..., Gn
involved in (1.2) and (1.3).

Proof. This result lies on the existence of a constant co > 0 (depending on cq,
¢, ) such that



76 Yves Rakotondratsimba

’ —1/e ’ ; 1/¢’
/ ( / v P (Z)d2> o' 7P (y)dy < co ( / Ui (y)dy) (2.3)
y€(0,x) z€(0,y) ’ (0,x)

for all x € (0, 00) and where as usual ¢’ = ¢/(¢ — 1). The proof of (2.3) will be
postponed below. For now, let us see how inequality (2.2) can be derived from
condition (1.6) under assumptions (1.2) and (1.3). For simplicity of expression,
the multiple sum

o0 o o0 o0
Z Z Z is denoted by Z
k1=0ko=0 k=0 k=0

Moreover let 1 = (1,...,1),
2k = (2% ... 2%»)  whenever k = (ki,...,kn) €} —00,...,—1,0,1,...,00{"
and for x = (z1,...,%n), ¥ = (Y1, ---,Yn) € (0,00) define

x+y=(x1+Y1, - Tn+Un), X y=21y1+ ... +Zn¥n,

xy = (T1Y1, -, TnYn)s (x,¥) =]z1,Y1[X .- X]Zn, Yn]-

Therefore the conclusion arises as follows

’ /(®'e)
(/ vl7P (z)dz)q T
(O.R)

’ —1/e / a/v/
/ [/ (/ v!P (z)dz) v'P (y)dy} u(x)dx
x€(R,00) L/y€(0,x) */z€(0,y)
’ ‘e ’ q/(plal)
<ea (/ v P (z)dz)q/(p ) / {/ P (y)dy] u(x)dx by (2.3)
(O,R) x€(R,00) Jy€(0,%)
’ ‘e / /(p'e")
Ul—P (Z)dz)q/(p )/ [/ Ul—p (y)dy]q P
x€(2kR,2k+1R) “Jy€(0,x)
<c / u(x)dx ) x
12 rmeny 09%)
: /@'e) / /('€
(/ v P (z)dz)q 8 </ v'? (Y)d)’)q .
(O,R) (0,2+1R)

o0 ) ] /7’
Sy okena/60) ( / u(x)dx) ( / T (y)dy)q !
Sl (2¥R,2k+1R) (0,2%R)

by using assumptions (1.2) and (1.3)

u(x)dx

o0
< cpA? Z 9~kag/('e) — 0349 by condition (1.6).
k=0

Finally inequality (2.3) will also follow from assumptions (1.2) and (1.3) since
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’ 7 _1/5 ’
/ (/ vi7P (z)dz) 7P (y)dy
ye(0,x) ‘Jze(0,y)
—1/e '

-> ([ o) ey
i—o Y yE(2-UtVx,27Ix) Nze(0y)

i=
- o —1/e -
: Z(/(’? D)%) v (z)dz) (/(2—<J+1)x,2—jx) K (y)dy)

, /¢
i (y)dy) by assumption (1.2)

) 1/¢’
2 Ja(l/e )) (/ )vl‘p (y)dy) by assumption (1.3)
0,x

Proof of the Propositzon

By the above theorem, the task is to check condition (1.6) and to see that w =
v!~P (y) satisfies both the growth assumptions (1.2) and (1.3). For notations

convenience let us introduce for x = (1, ..., Zn) € (0,00):
X=z14+..+Zp, x1=w1><...><:vn

and M = y A L |
x?=z] X ..xzy, x* = 2! X . To

whenever v €]-00, oo and a = (a1, ...,an) € (0, 0).
Since ¢(.) is an increasing function, then

/ 7 (2)dz < o(B) x R
.R)

and ;o ,
/ w(y)dy < ¢~ 97 (R) / y /P4y
(R,2R) (R,00)

< e (R) x (RY)~9/7

where ¢; > 0 depends only on n, p and ¢g. Therefore condition (1.6) is satisfied

since
(/(R,zR)u(y)dy) Ha (/(o,R) ol P (z)dz) 1

[y 1/q =
< o [®) x (RY)™ ] 7 x [p(R) x
The doubling assumption (1.2) is true since, for w = v (y),

/ w(y)dy < c3p(2R) x R < cap(271R) x (27IR)Y by o(.) € A2
(0,2R)

<oy / oF)dy < ca / w(y)dy.
(2_1R,R) (O,R)
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And the reverse doubling condition (1.3) arises as follows

/ w(y)dy < o(R) x (27¥R)? because ¢(.)
(0,2-*R)

<52 %1p(27IR) x (27'R)? since ¢(.) € A,

< cp27k? / w(y)dy. -
(O,R)
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