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Abstract. Let A.q be a cd-homogeneous C*-algebra over []® 52 x []° S* x T"+2 of
which no non-trivial matrix algebra can be factored out. The spherical non-commutative

torus Sf,d is defined by twisting C*(T72 x Z™~2) in A.g ® C*(Z™2) by a totally
skew multiplier p on Tr+2 x Z™=2. It is shown that S;d ® Mpe is isomorphic to
C([I° 8% x[I° 8Y) ® C*(T7+2 x Z™ 2, p) ® M4(C) ® Mpe if and only if the set

of prime factors of ¢d is a subset of the set of prime factors of p.

1. Introduction

Given a locally compact abelian group G and a multiplier w on G, one can
associate to them the twisted group C*-algebra C*(G,w), which is the univer-
sal object for unitary w-representations of G. C*(Z™,w) is said to be a non-
commutative torus of rank m and denoted by A,. The multiplier w determines
a subgroup S, of G, called its symmetry group, and the multiplier w is called
totally skew if the symmetry group S, is trivial. And A, is called completely
irrational if w is totally skew. See [1,8,11]. It was shown in [1] that if G is
a locally compact abelian group and w is a totally skew multiplier on G, then
C*(G,w) is a simple C*-algebra.

An important problem, in the bundle theory of geometry, is to compute the
set [M, BPU(cd)] of homotopy classes of continuous maps of a compact CW-
complex M into the classifying space BPU (cd) of the Lie group PU(cd). The set
[M, BPU (cd)) is in bijective correspondence with the set of equivalence classes of
principal PU (cd)-bundles over M, which is in bijective correspondence with the
set of cd-homogeneous C*-algebras over M. That is, each cd-homogeneous C*-
algebra A over M is isomorphic to the C*-algebra I'(n) of sections of a locally
trivial C*-algebra bundle 1 with base space M, fibres Mc4(C), and structure
group Aut(M.q(C)) & PU(cd). See [10] for details. So each cd-homogeneous
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C*-algebra over []°S? x []°S! x T™*2 is realized as the C*-algebra I'(¢) of
sections of a locally trivial C*-algebra bundle ¢ over [[° 52 x []* S x T"*2 with
fibres M_.4(C). Thus the spherical non-commutative torus S;d, defined in Section
2, is realized as the C*-algebra of sections of a locally trivial C*-algebra bundle
over [1° 5% x [[* S* with fibres P¢ ® M,(C), where P{ is defined in Section 2.
We are going to show that S5 @ Mye is isomorphic to C([T° S x [T° S%)

®C*(@ X Z™72,p) ® M.q(C) ® Mpe if and only if the set of prime factors of
cd is a subset of the set of prime factors of p. And it is shown that Szd ® Ogy
is isomorphic to C([]* 9% x []*S!) ® A, ® Mca(C) ® Oy, if and only if ed and
2u — 1 are relatively prime, and that Sf,d ® O is not isomorphic to C([T* 52 x
[T°SY) ® A, ® Mea(C) ® Ou if ed > 1, where O, and Os denote the Cuntz
algebra and the generalized Cuntz algebra, respectively.

2. Homogeneous C*-Algebras Over [[°S? x [[*7"1? 5!

[S%2, BPU(cd)] = [S*, PU(cd)] = Z.q, which is a cyclic group. So each group
has a generator, and there is a unitary U(z) € PU(cd) such that the generating
cd-homogeneous C*-algebra over S2 can be realized as the C*-algebra, of sections
of a locally trivial C*-algebra bundle over S? with fibres M_4(C) characterized
by the unitary U(z) € PU(cd) over S*. If (ed, k) = p (p > 1), then consider the
cd-homogeneous C*-algebra over S? corresponding to each k € Z.4 as the tensor
product of M,(C) with a %—homogeneous C*-algebra over S%, which is given by
U(2)*? € PU(%4). Consider U(z)* as U(z)*? @ I, € PU(cd), where I, denotes
the p x p identity matrix. Then each cd-homogeneous C*-algebra By .4 over
S? can be realized as the C*-algebra of sections of a locally trivial C*-algebra
bundle over S? with fibres M,q(C) characterized by the unitary U(z)* € PU(cd)
over S! for some k € Z.4.

Krauss and Lawson [10] proved that each cd-homogeneous C*-algebra over
52 is isomorphic to one of the C*-subalgebras Byjcq = Cy, (€2 1l €2, M4(C)),
k € Zcq, given as follows: if f € By/cq, then the following condition is satisfied

fo() = U@ (2)U ()

for all z € S, where U(z) € PU(cd) = Inn(M4(C)) is the unitary given above,
and €7 (resp. €2) is the 2-dimensional northern (resp. southern) hemisphere.

Since there is a map of degree 1 from S2 to S* x S*, there are cd-homogeneous
C*-algebras over S' x S' induced from cd-homogeneous C*-algebras over S2.
So every cd-homogeneous C*-algebra over S x S is isomorphic to one of the
C*-subalgebras Ay/cq, k € Zca, of C(S* x [0,1], Mcq(C)), given as follows: if
f € Ag/ca, then the following condition is satisfied

f(2,1) =U(2)*f(2,0)U(2) 7
for all z € S*, where U(z) € PU(cd) is the unitary given above. See [3].

Lemma 2.1. Let By/.q be a cd-homogeneous C*-algebra over S? of which no
non-trivial matriz algebra can be factored out. Then [1p,, ,] € Ko(Byjca) = Z
15 primitive.
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Proof. Tt was shown in [3, Lemma 3.1] that By, /.4 is stably isomorphic to C (8%)®
Mcd((C). So KO(Bk/Cd) = K()(C(Sz)) =NASYA Since

[$2, BPU(cd)] = [S*, PU(cd)] = [S* x S*, BPU(cd)] & Zeq,

By jca corresponds to Ag/.q with respect to the conditions on sections over the
boundaries S* of €2 ITe? and S' x [0, 1]. The proof of Elliott’s theorem given in
[6, Theorem 2.2] implies that the canonical embedding of each factor C(T?) of
C(T?) into Ay /ea induces an isomorphism of Ko(C(T?)) into B—Q(A:%) such that
the class [Lo(r2)] of the unit 1¢(72) maps to the class [14, ] of the unit W agpge
The canonical embedding of C(S') into Ay /.g which induces the isomorphism of
Ko(C(S* x S1)) into Ko(Ag/cq) corresponds to the embedding ¢ of C(8') into
By/ea- The canonical embedding ¢ of C (S1) into By cq induces an isomorphism
p of Ko(C(S?)) into I(G(B?_%), where S' = de%. The unit 1o(g1) maps to the
unit 1¢(g2) under the canonical embedding ¢ of C(S") into C(S?). [losh] €
Ko(C(S1)) = Z maps to [Logsy)] € Ko(C(S?)) = Z2, primitive in Ko(C(5?))
(see [9]). In the commutative diagram

Ko(C(SY)) —=— Ko(C(5%))

(identity). l lu(e)
Ko(C(SY)) —2— Ko(Bi/ea),

,“([10(82)]) = ¢, o (identity). o 1,/)*_1([10(32)]) = [1Bk/cd]' So [1Bk/cd] is the image
of the primitive element [1c(s2)] € Ko(C (5?)) under the isomorphism p. Hence
[1By,cal € Ko(Bk/eq) is primitive.

Therefore, [13,,.,] € Ko(Bk/ca) = 7?2 is primitive. =

The proof given in Lemma 2.1 implies that the canonical embedding of C(S')
into By/cq induces an isomorphism of Ko(C(S?)) into Ko(Bg/ed) such that the
class [Lo(szy] of the unit 1¢(s2) maps to the class [1p, ,,] of the unit 15, .

If s + r is odd, one can make the integer even by tensoring with C(S'). So
one can assume that s + r is even.

In [3, Theorem 2.5], the authors constructed cd-homogeneous C*-subalgebras
Eptrpe (01,8, b1, o Dieri2yj2 € 2) over TT° 8% x 15712 81 of

e (s+r+2)/2
C ( [Tedmme?)x T (S*x[0,1]), Mcd(C)) , and constructed all cd-homogene-

ous C*-algebras over [[° §% x [[*T"1 §1.

Theorem 2.2. Let Ay be a cd-homogeneous C*-algebra over [[¢ S2x[[*1 2 51,
of which any non-trivial matriz algebra cannot be factored. Then Ko(Acq) =
Kl (Acd) & Z2e+s+r+1, and [1Acd] € K()(Acd) 18 primitive.

Proof. It was shown in [3, Lemma 3.1] that A.q is stably isomorphic to C(J]¢ S*
x [T°*"2 8') ® M.4(C). By Kiinneth’s theorem [2, Theorem 23.1.3]
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€ s+r+2
Ko(Aca) = Ko(C( HS’2 X H )
P str+2
%’Ko HS2 ®KO(C' H Sl o K, C(Hsz ®K1 ( H Sl))
=54 Zz ® Zzs+r+1 @ {0} ® Zzs+ r+1 o~ Z23+5+T+1.
Similarly, one obtains that K;(Acq) = gasterrL

It is enough to show that [14_,] € Ko(Acq) is primitive. First of all, we show

that [1Ea1,... e ] € Ko(Eptrope ) is primitive. By the same reasoning
Blotrta)/2 1y P(str42)/2

as in the proof given in Lemma 2.1, the canonical embedding ¢ of C(J]°S! x

[1E+F+972 81y into Egl ’ba(;rr“m induces an isomorphism u of Ko(C(J]® 5% x

Hs+r+2 S1)) into Ko(Eal’ ;’ba(:+r+2>/2)' The unit lc(He SlXH(s+r+2)/2 gmANAPS
to the unit 1o, [ e ga, [[++ o») Uunder the canonical embedding 1 of C([1° S x
H(s+r+2)/2 Sl) into C(He S2 x H3+7'+2 Sl)

(s+r+2)/2

[lc(He s Sl)] € KO(C(H St x H S

maps to
g+rt2

P 1
[10(1—[ Sle—[s+'r+2 Sl) € Ko HS H S ))
primitive in Ko(C([]° 82 x [[°T"** 81)) (see [9]). In the commutative diagram

(s+r+2)/2 e s+r42

Ko(C(I1S x  T1 SY) —“— Ko(COIS2x 11 S%)
(identity) . l lﬂ(&‘)
e (s+7r+2)/2 . i .
Ko(COIS* x  TI SY) ——  Ko(Bppe ),

N([lc(He SszS‘”"’z 51)])
= ¢* o (1dentlty)* o] ’l/):l([lc(l—[e SZXH5+T+2 Sl)]) = [1E;111,,... ,ae

blatrrzy/2
So [1gai. . ae ] is the image of the primitive element
b1osb(spry2)/2
e s+r+2
2 1
o sexqr ) € Ko(CT S x IT ™)

k . Q1,000 ,0e | S

under the isomorphism p. Hence [lE - b(s+r+2)/2] € Ko(E,)"" b(s+r+2)/2) is

primitive.
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Next, assume that A.g 2 C1®Ca®...® Cy, where C; are of the type above.
Then

Ko(Acg) 2 Ko(C1) @ Ko(C) ® ... @ Ko(Cy) &

and [14,,] is the image of the primitive element [10,] ® [1c,] ® ... ® [1¢,] €
K()(Cl) ® KO(CQ) R...0 Ko(Cq) under the isomorphism. So [1Acd] € KO(Acd)
is primitive.

Now assume that A.q is a general cd-homogeneous C*-algebra over [ 52 x
[T°t"*2 8. The proof given above implies that the canonical embedding of
each factor C(S%) of C([]°8* x [T*" 1% 5') into A.q induces an isomorphism of

e s+r4+2
Ko(C(T15%x [] S')) into Ko(Aca) such that the class [10(1—[5 sax] Sl)]
of the unit 1C(H s[5 maps to the class [14_,] of the unit 14_,. By

the same reasoning as in the proof given above, the canonical embedding ¢ of
each factor C(S1) of C(IJ¢ S* x [[°T"*? 8) into A4 induces an isomorphism 4

of
s+r+2

€
c(IIs*x 1] $*) — Ko(Aca).
The unit 1C(He sixI" 7+ 5 maps to the unit 10(1—[6 s2x "+ s1) under the
canonical embedding ¥ of C(JT¢ S x [I**"72 S1) into C(IT° S% x [[**"2 S1).
s+r+2

[1C(He g1 XHS+’"+2 Sl)] € KO(C(H S* x H Sl))

maps to
s+r+2

[1C(He SZXHW“Sl] e Ko(C(JI 8% ] s*».

primitive in Ko(C([J° 2 x [[*""+* §)). In the commutative diagram

e s+r+2 W e s+r+2
Ko(C(IIS*x II §Y) —— Ko(C(IS*x [I SY)
(identity). l lu(g)
e L s+r+2 1 (@724,
Ko(C(IIS* < [T §") —— Ko(Aca),

,u([lc,(ne s Sl)])
= (©°*+779). o (identity). 0 YT (Lo [ o[+ s1)) = Macd
i.e., 4 must be the canonical extension of (identity), :
e sr42 e sr42
c(]s* < II 8 — Ko x ] s")-
So [1a,,] is the image of the primitive element

s+r+2

) e Ko(C(J[$* > ] sY)
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under the isomorphism u. Hence [14,,] € Ko(Acq) is primitive.
Therefore, Ko(Acq) =2 K1(Acq) = z2" and [14,,] € Ko(Acq) is primi-
tive. ™

The proof given in Theorem 2.2 implies that the canonical embedding of
each factor C(S1) of C([J°S* x [[°"" 1 $1) into A4 induces an isomorphism of

Ko(C([]® S% x [Tt 1)) into Ko(Acq) such that [1 o[ s 51)] maps
to [la,,]-

3. Spherical Non-Commutative Tori

The non-commutative torus A, of rank m is obtained by an iteration of m — 1
crossed products by actions of Z, the first action on C(T!) (see [6]). When A,, is
not simple, by a change of basis, A4, is obtained by an iteration of m — 2 crossed
products by actions of Z, the first action on a rational rotation algebra A Jd-
Since the fibre My(C) of A;/4 is a factor of the fibre of A, A, can be obtained
by an iteration of m — 2 crossed products by actions of Z, the first action on
Aj/4, where the actions of Z on the fibre Ma(C) of A;/4 are trivial. So one can
assume that A, is given by twisting C*(dZ x dZ x Z™ 2) in Al/d ® C* (Zm )

by the restriction of the multiplier w to dZ x dZ x Z™ 2, where dZ x dZ is the
primitive ideal space of A;/q and C*(dZ x dZ,res of w) = C*(dZ x dZ).

Definition 3.1 3, Definition 1.1]. Let Aqq be a cd-homogeneous C*-algebra over
[1° 5% x [1° S x T” x T2 whose cd-homogeneous C*-subalgebra restricted to the
subspace T™ x T? of [[* §2 x [1° §* x T” x T? is realized as C(T") ® A; /4 ® M.(C)
for Ayq a rational rotation algebra. The C*-algebra which is given by twisting
C* ('E'? x T2 x Z™2) in Awq ® C*(Z™2) by a totally skew multiplier p on Tr x
T2 x Z™=2 is said to be a spheric\al non-commutative torus of rank e+ s+r+m,
and denoted by S , where C*(T2, of p) = C*(T?) and T? is the primitive ideal
space of Ay/q.

Then the fibre of Sg, denoted by Pg, can be obtained by an iteration of
r + m — 2 crossed products by actions a; of Z, the first action on the rational
rotation algebra A;/4, where the actions «; on the fibre My(C) of 4,4 are trivial.

A, =C*T" x T2 x Z™ 2, p) = C*(dZ X dZ) Xy L Xa, - .. Xa,... Z.
P 3 r+m

Thus the spherical non-commutative torus Sf,d is realized as the C*-algebra of

sections of a locally trivial C*-algebra bundle over []°S? x []° S with fibres
P @ M,(C).
We are going to show that [1g.] € Ko(S5?) is primitive.

Theorem 3.2. Let Sc‘i be a spherical non-commutative torus of rank e+s+r+m
defined above. Assume that no non- irzizzgl matriz algebra can be factored out of
Aca. Then Ko(S$%) =2 K1(Se4) = 227 ; and [lgea] € Ko(S5Y) is primitive.
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Proof. Tt was shown in [3, Theorem 3.4] that the spherical non-commutative
torus S¢¢ is stably isomorphic to C(J]°S? x [T°8Y) ® 4, ® Mc4(C), where A,
is a non-commutative torus of rank r + m. But by Kiinneth’s theorem and by
Elliott’s theorem [§, Theorem 2.2] and Theorem 2.2

Ko(e(I[5* x []5) © 45)
o Ko(c(f[s2 X f[sl)) ® Ko(4,) @ Kl(C(ﬁS2 X ﬁSI)) ® K1(4,)

et+s—1 T+m—1 e+s—1 r+m—1 et+st+r+m—1
o ZQ ® ZZ o) Z2 ® ZZ o Z2

Similarly, one obtains that K1 (C(TT° stx I SHY® A,) = gastetrImel e
KO(S;d) = Ko(C(HSZ X HS]-) ® Ap) ~ Z23+5+1‘+m—1,

Kl(Sf,d) ~ K, (C(HSQ > Hsl) ® Ap) o Z25+s+r+m—1

So it is enough to show that [182.1] € Ko(Szd) is primitive. The proof is by
induction on m. Assume that m = 2. By the Elliott theorem [6, Theorem 2.2],
the canonical embedding of each factor C(T") of C(T" x T?) into A, induces an
isomorphism of Ko(C(T” xT?)) into Ko(A,) such that the class [Lo(r-x12)] of the
unit 1o(-x2) maps to the class [14,] of the unit 14,. By the same reasoning as
the proof given in Theorem 2.2, the canonical embedding ¢ of each factor C(S H
or C(TY) of C(IT®S* x [I° S x T” x T?) into S induces an isomorphism p of

Ko(C([] 82 % [[ 8" x T" x T%)) — Ko(S;).
The unit 1C(He gix[]° 81 xTx12) maps to the unit 1C(He s2x]]° §1xTrxT2) under
the canonical embedding v of C(J]¢ S* < [I° S*xT" x T?) into C([]* S%x]° S* x
T™ x T?).

[10(1'[e s’ sixTrx12)) € KO(C(Hsl X HSl x T" x T?))

maps to

[10(1'[5 s2x[T° S1xTrxT2)q) € KO(C(HS2 3 Hsl x T7 x T?)),

primitive in Ko(C([J® 5% x [I° S* x T x T?)). In the commutative diagram

Ko(C(S) —Y  Ko(C(ITS* < I1S* x T" x T?))
(identity) . l lﬂ(—%)

(®E+S+T+2¢)*

Ko(C(9)) Ko(S5%),
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where S = []°S! x [T° S* x T” x T?.

Ty S e
= (®e+s+r+2¢)* © (ldentltY)* 2 ¢:1([10(He 52 st S1 x'][‘?'x']I‘2)]) = [182‘1]»

i.e., u must be the canonical extension of (identity).

I_IKS'lxl_‘[Sl><’]I‘T><']1‘2 ) — Ko(C HSleSlx'lI""x']I‘z))

So [].S;:’d] is the image of the primitive element

[lc(He Sszs SleTx'Jl‘z)] S KO(C(HS2 X H,S'l x T" % Tz))

under the isomorphism . Hence [1Scd] € Ko(S&%) is primitive.

Next, assume that the result is true for all spherical non-commutative tori
with m =4 — 1. Write S; = C*(S;_1, u;), where S; = C’*(Sf,d,u;;, ..., u;), where
Sf,d is the case above, m = 2. Then the inductive hypothesis applies to S;. ;.
Also, we can think of S; as the crossed product of S;_; by an action o of Z, where
the generator of Z corresponds to u;, which acts on C*(vy, ... , v, ué, ud, us, . ..
u;_1) by conjugation (sending u; to wjuju; ' = e™¥iiu;, j £ 1,2, sending u!
to wudu; ' = e2midss
which acts trivially on C(H S2x[]° S*)® M.q4(C). Here C* ('E‘; X 'J/l‘\2 res of p) =
C*(v1,va, ... ,vr,ud, ud). Note that this action is homotopic to the tr1v1al action,
since we can homotope 8;; and §;; to 0. Hence Z acts trivially on the K-theory
of S;_;. The Pimsner-Voiculescu exact sequence for a crossed product gives an

exact sequence

y
d
J

ud,j = 1,2, and sending v; to usvu; " = ezmﬂ“ v;), and

Ko(Si—1) —= Ky(5i—1) 2, Ko(S;) — Ki(Si—1) 222, Ky (Siei)

and similarly for K7, where the map ® is induced by inclusion. Since a, =1
and since the K-groups of S;_; are free abelian, this reduces a split short exact
sequence

{0} — Ko(Si—1) = Ko(S:) — K1(Si—1) — {0}

and similarly for K;. So Ko(S;) and K1(S;) are free abelian of rank 2.2¢+s+7+i—2
= 2¢Ftstr+i=1  Fyrthermore, since the inclusion S,_; — S; sends 1s,_, to 1g,,
[1s,] is the image of [1s, ,], which is primitive in Ko(S;-1) by inductive hypothe-
sis. Hence the image is primitive, since the Pimsner-Voiculescu exact sequence
is a split short exact sequence of torsm?;flﬁ(i groups.

Therefore, Ko(SS?) = K (S5%) = Z? , and [1sea] € Ko(S§?) is primi-
tive. ]

Corollary 3.3. Let q be a positive integer, and Sf,d a spherical non-commutative
torus given above. Assume that no non-trivial matriz algebra can be factored out
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of Aca. Then % ® My(C) 4s not isomorphic to A ® Mpy(C) for any C*-algebra
A and any integer p greater than 1. In particular, no non-trivial matriz algebra
can be factored out of S, PS® and A,.

Proof. Assume that S ® M,(C) is isomorphic to A ® Mp(C). Then the unit
lgea @ I, maps to the unit 14 ® Ipg- So

[1Sgd ®L]=[14® Ipql-

Thus there is a projection e € S¢ such that q[lggd] = (pq)[e]. But KO(Szd) is
torsion-free, so [].Sgd] = ple]. This contradicts Theorem 3.2 if p > 1.
Therefore, S;d ® M,(C) is not isomorphic to A ® Mp, (C). m

4. Tensor Products of Spherical Non-Commutative Tori with UHF-
Algebras and Cuntz Algebras

In this section, we are going to assume that no non-trivial matrix algebra can
be factored out of A.q. Using the fact that [1524] € Ko(Sf,d) is primitive, we are
going to show that the tensor product of the spherical non-commutative torus
S with a UHF-algebra Mpe of type p™ is isomorphic to C([I°S? x [[° 1) ®
A, ® M 4(C) @ Mpe if and only if the set of prime factors of cd is a subset of
the set of prime factors of p.

Theorem 4.1. Let Sf,d be a spherical non-commutative torus defined as before.
Then SS* ® Mpe s isomorphic to CI°S? < IT° 8*) ® Ay, ® Mca(C) ® Mpee if
and only if the set of prime factors of cd is a subset of the set of prime factors
of p.

Proof. Assume that the set of prime factors of ed is a subset of the set of prime
factors of p. To show that SS%® Mye is isomorphic to CII°S2xIT°SH®A,®
M4(C)® My, it is enough to show that Sf,d®M(cd)oo is isomorphic to C([]° S? x
1" SY)Y® A, @ Mou(C) & M(cay- But there exist the C*-algebra homomorphisms
which are the canonical inclusions S5 & Mca)s(C) — CII*S2xII"SH®A4,®
M_4(C) ® Micqy6(C) and the C(IT° 5% x [T° %) ® A,-module maps C(I]*S? x
I’'shieA,@ f'.-f[,_.e“,q((C) — S;,“" ® Mca)o (C):

s¢t - o] 82 x [[ 1) ® 4, ® Mea(C) — S @ Mea(C)

— (] $* x [15Y @ A4 ® Meay2(C) = ... .
The inductive limit of the odd terms
SN Szd ® M(cd)g ((C) — Sf,d & M(cd)g+1 (C) =

is §¢4 ® Mgy, and the inductive limit of the even terms
o (cd)

- c([I52=<]] ") ®Ar®M(cs(C) — c(JT8* <1 5")®A4s®M(eao+:(C) =
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is C([1° 82 x [1° §*) ® A, ® M(c4y. Thus by the Elliott theorem [7, Theorem
2.1], Szd ® M(c4y is isomorphic to C(J]°S? x [1°S") ® A, ® Mgy
Conversely, assume that

Set @ Mpee = C(J[S* x [[S) ® Ap ® Mea(C) ® Mpoo

Then the unit 1S2d ® 1p1,00 maps to the unit 1C(He s2x[]° s1)@A, @ 1My ® Ieq.
So

[182d ® 1MP°°] e [1C(HE SzXHS SH®A, ® 1Mp°° ® ICd]

[1Sgd ® 1Mpoo] - [1Sgd] ® [1Mpoo]

[10(]'[e s2x[[° sh @4, ® 1atyoo @ Led]

= Cd([lc(ne Sle_[s Sl)®Ap] ® []-Mpoo])'

Under the assumption that the unit 1Sgd ® 1M, maps to the unit

Lo([Te 2 TT° s9ye4, © 1My ® Lea,

if there is a prime factor ¢ of cd such that g { p, then [1a7,..] # gleco] for e a
projection in Mpe. So there is a projection e € SCd such that [].Scd] = g[e]. This
contradicts Theorem 3.2. Thus the set of prime factors of cd is a subset of the
set of prime factors of p.

Therefore, S¢*® Mpeo is isomorphic to C(J]* S?xT° 51)® 4,8 Mc4(C)® Mpes
if and only if the set of prime factors of cd is a subset of the set of prime factors
of p. n

In particular, Sf,d ® M, has the trivial bundle structure if the set of prime
factors of cd is a subset of the set of prime factors of p.

Let us study the tensor products of spherical non-commutative tori with
(even) Cuntz algebras.

The Cuntz algebra O,,2 < u < oo, is the universal C*-algebra generated
by u isometries s1, ..., 8y, i€, sjs; =1 for all j, with the relation sys7 + -+ +
susi = 1. Cuntz [4,5] proved that O, is simple and the K-theory of O, is
Ko(0y,) = Z/(u—1)Z and K1(0O,) = 0. He proved that Ko(O,) is generated by
the class of the unit.

Proposition 4.2. Let Szd be a spherical non-commutative torus with fibres
Pg ® M.(C) for cd a positive integer greater than 1. Let u be a positive integer

such that cd and uw—1 are not relatively prime. Then O, ®S§d 15 not isomorphic
to O, @ C(IT° 92 x [T° SY) @ 4, ® Mc4(C).

Proof. Let p be a prime such that p | ed and p | w — 1. Suppose that O, ® S“d
isomorphic to O, ® C([T°5? x [I° 8%) ® A, ® Mca(C). Then the unit Lo, gges

maps to the unit Lo,ecI s*<[]° shea, ® ch So

Lo.ssy] = Mo,eo([Te s2x[T* sty@a, © Ledl = cdllo,go([T° s2x]T* 51104,
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Hence there is a projection e in Oy ® Sf,d such that [].ou@Sgd] = cdle]. But
[lo,ess] = [Lo.]® [1sca] and [1o,] is a generator of Ko(Oy) = Z/(u —1)Z (see
[5]). But p | u— 1. [lo,] # ple] for e. a projection in Oy. So [lgea] = ple] for
e’ a projection in Sf,d. This contradicts Theorem 3.2. Hence ¢d and u — 1 are
relatively prime.

Therefore, 0, ®S¢ is not isomorphic to O,®C([1° 2 x]]° §1)® 4,® Mca(C)
if ed and u — 1 are not relatively prime. ]

The following result is useful to understand the bundle structure of O, ®Sf,d.

Proposition 4.3 [12, Theorem 7.2]. Let A and B be unital simple inductive
limits of even Cuntz algebras. If a : Ko(A) — Ko(B) is an isomorphism of
abelian groups satisfying a([La]) = [LB], then there is an isomorphism ¢ : A — B
which induces a.

Corollary 4.4.

(1) Let p be an odd integer such that p and 2u — 1 are relatively prime. Then
Ogy is isomorphic to Ou_1)pt1 ® Mpeo. That is, Og, is isomorphic to
O2u ® M o0 .

(2) Ogy is isomorphic to Oy ® Myy>.

Theorem 4.5. Let Szd be a spherical non-commutative torus with fibres P,f ®
M,(C). Then O3, ®SS? is isomorphic to O2, ® C(]° §* x [1° §*) ® A, ® Ma(C)
if and only if cd and 2u — 1 are relatively prime.

Proof. Assume that cd and 2u — 1 are relatively prime. Let c¢d = p2¥ for some
odd integer p. Then p and 2u — 1 are relatively prime. Then by Corollary 4.4
Oqy is isomorphic to Oz, ® Mpe, and O, is isomorphic to Oz, ® Mgy =
O2y ® M(gyy @ M(gvyee = Ogy ® Mgvyo. So Oy, is isomorphic to Oz, @ My ®
Mgvyeo = Ogy ® M(cqye. Thus by Theorem 4.1 Oy ® Sf,d is isomorphic to
O2u @ Mgy ® Sf,d, which in turn is isomorphic to Oy ® Mgy ® C([1° 82 x
[1°S!) ® Ay ® M.q(C). Thus Oz ® S is isomorphic to Oy @ C([]*S5? x
IT°SY) @ Ay ® Mea(C).

The converse was proved in Proposition 4.2.

Therefore, Oz, ®S:? is isomorphic to O, @ C(I]* S* < [[° §') @ 4, ® M.4(C)
if and only if ¢d and 2u — 1 are relatively prime. n

Cuntz [5] computed the K-theory of the generalized Cuntz algebra O, gen-
erated by a sequence of isometries with mutually orthogonal ranges, Ko(Ou) =

Z and K1(Os) = 0. He proved that Ko(O) is generated by the class of the
unit.

Proposition 4.6. Let Sf,d be a spherical non-commutative torus with fibres
P2 ® M(C). Then O ® S is not isomorphic to Os ® C([1° S x [1° 8") ®
A, @ M4(C) ifed > 1.

Proof. Suppose O ®S: is isomorphic to Qoo ® C(T]* S [T° S1)® A,® Mca(C).
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The unit lo,, @see maps to the unit 1OW®C(H"‘ s2x[[° sHe4, ® I.q. By the same
trick as in the proof of Proposition 4.2, one can show that [1ow®szd] = cdle] for
a projection e € 0o ® SE°. [lo.es:0] = [lo..] ®[1sce] and (1o, ] is a primitive
element of Ko(Ox) = Z (see [5]). So [lsc] = cdle’] for a projection €’ € See.
This contradicts Theorem 3.2.

Therefore, 0o ® S is not isomorphic to Ose ® C(II° 8% x [I° S*) ® 4, ®
Mc ((C) ||
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