Vietnam Journal of Mathematics 29:1 (2001) 27-38

Vietnam Journal of MATHEMATICS © Springer-Verlag 2001

The Bundle Structure of Spherical Non-Commutative Tori

Chun-Gil Park

Department of Mathematics, Chungnam National University Taejon 305-764, Korea

Received November 4, 1999

Abstract. Let A_{cd} be a cd-homogeneous C^* -algebra over $\prod^e S^2 \times \prod^s S^1 \times \mathbb{T}^{r+2}$ of which no non-trivial matrix algebra can be factored out. The spherical non-commutative torus \mathbb{S}_{ρ}^{cd} is defined by twisting $C^*(\widehat{\mathbb{T}^{r+2}} \times \mathbb{Z}^{m-2})$ in $A_{cd} \otimes C^*(\mathbb{Z}^{m-2})$ by a totally skew multiplier ρ on $\widehat{\mathbb{T}^{r+2}} \times \mathbb{Z}^{m-2}$. It is shown that $\mathbb{S}_{\rho}^{cd} \otimes M_{p^{\infty}}$ is isomorphic to $C(\prod^e S^2 \times \prod^s S^1) \otimes C^*(\widehat{\mathbb{T}^{r+2}} \times \mathbb{Z}^{m-2}, \rho) \otimes M_{cd}(\mathbb{C}) \otimes M_{p^{\infty}}$ if and only if the set of prime factors of cd is a subset of the set of prime factors of p.

1. Introduction

Given a locally compact abelian group G and a multiplier ω on G, one can associate to them the twisted group C^* -algebra $C^*(G, \omega)$, which is the universal object for unitary ω -representations of G. $C^*(\mathbb{Z}^m, \omega)$ is said to be a noncommutative torus of rank m and denoted by A_{ω} . The multiplier ω determines a subgroup S_{ω} of G, called its symmetry group, and the multiplier ω is called totally skew if the symmetry group S_{ω} is trivial. And A_{ω} is called completely irrational if ω is totally skew. See [1,8,11]. It was shown in [1] that if G is a locally compact abelian group and ω is a totally skew multiplier on G, then $C^*(G, \omega)$ is a simple C^* -algebra.

An important problem, in the bundle theory of geometry, is to compute the set [M, BPU(cd)] of homotopy classes of continuous maps of a compact CW-complex M into the classifying space BPU(cd) of the Lie group PU(cd). The set [M, BPU(cd)] is in bijective correspondence with the set of equivalence classes of principal PU(cd)-bundles over M, which is in bijective correspondence with the set of cd-homogeneous C^* -algebras over M. That is, each cd-homogeneous C^* -algebra bundle η with base space M, fibres $M_{cd}(\mathbb{C})$, and structure group $Aut(M_{cd}(\mathbb{C})) \cong PU(cd)$. See [10] for details. So each cd-homogeneous

 C^* -algebra over $\prod^e S^2 \times \prod^s S^1 \times \mathbb{T}^{r+2}$ is realized as the C^* -algebra $\Gamma(\zeta)$ of sections of a locally trivial C^* -algebra bundle ζ over $\prod^e S^2 \times \prod^s S^1 \times \mathbb{T}^{r+2}$ with fibres $M_{cd}(\mathbb{C})$. Thus the spherical non-commutative torus \mathbb{S}_{ρ}^{cd} , defined in Section 2, is realized as the C^* -algebra of sections of a locally trivial C^* -algebra bundle over $\prod^e S^2 \times \prod^s S^1$ with fibres $P_{\rho}^d \otimes M_c(\mathbb{C})$, where P_{ρ}^d is defined in Section 2.

We are going to show that $\mathbb{S}_{\rho}^{cd} \otimes M_{p^{\infty}}$ is isomorphic to $C(\prod^{e} S^{2} \times \prod^{s} S^{1})$ $\otimes C^{*}(\widehat{\mathbb{T}^{r+2}} \times \mathbb{Z}^{m-2}, \rho) \otimes M_{cd}(\mathbb{C}) \otimes M_{p^{\infty}}$ if and only if the set of prime factors of cd is a subset of the set of prime factors of p. And it is shown that $\mathbb{S}_{\rho}^{cd} \otimes \mathcal{O}_{2u}$ is isomorphic to $C(\prod^{e} S^{2} \times \prod^{s} S^{1}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}) \otimes \mathcal{O}_{2u}$ if and only if cd and 2u-1 are relatively prime, and that $\mathbb{S}_{\rho}^{cd} \otimes \mathcal{O}_{\infty}$ is not isomorphic to $C(\prod^{e} S^{2} \times \prod^{s} S^{1}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}) \otimes \mathcal{O}_{\infty}$ if cd > 1, where \mathcal{O}_{u} and \mathcal{O}_{∞} denote the Cuntz algebra and the generalized Cuntz algebra, respectively.

2. Homogeneous C^* -Algebras Over $\prod^e S^2 \times \prod^{s+r+2} S^1$

 $[S^2, BPU(cd)] = [S^1, PU(cd)] \cong \mathbb{Z}_{cd}$, which is a cyclic group. So each group has a generator, and there is a unitary $U(z) \in PU(cd)$ such that the generating cd-homogeneous C^* -algebra over S^2 can be realized as the C^* -algebra of sections of a locally trivial C^* -algebra bundle over S^2 with fibres $M_{cd}(\mathbb{C})$ characterized by the unitary $U(z) \in PU(cd)$ over S^1 . If (cd, k) = p (p > 1), then consider the cd-homogeneous C^* -algebra over S^2 corresponding to each $k \in \mathbb{Z}_{cd}$ as the tensor product of $M_p(\mathbb{C})$ with a $\frac{cd}{p}$ -homogeneous C^* -algebra over S^2 , which is given by $U(z)^{k/p} \in PU(\frac{cd}{p})$. Consider $U(z)^k$ as $U(z)^{k/p} \otimes I_p \in PU(cd)$, where I_p denotes the $p \times p$ identity matrix. Then each cd-homogeneous C^* -algebra $B_{k/cd}$ over S^2 can be realized as the C^* -algebra of sections of a locally trivial C^* -algebra bundle over S^2 with fibres $M_{cd}(\mathbb{C})$ characterized by the unitary $U(z)^k \in PU(cd)$ over S^1 for some $k \in \mathbb{Z}_{cd}$.

Krauss and Lawson [10] proved that each *cd*-homogeneous C^* -algebra over S^2 is isomorphic to one of the C^* -subalgebras $B_{k/cd} = C_{g_k}(e_+^2 \amalg e_-^2, M_{cd}(\mathbb{C})), k \in \mathbb{Z}_{cd}$, given as follows: if $f \in B_{k/cd}$, then the following condition is satisfied

$$f_+(z) = U(z)^k f_-(z)U(z)^{-k}$$

for all $z \in S^1$, where $U(z) \in PU(cd) = \text{Inn}(M_{cd}(\mathbb{C}))$ is the unitary given above, and e^2_+ (resp. e^2_-) is the 2-dimensional northern (resp. southern) hemisphere.

Since there is a map of degree 1 from S^2 to $S^1 \times S^1$, there are *cd*-homogeneous C^* -algebras over $S^1 \times S^1$ induced from *cd*-homogeneous C^* -algebras over S^2 . So every *cd*-homogeneous C^* -algebra over $S^1 \times S^1$ is isomorphic to one of the C^* -subalgebras $A_{k/cd}$, $k \in \mathbb{Z}_{cd}$, of $C(S^1 \times [0,1], M_{cd}(\mathbb{C}))$, given as follows: if $f \in A_{k/cd}$, then the following condition is satisfied

$$f(z,1) = U(z)^k f(z,0)U(z)^{-k}$$

for all $z \in S^1$, where $U(z) \in PU(cd)$ is the unitary given above. See [3].

Lemma 2.1. Let $B_{k/cd}$ be a cd-homogeneous C^* -algebra over S^2 of which no non-trivial matrix algebra can be factored out. Then $[1_{B_{k/cd}}] \in K_0(B_{k/cd}) \cong \mathbb{Z}^2$ is primitive.

Proof. It was shown in [3, Lemma 3.1] that $B_{k/cd}$ is stably isomorphic to $C(S^2) \otimes M_{cd}(\mathbb{C})$. So $K_0(B_{k/cd}) \cong K_0(C(S^2)) \cong \mathbb{Z} \oplus \mathbb{Z}$. Since

$$[S^2, BPU(cd)] \cong [S^1, PU(cd)] \cong [S^1 \times S^1, BPU(cd)] \cong \mathbb{Z}_{cd},$$

 $B_{k/cd}$ corresponds to $A_{k/cd}$ with respect to the conditions on sections over the boundaries S^1 of $e_+^2 \amalg e_-^2$ and $S^1 \times [0,1]$. The proof of Elliott's theorem given in [6, Theorem 2.2] implies that the canonical embedding of each factor $C(\mathbb{T}^1)$ of $C(\mathbb{T}^2)$ into $A_{k/cd}$ induces an isomorphism of $K_0(C(\mathbb{T}^2))$ into $K_0(A_{\frac{k}{cd}})$ such that the class $[1_{C(\mathbb{T}^2)}]$ of the unit $1_{C(\mathbb{T}^2)}$ maps to the class $[1_{A_{k/cd}}]$ of the unit $1_{A_{k/cd}}$. The canonical embedding of $C(S^1)$ into $A_{k/cd}$ which induces the isomorphism of $K_0(C(S^1 \times S^1))$ into $K_0(A_{k/cd})$ corresponds to the embedding ϕ of $C(S^1)$ into $B_{k/cd}$ induces an isomorphism μ of $K_0(C(S^2))$ into $K_0(B_{\frac{k}{cd}})$, where $S^1 = \partial e_{\pm}^2$. The unit $1_{C(S^1)}$ maps to the unit $1_{C(S^1)}$ maps to $[1_{C(S^1)}] \in K_0(C(S^1)) \cong \mathbb{Z}$ maps to $[1_{C(S^2)}] \in K_0(C(S^2)) \cong \mathbb{Z}^2$, primitive in $K_0(C(S^2))$ (see [9]). In the commutative diagram

 $\mu([1_{C(S^2)}]) = \phi_* \circ (\text{identity})_* \circ \psi_*^{-1}([1_{C(S^2)}]) = [1_{B_{k/cd}}].$ So $[1_{B_{k/cd}}]$ is the image of the primitive element $[1_{C(S^2)}] \in K_0(C(S^2))$ under the isomorphism μ . Hence $[1_{B_{k/cd}}] \in K_0(B_{k/cd})$ is primitive.

Therefore, $[1_{B_{k/cd}}] \in K_0(B_{k/cd}) \cong \mathbb{Z}^2$ is primitive.

The proof given in Lemma 2.1 implies that the canonical embedding of $C(S^1)$ into $B_{k/cd}$ induces an isomorphism of $K_0(C(S^2))$ into $K_0(B_{k/cd})$ such that the class $[1_{C(S^2)}]$ of the unit $1_{C(S^2)}$ maps to the class $[1_{B_{k/cd}}]$ of the unit $1_{B_{k/cd}}$.

If s + r is odd, one can make the integer even by tensoring with $C(S^1)$. So one can assume that s + r is even.

In [3, Theorem 2.5], the authors constructed *cd*-homogeneous C^* -subalgebras $E_{b_1,\ldots,b_{(s+r+2)/2}}^{a_1,\ldots,a_e}(a_1,\ldots,a_e,b_1,\ldots,b_{(s+r+2)/2}\in\mathbb{Z})$ over $\prod^e S^2 \times \prod^{s+r+2} S^1$ of $C\Big(\prod^e (e_+^2 \amalg e_-^2) \times \prod^{(s+r+2)/2} (S^1 \times [0,1]), M_{cd}(\mathbb{C})\Big)$, and constructed all *cd*-homogeneous C^* -algebras over $\prod^e S^2 \times \prod^{s+r+2} S^1$.

Theorem 2.2. Let A_{cd} be a cd-homogeneous C^* -algebra over $\prod^e S^2 \times \prod^{s+r+2} S^1$, of which any non-trivial matrix algebra cannot be factored. Then $K_0(A_{cd}) \cong K_1(A_{cd}) \cong \mathbb{Z}^{2^{e+s+r+1}}$, and $[1_{A_{cd}}] \in K_0(A_{cd})$ is primitive.

Proof. It was shown in [3, Lemma 3.1] that A_{cd} is stably isomorphic to $C(\prod^e S^2 \times \prod^{s+r+2} S^1) \otimes M_{cd}(\mathbb{C})$. By Künneth's theorem [2, Theorem 23.1.3]

Chun-Gil Park

$$K_0(A_{cd}) \cong K_0(C(\prod^e S^2 \times \prod^{s+r+2}_{s+r+2} S^1))$$

$$\cong K_0(C(\prod^e S^2)) \otimes K_0(C(\prod^{s+r+2}_{s+r+1} S^1)) \oplus K_1(C(\prod^e S^2)) \otimes K_1(C(\prod^{s+r+2}_{s+r+1} S^1))$$

$$\cong \mathbb{Z}^{2^e} \otimes \mathbb{Z}^{2^{s+r+1}} \oplus \{0\} \otimes \mathbb{Z}^{2^{s+r+1}} \cong \mathbb{Z}^{2^{e+s+r+1}}.$$

Similarly, one obtains that $K_1(A_{cd}) \cong \mathbb{Z}^{2^{e+s+r+1}}$.

It is enough to show that $[1_{A_{cd}}] \in K_0(A_{cd})$ is primitive. First of all, we show that $[1_{E_{b_1,\dots,b_{(s+r+2)/2}}^{a_1,\dots,a_e}}] \in K_0(E_{b_1,\dots,b_{(s+r+2)/2}}^{a_1,\dots,a_e})$ is primitive. By the same reasoning as in the proof given in Lemma 2.1, the canonical embedding ϕ of $C(\prod^e S^1 \times \prod^{(s+r+2)/2} S^1)$ into $E_{b_1,\dots,b_{(s+r+2)/2}}^{a_1,\dots,a_e}$ induces an isomorphism μ of $K_0(C(\prod^e S^2 \times \prod^{s+r+2} S^1))$ into $K_0(E_{b_1,\dots,b_{(s+r+2)/2}}^{a_1,\dots,a_e})$. The unit $1_{C(\prod^e S^1 \times \prod^{(s+r+2)/2} S^1)}$ maps to the unit $1_{C(\prod^e S^2 \times \prod^{s+r+2} S^1)}$ under the canonical embedding ψ of $C(\prod^e S^1 \times \prod^{(s+r+2)/2} S^1)$ into $C(\prod^e S^2 \times \prod^{s+r+2} S^1)$.

$$[1_{C(\prod^{e} S^{1} \times \prod^{(s+r+2)/2} S^{1})}] \in K_{0}(C(\prod^{e} S^{1} \times \prod^{(s+r+2)/2} S^{1}))$$

maps to

$$[1_{C(\prod^{e} S^{2} \times \prod^{s+r+2} S^{1})}] \in K_{0}(C(\prod^{e} S^{2} \times \prod^{s+r+2} S^{1})),$$

primitive in $K_0(C(\prod^e S^2 \times \prod^{s+r+2} S^1))$ (see [9]). In the commutative diagram

$$\begin{split} & \mu([1_{C(\prod^{e} S^{2} \times \prod^{s+r+2} S^{1})}]) \\ &= \phi_{*} \circ (\text{identity})_{*} \circ \psi_{*}^{-1}([1_{C(\prod^{e} S^{2} \times \prod^{s+r+2} S^{1})}]) = [1_{E_{b_{1}, \dots, b_{(s+r+2)/2}}^{a_{1}, \dots, a_{e}}}] \end{split}$$

So $[1_{E_{b_1,\ldots,b_{(s+r+2)/2}}^{a_1,\ldots,a_e}}]$ is the image of the primitive element

$$[1_{C(\prod^{e} S^{2} \times \prod^{s+r+2} S^{1})}] \in K_{0}(C(\prod^{e} S^{2} \times \prod^{s+r+2} S^{1}))$$

under the isomorphism μ . Hence $[1_{E_{b_1,\ldots,b_{(s+r+2)/2}}^{a_1,\ldots,a_e}}] \in K_0(E_{b_1,\ldots,b_{(s+r+2)/2}}^{a_1,\ldots,a_e})$ is primitive.

Bundle Structure of Spherical Non-Commutative Tori

Next, assume that $A_{cd} \cong C_1 \otimes C_2 \otimes \ldots \otimes C_q$, where C_i are of the type above. Then

$$K_0(A_{cd}) \cong K_0(C_1) \otimes K_0(C_2) \otimes \ldots \otimes K_0(C_q) \oplus \ldots$$

and $[1_{A_{cd}}]$ is the image of the primitive element $[1_{C_1}] \otimes [1_{C_2}] \otimes \ldots \otimes [1_{C_q}] \in K_0(C_1) \otimes K_0(C_2) \otimes \ldots \otimes K_0(C_q)$ under the isomorphism. So $[1_{A_{cd}}] \in K_0(A_{cd})$ is primitive.

Now assume that A_{cd} is a general cd-homogeneous C^* -algebra over $\prod^e S^2 \times \prod^{s+r+2} S^1$. The proof given above implies that the canonical embedding of each factor $C(S^1)$ of $C(\prod^e S^1 \times \prod^{s+r+2} S^1)$ into A_{cd} induces an isomorphism of $K_0(C(\prod^e S^2 \times \prod^{s+r+2} S^1))$ into $K_0(A_{cd})$ such that the class $[1_{C(\prod^e S^2 \times \prod^{s+r+2} S^1)}]$ of the unit $1_{C(\prod^e S^2 \times \prod^{s+r+2} S^1)}$ maps to the class $[1_{A_{cd}}]$ of the unit $1_{A_{cd}}$. By the same reasoning as in the proof given above, the canonical embedding ϕ of each factor $C(S^1)$ of $C(\prod^e S^1 \times \prod^{s+r+2} S^1)$ into A_{cd} induces an isomorphism μ of

$$K_0(C(\prod^e S^2 \times \prod^{s+r+2} S^1)) \to K_0(A_{cd}).$$

The unit ${}^{1}C(\prod^{e} S^{1} \times \prod^{s+r+2} S^{1})$ maps to the unit ${}^{1}C(\prod^{e} S^{2} \times \prod^{s+r+2} S^{1})$ under the canonical embedding ψ of $C(\prod^{e} S^{1} \times \prod^{s+r+2} S^{1})$ into $C(\prod^{e} S^{2} \times \prod^{s+r+2} S^{1})$.

$$[1_{C(\prod^{e} S^{1} \times \prod^{s+r+2} S^{1})}] \in K_{0}(C(\prod^{e} S^{1} \times \prod^{s+r+2} S^{1}))$$

maps to

$$[1_{C(\prod^{e} S^{2} \times \prod^{s+r+2} S^{1}]} \in K_{0}(C(\prod^{e} S^{2} \times \prod^{s+r+2} S^{1})))$$

a+m+9

primitive in $K_0(C(\prod^e S^2 \times \prod^{s+r+2} S^1))$. In the commutative diagram

$$\begin{split} K_0(C(\prod^e S^1 \times \prod^{s+r+2} S^1)) & \xrightarrow{\psi_*} & K_0(C(\prod^e S^2 \times \prod^{s+r+2} S^1)) \\ & (\text{identity})_* \downarrow & \downarrow \mu(\cong) \\ K_0(C(\prod^e S^1 \times \prod^{s+r+2} S^1)) & \xrightarrow{(\otimes^{e+s+r+2}\phi)_*} & K_0(A_{cd}), \\ \iota([1_{C(\prod^e S^2 \times \prod^{s+r+2} S^1)}]) \\ &= (\otimes^{e+s+r+2}\phi)_* \circ (\text{identity})_* \circ \psi_*^{-1}([1_{C(\prod^e S^2 \times \prod^{s+r+2} S^1)}]) = [1_{A_{cd}}], \end{split}$$

i.e., μ must be the canonical extension of (identity)_{*} :

$$K_0(C(\prod^e S^1 \times \prod^{s+r+2} S^1)) \to K_0(C(\prod^e S^1 \times \prod^{s+r+2} S^1)).$$

So $[1_{A_{cd}}]$ is the image of the primitive element

$$[1_{C(\prod^{e} S^{2} \times \prod^{s+r+2} S^{1})}] \in K_{0}(C(\prod^{e} S^{2} \times \prod^{s+r+2} S^{1}))$$

under the isomorphism μ . Hence $[1_{A_{cd}}] \in K_0(A_{cd})$ is primitive. Therefore, $K_0(A_{cd}) \cong K_1(A_{cd}) \cong \mathbb{Z}^{2^{e+s+r+1}}$, and $[1_{A_{cd}}] \in K_0(A_{cd})$ is primitive.

The proof given in Theorem 2.2 implies that the canonical embedding of each factor $C(S^1)$ of $C(\prod^e S^1 \times \prod^{s+r+2} S^1)$ into A_{cd} induces an isomorphism of $K_0(C(\prod^e S^2 \times \prod^{s+r+2} S^1))$ into $K_0(A_{cd})$ such that $[1_{C(\prod^e S^2 \times \prod^{s+r+2} S^1)}]$ maps to $[1_{A_{cd}}]$.

3. Spherical Non-Commutative Tori

The non-commutative torus A_{ω} of rank m is obtained by an iteration of m-1crossed products by actions of \mathbb{Z} , the first action on $C(\mathbb{T}^1)$ (see [6]). When A_{ω} is not simple, by a change of basis, A_{ω} is obtained by an iteration of m-2 crossed products by actions of \mathbb{Z} , the first action on a rational rotation algebra $A_{l/d}$. Since the fibre $M_d(\mathbb{C})$ of $A_{l/d}$ is a factor of the fibre of A_{ω} , A_{ω} can be obtained by an iteration of m-2 crossed products by actions of \mathbb{Z} , the first action on $A_{l/d}$, where the actions of \mathbb{Z} on the fibre $M_d(\mathbb{C})$ of $A_{l/d}$ are trivial. So one can assume that A_{ω} is given by twisting $C^*(d\mathbb{Z} \times d\mathbb{Z} \times \mathbb{Z}^{m-2})$ in $A_{l/d} \otimes C^*(\mathbb{Z}^{m-2})$ by the restriction of the multiplier ω to $d\mathbb{Z} \times d\mathbb{Z} \times \mathbb{Z}^{m-2}$, where $\widehat{d\mathbb{Z}} \times \widehat{d\mathbb{Z}}$ is the primitive ideal space of $A_{l/d}$ and $C^*(d\mathbb{Z} \times d\mathbb{Z}, \text{res of } \omega) = C^*(d\mathbb{Z} \times d\mathbb{Z}).$

Definition 3.1 [3, Definition 1.1]. Let A_{cd} be a cd-homogeneous C^* -algebra over $\prod^{e} S^{2} \times \prod^{s} S^{1} \times \mathbb{T}^{r} \times \mathbb{T}^{2} \text{ whose cd-homogeneous } C^{*}\text{-subalgebra restricted to the}$ subspace $\mathbb{T}^r \times \mathbb{T}^2$ of $\prod^e S^2 \times \prod^s S^1 \times \mathbb{T}^r \times \mathbb{T}^2$ is realized as $C(\mathbb{T}^r) \otimes A_{l/d} \otimes M_c(\mathbb{C})$ for $A_{l/d}$ a rational rotation algebra. The C^{*}-algebra which is given by twisting $C^*(\widehat{\mathbb{T}^r} \times \widehat{\mathbb{T}^2} \times \mathbb{Z}^{m-2})$ in $A_{cd} \otimes C^*(\mathbb{Z}^{m-2})$ by a totally skew multiplier ρ on $\widehat{\mathbb{T}^r} \times \mathbb{T}^{2}$ $\widehat{\mathbb{T}^2} \times \mathbb{Z}^{m-2}$ is said to be a spherical non-commutative torus of rank e + s + r + m, and denoted by \mathbb{S}_{ρ}^{cd} , where $C^*(\widehat{\mathbb{T}^2}, of \rho) = C^*(\widehat{\mathbb{T}^2})$ and \mathbb{T}^2 is the primitive ideal space of $A_{l/d}$.

Then the fibre of \mathbb{S}^d_{ρ} , denoted by P^d_{ρ} , can be obtained by an iteration of r + m - 2 crossed products by actions α_i of Z, the first action on the rational rotation algebra $A_{l/d}$, where the actions α_i on the fibre $M_d(\mathbb{C})$ of $A_{l/d}$ are trivial.

$$A_{\rho} = C^*(\widehat{\mathbb{T}^r} \times \widehat{\mathbb{T}^2} \times \mathbb{Z}^{m-2}, \rho) \cong C^*(d\mathbb{Z} \times d\mathbb{Z}) \times_{\alpha_3} \mathbb{Z} \times_{\alpha_4} \ldots \times_{\alpha_{r+m}} \mathbb{Z}.$$

Thus the spherical non-commutative torus \mathbb{S}_{ρ}^{cd} is realized as the C^* -algebra of sections of a locally trivial C^* -algebra bundle over $\prod^e S^2 \times \prod^s S^1$ with fibres $P^d_\rho \otimes M_c(\mathbb{C}).$

We are going to show that $[1_{\mathbb{S}^{cd}}] \in K_0(\mathbb{S}^{cd}_{\rho})$ is primitive.

Theorem 3.2. Let \mathbb{S}_{ρ}^{cd} be a spherical non-commutative torus of rank e+s+r+mdefined above. Assume that no non-trivial matrix algebra can be factored out of A_{cd} . Then $K_0(\mathbb{S}_{\rho}^{cd}) \cong K_1(\mathbb{S}_{\rho}^{cd}) \cong \mathbb{Z}^{2^{e+s+r+m-1}}$, and $[1_{\mathbb{S}_{\rho}^{cd}}] \in K_0(\mathbb{S}_{\rho}^{cd})$ is primitive.

Bundle Structure of Spherical Non-Commutative Tori

Proof. It was shown in [3, Theorem 3.4] that the spherical non-commutative torus \mathbb{S}_{ρ}^{cd} is stably isomorphic to $C(\prod^{e} S^{2} \times \prod^{s} S^{1}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C})$, where A_{ρ} is a non-commutative torus of rank r + m. But by Künneth's theorem and by Elliott's theorem [6, Theorem 2.2] and Theorem 2.2

$$K_0(C(\prod^e S^2 \times \prod^s S^1) \otimes A_{\rho})$$

$$\cong K_0(C(\prod^e S^2 \times \prod^s S^1)) \otimes K_0(A_{\rho}) \oplus K_1(C(\prod^e S^2 \times \prod^s S^1)) \otimes K_1(A_{\rho}))$$

$$\cong \mathbb{Z}^{2^{e+s-1}} \otimes \mathbb{Z}^{2^{r+m-1}} \oplus \mathbb{Z}^{2^{e+s-1}} \otimes \mathbb{Z}^{2^{r+m-1}} \cong \mathbb{Z}^{2^{e+s+r+m-1}}$$

Similarly, one obtains that $K_1(\mathop{C}_{e}(\prod^e S^2 \times \prod^s S^1) \otimes A_{\rho}) \cong \mathbb{Z}^{2^{e+s+r+m-1}}$. Hence $K_0(\mathbb{S}^{cd}) \cong K_0(\mathop{C}(\prod S^2 \times \prod S^1) \otimes A_{\rho}) \cong \mathbb{Z}^{2^{e+s+r+m-1}}.$

$$K_0(\mathbb{S}_{\rho}) \cong K_0(\mathbb{C}(\prod_{i=1}^{e} S^1 \times \prod_{i=1}^{s} S^1) \otimes A_{\rho}) \cong \mathbb{Z}^{2^{e+s+r+m-1}},$$

$$K_1(\mathbb{S}_{\rho}^{cd}) \cong K_1(\mathbb{C}(\prod_{i=1}^{e} S^2 \times \prod_{i=1}^{s} S^1) \otimes A_{\rho}) \cong \mathbb{Z}^{2^{e+s+r+m-1}},$$

So it is enough to show that $[1_{\mathbb{S}_{\rho}^{cd}}] \in K_0(\mathbb{S}_{\rho}^{cd})$ is primitive. The proof is by induction on m. Assume that m = 2. By the Elliott theorem [6, Theorem 2.2], the canonical embedding of each factor $C(\mathbb{T}^1)$ of $C(\mathbb{T}^r \times \mathbb{T}^2)$ into A_{ρ} induces an isomorphism of $K_0(C(\mathbb{T}^r \times \mathbb{T}^2))$ into $K_0(A_{\rho})$ such that the class $[1_{C(\mathbb{T}^r \times \mathbb{T}^2)}]$ of the unit $1_{C(\mathbb{T}^r \times \mathbb{T}^2)}$ maps to the class $[1_{A_{\rho}}]$ of the unit $1_{A_{\rho}}$. By the same reasoning as the proof given in Theorem 2.2, the canonical embedding ϕ of each factor $C(S^1)$ or $C(\mathbb{T}^1)$ of $C(\prod^e S^1 \times \prod^s S^1 \times \mathbb{T}^r \times \mathbb{T}^2)$ into \mathbb{S}_{ρ}^{cd} induces an isomorphism μ of

$$K_0(C(\prod^c S^2 \times \prod^c S^1 \times \mathbb{T}^r \times \mathbb{T}^2)) \to K_0(\mathbb{S}^{cd}_{\rho})$$

The unit $1_{C(\prod^e S^1 \times \prod^s S^1 \times \mathbb{T}^r \times \mathbb{T}^2)}$ maps to the unit $1_{C(\prod^e S^2 \times \prod^s S^1 \times \mathbb{T}^r \times \mathbb{T}^2)}$ under the canonical embedding ψ of $C(\prod^e S^1 \times \prod^s S^1 \times \mathbb{T}^r \times \mathbb{T}^2)$ into $C(\prod^e S^2 \times \prod^s S^1 \times \mathbb{T}^r \times \mathbb{T}^2)$.

$$[1_{C(\prod^{e} S^{1} \times \prod^{s} S^{1} \times \mathbb{T}^{r} \times \mathbb{T}^{2})}] \in K_{0}(C(\prod^{e} S^{1} \times \prod^{s} S^{1} \times \mathbb{T}^{r} \times \mathbb{T}^{2}))$$

maps to

$$[1_{C(\prod^{e} S^{2} \times \prod^{s} S^{1} \times \mathbb{T}^{r} \times \mathbb{T}^{2})q}] \in K_{0}(C(\prod^{e} S^{2} \times \prod^{s} S^{1} \times \mathbb{T}^{r} \times \mathbb{T}^{2})),$$

primitive in $K_0(C(\prod^e S^2 \times \prod^s S^1 \times \mathbb{T}^r \times \mathbb{T}^2))$. In the commutative diagram

where $S = \prod^{e} S^{1} \times \prod^{s} S^{1} \times \mathbb{T}^{r} \times \mathbb{T}^{2}$.

$$\begin{split} & \mu([\mathbf{1}_{C(\prod^{e}S^{2}\times\prod^{s}S^{1}\times\mathbb{T}^{r}\times\mathbb{T}^{2})}]) \\ & = (\otimes^{e+s+r+2}\phi)_{*}\circ(\mathrm{identity})_{*}\circ\psi_{*}^{-1}([\mathbf{1}_{C(\prod^{e}S^{2}\times\prod^{s}S^{1}\times\mathbb{T}^{r}\times\mathbb{T}^{2})}]) = [\mathbf{1}_{\mathbb{S}_{\rho}^{cd}}], \end{split}$$

i.e., μ must be the canonical extension of (identity)_{*} :

$$K_0(C(\prod^e S^1 \times \prod^s S^1 \times \mathbb{T}^r \times \mathbb{T}^2)) \to K_0(C(\prod^e S^1 \times \prod^s S^1 \times \mathbb{T}^r \times \mathbb{T}^2)).$$

So $[1_{S_{cd}}]$ is the image of the primitive element

$$[1_{C(\prod^{e} S^{2} \times \prod^{s} S^{1} \times \mathbb{T}^{r} \times \mathbb{T}^{2})}] \in K_{0}(C(\prod^{e} S^{2} \times \prod^{s} S^{1} \times \mathbb{T}^{r} \times \mathbb{T}^{2}))$$

under the isomorphism μ . Hence $[1_{\mathbb{S}^{cd}}] \in K_0(\mathbb{S}^{cd})$ is primitive.

Next, assume that the result is true for all spherical non-commutative tori with m = i - 1. Write $\mathbb{S}_i = C^*(\mathbb{S}_{i-1}, u_i)$, where $\mathbb{S}_i = C^*(\mathbb{S}_{\rho}^{cd}, u_3, \ldots, u_i)$, where \mathbb{S}_{ρ}^{cd} is the case above, m = 2. Then the inductive hypothesis applies to \mathbb{S}_{i-1} . Also, we can think of \mathbb{S}_i as the crossed product of \mathbb{S}_{i-1} by an action α of \mathbb{Z} , where the generator of \mathbb{Z} corresponds to u_i , which acts on $C^*(v_1, \ldots, v_r, u_1^d, u_2^d, u_3, \ldots, u_{i-1})$ by conjugation (sending u_j to $u_i u_j u_i^{-1} = e^{2\pi i \theta_{ji}} u_j, j \neq 1, 2$, sending u_j^d to $u_i u_j^d u_i^{-1} = e^{2\pi i d \theta_{ji}} u_j^d, j = 1, 2$, and sending v_j to $u_i v_j u_i^{-1} = e^{2\pi i \beta_{ji}} v_j$), and which acts trivially on $C(\prod^e S^2 \times \prod^s S^1) \otimes M_{cd}(\mathbb{C})$. Here $C^*(\widehat{\mathbb{T}^r} \times \widehat{\mathbb{T}^2}, \operatorname{res} of \rho) \cong$ $C^*(v_1, v_2, \ldots, v_r, u_1^d, u_2^d)$. Note that this action is homotopic to the trivial action, since we can homotope θ_{ji} and β_{ji} to 0. Hence \mathbb{Z} acts trivially on the K-theory of \mathbb{S}_{i-1} . The Pimsner-Voiculescu exact sequence for a crossed product gives an exact sequence

$$K_0(\mathbb{S}_{i-1}) \xrightarrow{1-\alpha_*} K_0(\mathbb{S}_{i-1}) \xrightarrow{\Phi} K_0(\mathbb{S}_i) \longrightarrow K_1(\mathbb{S}_{i-1}) \xrightarrow{1-\alpha_*} K_1(\mathbb{S}_{i-1})$$

and similarly for K_1 , where the map Φ is induced by inclusion. Since $\alpha_* = 1$ and since the K-groups of \mathbb{S}_{i-1} are free abelian, this reduces a split short exact sequence

$$\{0\} \to K_0(\mathbb{S}_{i-1}) \xrightarrow{\Phi} K_0(\mathbb{S}_i) \to K_1(\mathbb{S}_{i-1}) \to \{0\}$$

and similarly for K_1 . So $K_0(\mathbb{S}_i)$ and $K_1(\mathbb{S}_i)$ are free abelian of rank $2 \cdot 2^{e+s+r+i-2} = 2^{e+s+r+i-1}$. Furthermore, since the inclusion $\mathbb{S}_{i-1} \to \mathbb{S}_i$ sends $1_{\mathbb{S}_{i-1}}$ to $1_{\mathbb{S}_i}$, $[1_{\mathbb{S}_i}]$ is the image of $[1_{\mathbb{S}_{i-1}}]$, which is primitive in $K_0(\mathbb{S}_{i-1})$ by inductive hypothesis. Hence the image is primitive, since the Pimsner-Voiculescu exact sequence is a split short exact sequence of torsion-free groups.

is a split short exact sequence of torsion-free groups. Therefore, $K_0(\mathbb{S}^{cd}_{\rho}) \cong K_1(\mathbb{S}^{cd}_{\rho}) \cong \mathbb{Z}^{2^{e+s+r+m-1}}$, and $[1_{\mathbb{S}^{cd}_{\rho}}] \in K_0(\mathbb{S}^{cd}_{\rho})$ is primitive.

Corollary 3.3. Let q be a positive integer, and \mathbb{S}^{cd}_{ρ} a spherical non-commutative torus given above. Assume that no non-trivial matrix algebra can be factored out

of A_{cd} . Then $\mathbb{S}_{\rho}^{cd} \otimes M_q(\mathbb{C})$ is not isomorphic to $A \otimes M_{pq}(\mathbb{C})$ for any C^* -algebra A and any integer p greater than 1. In particular, no non-trivial matrix algebra can be factored out of \mathbb{S}_{ρ}^{cd} , P_{ρ}^{cd} and A_{ρ} .

Proof. Assume that $\mathbb{S}_{\rho}^{cd} \otimes M_q(\mathbb{C})$ is isomorphic to $A \otimes M_{pq}(\mathbb{C})$. Then the unit $1_{\mathbb{S}_{\rho}^{cd}} \otimes I_q$ maps to the unit $1_A \otimes I_{pq}$. So

$$[1_{\mathbb{S}^{cd}} \otimes I_q] = [1_A \otimes I_{pq}].$$

Thus there is a projection $e \in \mathbb{S}_{\rho}^{cd}$ such that $q[\mathbb{1}_{\mathbb{S}_{\rho}^{cd}}] = (pq)[e]$. But $K_0(\mathbb{S}_{\rho}^{cd})$ is torsion-free, so $[\mathbb{1}_{\mathbb{S}_{\rho}^{cd}}] = p[e]$. This contradicts Theorem 3.2 if p > 1.

Therefore, $\mathbb{S}_{\rho}^{cd} \otimes M_q(\mathbb{C})$ is not isomorphic to $A \otimes M_{pq}(\mathbb{C})$.

4. Tensor Products of Spherical Non-Commutative Tori with UHF-Algebras and Cuntz Algebras

In this section, we are going to assume that no non-trivial matrix algebra can be factored out of A_{cd} . Using the fact that $[1_{\mathbb{S}_{\rho}^{cd}}] \in K_0(\mathbb{S}_{\rho}^{cd})$ is primitive, we are going to show that the tensor product of the spherical non-commutative torus \mathbb{S}_{ρ}^{cd} with a UHF-algebra $M_{p^{\infty}}$ of type p^{∞} is isomorphic to $C(\prod^e S^2 \times \prod^s S^1) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}) \otimes M_{p^{\infty}}$ if and only if the set of prime factors of cd is a subset of the set of prime factors of p.

Theorem 4.1. Let \mathbb{S}_{ρ}^{cd} be a spherical non-commutative torus defined as before. Then $\mathbb{S}_{\rho}^{cd} \otimes M_{p^{\infty}}$ is isomorphic to $C(\prod^{e} S^{2} \times \prod^{s} S^{1}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}) \otimes M_{p^{\infty}}$ if and only if the set of prime factors of cd is a subset of the set of prime factors of p.

Proof. Assume that the set of prime factors of cd is a subset of the set of prime factors of p. To show that $\mathbb{S}_{\rho}^{cd} \otimes M_{p^{\infty}}$ is isomorphic to $C(\prod^{e} S^{2} \times \prod^{s} S^{1}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}) \otimes M_{p^{\infty}}$, it is enough to show that $\mathbb{S}_{\rho}^{cd} \otimes M_{(cd)^{\infty}}$ is isomorphic to $C(\prod^{e} S^{2} \times \prod^{s} S^{1}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}) \otimes M_{cd}(\mathbb{C}) \otimes M_{(cd)^{\infty}}$. But there exist the C^{*} -algebra homomorphisms which are the canonical inclusions $\mathbb{S}_{\rho}^{cd} \otimes M_{(cd)^{g}}(\mathbb{C}) \hookrightarrow C(\prod^{e} S^{2} \times \prod^{s} S^{1}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}) \otimes M_{(cd)^{g}}(\mathbb{C})$ and the $C(\prod^{e} S^{2} \times \prod^{s} S^{1}) \otimes A_{\rho}$ -module maps $C(\prod^{e} S^{2} \times \prod^{s} S^{1}) \otimes A_{\rho} \otimes M_{(cd)^{g}}(\mathbb{C}) \hookrightarrow \mathbb{S}_{\rho}^{cd} \otimes M_{(cd)^{g}}(\mathbb{C})$:

$$\mathbb{S}_{\rho}^{cd} \hookrightarrow C(\prod_{e} S^{2} \times \prod_{e} S^{1}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}) \hookrightarrow \mathbb{S}_{\rho}^{cd} \otimes M_{cd}(\mathbb{C})$$
$$\hookrightarrow C(\prod_{e} S^{2} \times \prod_{e} S^{1}) \otimes A_{\rho} \otimes M_{(cd)^{2}}(\mathbb{C}) \hookrightarrow \dots$$

The inductive limit of the odd terms

$$\ldots \to \mathbb{S}_{\rho}^{cd} \otimes M_{(cd)^g}(\mathbb{C}) \to \mathbb{S}_{\rho}^{cd} \otimes M_{(cd)^{g+1}}(\mathbb{C}) \to \ldots$$

is $\mathbb{S}_{\rho}^{cd} \otimes M_{(cd)^{\infty}}$, and the inductive limit of the even terms

$$\to C(\prod^{e} S^2 \times \prod^{s} S^1) \otimes A_{\rho} \otimes M_{(cd)^g}(\mathbb{C}) \to C(\prod^{e} S^2 \times \prod^{s} S^1) \otimes A_{\rho} \otimes M_{(cd)^{g+1}}(\mathbb{C}) \to C(\prod^{e} S^2 \times \prod^{s} S^1) \otimes A_{\rho} \otimes M_{(cd)^{g+1}}(\mathbb{C}) \to C(\prod^{e} S^2 \times \prod^{s} S^1) \otimes A_{\rho} \otimes M_{(cd)^{g+1}}(\mathbb{C}) \to C(\prod^{e} S^2 \times \prod^{s} S^1) \otimes A_{\rho} \otimes M_{(cd)^{g+1}}(\mathbb{C}) \to C(\prod^{e} S^2 \times \prod^{s} S^1) \otimes A_{\rho} \otimes M_{(cd)^{g+1}}(\mathbb{C}) \to C(\prod^{e} S^2 \times \prod^{s} S^1) \otimes A_{\rho} \otimes M_{(cd)^{g+1}}(\mathbb{C}) \to C(\prod^{e} S^2 \times \prod^{s} S^1) \otimes A_{\rho} \otimes M_{(cd)^{g+1}}(\mathbb{C}) \to C(\prod^{e} S^2 \times \prod^{s} S^1) \otimes A_{\rho} \otimes M_{(cd)^{g+1}}(\mathbb{C}) \to C(\prod^{e} S^2 \times \prod^{s} S^1) \otimes A_{\rho} \otimes M_{(cd)^{g+1}}(\mathbb{C}) \to C(\prod^{e} S^2 \times \prod^{s} S^1) \otimes A_{\rho} \otimes M_{(cd)^{g+1}}(\mathbb{C}) \to C(\prod^{e} S^2 \times \prod^{s} S^1) \otimes A_{\rho} \otimes M_{(cd)^{g+1}}(\mathbb{C}) \to C(\prod^{e} S^2 \times \prod^{s} S^1) \otimes A_{\rho} \otimes M_{(cd)^{g+1}}(\mathbb{C}) \to C(\prod^{e} S^2 \times \prod^{s} S^1) \otimes A_{\rho} \otimes M_{(cd)^{g+1}}(\mathbb{C}) \to C(\prod^{e} S^2 \times \prod^{s} S^1) \otimes A_{\rho} \otimes M_{(cd)^{g+1}}(\mathbb{C}) \to C(\prod^{e} S^1) \otimes M_{(cd)^{g+1}}(\mathbb{C}$$

is $C(\prod^e S^2 \times \prod^s S^1) \otimes A_{\rho} \otimes M_{(cd)^{\infty}}$. Thus by the Elliott theorem [7, Theorem 2.1], $\mathbb{S}_{\rho}^{cd} \otimes M_{(cd)^{\infty}}$ is isomorphic to $C(\prod^e S^2 \times \prod^s S^1) \otimes A_{\rho} \otimes M_{(cd)^{\infty}}$.

Conversely, assume that

$$\mathbb{S}_{\rho}^{cd} \otimes M_{p^{\infty}} \cong C(\prod^{e} S^{2} \times \prod^{s} S^{1}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}) \otimes M_{p^{\infty}}.$$

Then the unit $1_{\mathbb{S}_{\rho}^{cd}} \otimes 1_{M_{p^{\infty}}}$ maps to the unit $1_{C(\prod^{e} S^{2} \times \prod^{s} S^{1}) \otimes A_{\rho}} \otimes 1_{M_{p^{\infty}}} \otimes I_{cd}$. So

$$\begin{split} [1_{\mathbb{S}_{\rho}^{cd}} \otimes 1_{M_{p^{\infty}}}] &= [1_{C}(\prod^{e} S^{2} \times \prod^{s} S^{1}) \otimes A_{\rho} \otimes 1_{M_{p^{\infty}}} \otimes I_{cd}] \\ [1_{\mathbb{S}_{\rho}^{cd}} \otimes 1_{M_{p^{\infty}}}] &= [1_{\mathbb{S}_{\rho}^{cd}}] \otimes [1_{M_{p^{\infty}}}] \\ [1_{C}(\prod^{e} S^{2} \times \prod^{s} S^{1}) \otimes A_{\rho} \otimes 1_{M_{p^{\infty}}} \otimes I_{cd}] \\ &= cd([1_{C}(\prod^{e} S^{2} \times \prod^{s} S^{1}) \otimes A_{\rho}] \otimes [1_{M_{p^{\infty}}}]). \end{split}$$

Under the assumption that the unit $1_{\mathbb{S}^{cd}} \otimes 1_{M_{p^{\infty}}}$ maps to the unit

$$1_{C(\prod^e S^2 \times \prod^s S^1) \otimes A_{\rho}} \otimes 1_{M_{\rho^{\infty}}} \otimes I_{cd},$$

if there is a prime factor q of cd such that $q \nmid p$, then $[1_{M_{p^{\infty}}}] \neq q[e_{\infty}]$ for e_{∞} a projection in $M_{p^{\infty}}$. So there is a projection $e \in \mathbb{S}_{\rho}^{cd}$ such that $[1_{\mathbb{S}_{\rho}^{cd}}] = q[e]$. This contradicts Theorem 3.2. Thus the set of prime factors of cd is a subset of the set of prime factors of p.

Therefore, $\mathbb{S}_{\rho}^{cd} \otimes M_{p^{\infty}}$ is isomorphic to $C(\prod^{e} S^{2} \times \prod^{s} S^{1}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}) \otimes M_{p^{\infty}}$ if and only if the set of prime factors of cd is a subset of the set of prime factors of p.

In particular, $\mathbb{S}_{\rho}^{cd} \otimes M_{p^{\infty}}$ has the trivial bundle structure if the set of prime factors of cd is a subset of the set of prime factors of p.

Let us study the tensor products of spherical non-commutative tori with (even) Cuntz algebras.

The Cuntz algebra $\mathcal{O}_u, 2 \leq u < \infty$, is the universal C^* -algebra generated by u isometries s_1, \ldots, s_u , i.e., $s_j^* s_j = 1$ for all j, with the relation $s_1 s_1^* + \cdots + s_u s_u^* = 1$. Cuntz [4,5] proved that \mathcal{O}_u is simple and the K-theory of \mathcal{O}_u is $K_0(\mathcal{O}_u) = \mathbb{Z}/(u-1)\mathbb{Z}$ and $K_1(\mathcal{O}_u) = 0$. He proved that $K_0(\mathcal{O}_u)$ is generated by the class of the unit.

Proposition 4.2. Let \mathbb{S}_{ρ}^{cd} be a spherical non-commutative torus with fibres $P_{\rho}^{d} \otimes M_{c}(\mathbb{C})$ for cd a positive integer greater than 1. Let u be a positive integer such that cd and u-1 are not relatively prime. Then $\mathcal{O}_{u} \otimes \mathbb{S}_{\rho}^{cd}$ is not isomorphic to $\mathcal{O}_{u} \otimes C(\prod^{e} S^{2} \times \prod^{s} S^{1}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C})$.

Proof. Let p be a prime such that $p \mid cd$ and $p \mid u-1$. Suppose that $\mathcal{O}_u \otimes \mathbb{S}_{\rho}^{cd}$ is isomorphic to $\mathcal{O}_u \otimes C(\prod^e S^2 \times \prod^s S^1) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C})$. Then the unit $1_{\mathcal{O}_u \otimes \mathbb{S}_{\rho}^{cd}}$ maps to the unit $1_{\mathcal{O}_u \otimes C(\prod^e S^2 \times \prod^s S^1) \otimes A_{\rho}} \otimes I_{cd}$. So

$$[1_{\mathcal{O}_u \otimes \mathbb{S}_{\rho}^{cd}}] = [1_{\mathcal{O}_u \otimes C(\prod^e S^2 \times \prod^s S^1) \otimes A_{\rho}} \otimes I_{cd}] = cd[1_{\mathcal{O}_u \otimes C(\prod^e S^2 \times \prod^s S^1) \otimes A_{\rho}}].$$

Hence there is a projection e in $\mathcal{O}_u \otimes \mathbb{S}_{\rho}^{cd}$ such that $[1_{\mathcal{O}_u \otimes \mathbb{S}_{\rho}^{cd}}] = cd[e]$. But $[1_{\mathcal{O}_u \otimes \mathbb{S}_{\rho}^{cd}}] = [1_{\mathcal{O}_u}] \otimes [1_{\mathbb{S}_{\rho}^{cd}}]$ and $[1_{\mathcal{O}_u}]$ is a generator of $K_0(\mathcal{O}_u) \cong \mathbb{Z}/(u-1)\mathbb{Z}$ (see [5]). But $p \mid u-1$. $[1_{\mathcal{O}_u}] \neq p[e_*]$ for e_* a projection in \mathcal{O}_u . So $[1_{\mathbb{S}_{\rho}^{cd}}] = p[e']$ for e' a projection in \mathbb{S}_{ρ}^{cd} . This contradicts Theorem 3.2. Hence cd and u-1 are relatively prime.

Therefore, $\mathcal{O}_u \otimes \mathbb{S}_{\rho}^{cd}$ is not isomorphic to $\mathcal{O}_u \otimes C(\prod^e S^2 \times \prod^s S^1) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C})$ if cd and u-1 are not relatively prime.

The following result is useful to understand the bundle structure of $\mathcal{O}_u \otimes \mathbb{S}_{\rho}^{cd}$.

Proposition 4.3 [12, Theorem 7.2]. Let A and B be unital simple inductive limits of even Cuntz algebras. If $\alpha : K_0(A) \to K_0(B)$ is an isomorphism of abelian groups satisfying $\alpha([1_A]) = [1_B]$, then there is an isomorphism $\phi : A \to B$ which induces α .

Corollary 4.4.

- (1) Let p be an odd integer such that p and 2u 1 are relatively prime. Then \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{(2u-1)p+1} \otimes M_{p^{\infty}}$. That is, \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{2u} \otimes M_{p^{\infty}}$.
- (2) \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{2u} \otimes M_{(2u)^{\infty}}$.

Theorem 4.5. Let \mathbb{S}_{ρ}^{cd} be a spherical non-commutative torus with fibres $P_{\rho}^{d} \otimes M_{c}(\mathbb{C})$. Then $\mathcal{O}_{2u} \otimes \mathbb{S}_{\rho}^{cd}$ is isomorphic to $\mathcal{O}_{2u} \otimes C(\prod^{e} S^{2} \times \prod^{s} S^{1}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C})$ if and only if cd and 2u - 1 are relatively prime.

Proof. Assume that cd and 2u - 1 are relatively prime. Let $cd = p2^v$ for some odd integer p. Then p and 2u - 1 are relatively prime. Then by Corollary 4.4 \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{2u} \otimes M_{p^{\infty}}$, and \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{2u} \otimes M_{(2u)^{\infty}} \cong$ $\mathcal{O}_{2u} \otimes M_{(2u)^{\infty}} \otimes M_{(2^v)^{\infty}} \cong \mathcal{O}_{2u} \otimes M_{(2^v)^{\infty}}$. So \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{2u} \otimes M_{p^{\infty}} \otimes$ $M_{(2^v)^{\infty}} \cong \mathcal{O}_{2u} \otimes M_{(cd)^{\infty}}$. Thus by Theorem 4.1 $\mathcal{O}_{2u} \otimes \mathbb{S}_{\rho}^{cd}$ is isomorphic to $\mathcal{O}_{2u} \otimes M_{(cd)^{\infty}} \otimes \mathbb{S}_{\rho}^{cd}$, which in turn is isomorphic to $\mathcal{O}_{2u} \otimes M_{(cd)^{\infty}} \otimes C(\prod^e S^2 \times \prod^s S^1) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C})$. Thus $\mathcal{O}_{2u} \otimes \mathbb{S}_{\rho}^{cd}$ is isomorphic to $\mathcal{O}_{2u} \otimes C(\prod^e S^2 \times \prod^s S^1) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C})$.

The converse was proved in Proposition 4.2.

Therefore, $\mathcal{O}_{2u} \otimes \mathbb{S}_{\rho}^{cd}$ is isomorphic to $\mathcal{O}_{2u} \otimes C(\prod^{e} S^{2} \times \prod^{s} S^{1}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C})$ if and only if cd and 2u - 1 are relatively prime.

Cuntz [5] computed the K-theory of the generalized Cuntz algebra \mathcal{O}_{∞} , generated by a sequence of isometries with mutually orthogonal ranges, $K_0(\mathcal{O}_{\infty}) = \mathbb{Z}$ and $K_1(\mathcal{O}_{\infty}) = 0$. He proved that $K_0(\mathcal{O}_{\infty})$ is generated by the class of the unit.

Proposition 4.6. Let \mathbb{S}_{ρ}^{cd} be a spherical non-commutative torus with fibres $P_{\rho}^{d} \otimes M_{c}(\mathbb{C})$. Then $\mathcal{O}_{\infty} \otimes \mathbb{S}_{\rho}^{cd}$ is not isomorphic to $\mathcal{O}_{\infty} \otimes C(\prod^{e} S^{2} \times \prod^{s} S^{1}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C})$ if cd > 1.

Proof. Suppose $\mathcal{O}_{\infty} \otimes \mathbb{S}_{\rho}^{cd}$ is isomorphic to $\mathcal{O}_{\infty} \otimes C(\prod^{e} S^{2} \times \prod^{s} S^{1}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}).$

The unit $1_{\mathcal{O}_{\infty}\otimes\mathbb{S}_{\rho}^{cd}}$ maps to the unit $1_{\mathcal{O}_{\infty}\otimes C(\prod^{e}S^{2}\times\prod^{s}S^{1})\otimes A_{\rho}}\otimes I_{cd}$. By the same trick as in the proof of Proposition 4.2, one can show that $[1_{\mathcal{O}_{\infty}\otimes\mathbb{S}_{\rho}^{cd}}] = cd[e]$ for a projection $e \in \mathcal{O}_{\infty}\otimes\mathbb{S}_{\rho}^{cd}$. $[1_{\mathcal{O}_{\infty}\otimes\mathbb{S}_{\rho}^{cd}}] = [1_{\mathcal{O}_{\infty}}]\otimes[1_{\mathbb{S}_{\rho}^{cd}}]$ and $[1_{\mathcal{O}_{\infty}}]$ is a primitive element of $K_{0}(\mathcal{O}_{\infty}) \cong \mathbb{Z}$ (see [5]). So $[1_{\mathbb{S}_{\rho}^{cd}}] = cd[e']$ for a projection $e' \in \mathbb{S}_{\rho}^{cd}$. This contradicts Theorem 3.2.

Therefore, $\mathcal{O}_{\infty} \otimes \mathbb{S}_{\rho}^{cd}$ is not isomorphic to $\mathcal{O}_{\infty} \otimes C(\prod^{e} S^{2} \times \prod^{s} S^{1}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}).$

Acknowledgement. The author was supported by grant No. 1999-2-102-001-3 from the interdisciplinary Research program year of the KOSEF.

References

- L. Baggett and A. Kleppner, Multiplier representations of abelian groups J. Funct. Anal. 14 (1973) 299-324.
- B. Blackadar, K-Theory for Operator Algebras, Springer-Verlag, New York, Heidelberg, London, Paris and Tokyo, 1986.
- D. Boo, P. Kang, and C. Park, The sectional C*-algebras over a torus with fibres a non-commutative torus, Far East J. Math. Sci. 1 (1999) 561-579.
- J. Cuntz, Simple C^{*}-algebras generated by isometries, Comm. Math. Phys. 57 (1977) 173-185.
- 5. J. Cuntz, K-theory for certain C*-algebras, Ann. Math. 113 (1981) 181-197.
- G. A. Elliott, On the K-theory of the C*-algebra generated by a projective representation of a torsion-free discrete abelian group, Operator Algebras and Group Representations, G. Aresene et al. (eds.), Vol. 1, Pitman, London, 1984, 157-184.
- G.A. Elliott, On the classification of C^{*}-algebras of real rank zero, J. Reine Angew. Math. 443 (1993) 179-219.
- P. Green, The local structure of twisted covariance algebras, Acta. Math. 140 (1978) 191-250.
- 9. M. Karoubi, K-Theory, Springer-Verlag, Berlin, Heidelberg and New York, 1978.
- F. Krauss and T. C. Lawson, Examples of homogeneous C^{*}-algebras, Memoirs A.M.S. 148 (1974) 153-164.
- D. Poguntke, The structure of twisted convolution C*-algebras on abelian groups, J. Operator Theory 38 (1997) 3-18.
- M. Rordam, Classification of inductive limits of Cuntz algebras, J. Reine Angew. Math. XL (2) (1988) 257-338.