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Abstract. Let V be a variety of groups defined by the set of laws V. In this paper,
we give a necessary and sufficient condition for a marginal extension to be irreducible
and primitive, with respect to a given variety V. It is also shown the existence of
V-marginal irreducible extension and a V-covering group of a given V-perfect gtonpl .

l. Introduction and Preliminaries

Let F- be the free group freely generated by a countable set X : {rt,rz,. . .},
and V a non-empty subset of F-. Let 7 be a variety of groups defined by the set
of laws V. There exist two important subgroups associated with a given group
G and a variety V, as follows:

V ( G )  :  ( r ( g t , . . . ,  9 , ) l  h  e  G , I  <  i  <  r , u  e  V ) ,

V .  ( G )  :  { a  €  G  l r ( g t ,  . . .  )  g i a j . . .  , 9 , )  :  u ( g t ,  .  .  .  , 9 , ) ,  h  €  G , l  <  i  <  r , u  €  V } ,

which are called the uerbal subgroup andthe marg'inal subgroup of G with respect
to the variety V, respectively. See [8] for more information regarding varieties of
groups.

Let V be a variety of groups defined by the set of laws V, and let G be a
group with a free presentation

I ------+ R -----+ F ------ G - I,
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where f is a free group. Then the Baer-'inuariant of G, denoted by VM(G), is
defi.ned to be (see also 13] or [ ])

lRV.Fl

where IRV*FI is the subgroup of F generated by the following set:

{ u ( * r , . . . , f r i r , . . . , r " ) u ( r 1 , . . . , r " ) - 7  l r , ;  e  F , r  €  R , u  € V , I  <  i ,  <  n } .

One can check that IRV- Fl is the least normal subgroup T of F contained
in R such that RIT e V.@l:D.

Note that the Baer-invariant of G is always abelian and independent of the
choice of the free presentation of G (see [3]). In particular, if V is the variety of
abelian or nilpotent groups of class at most c(c > I), then the Baer-invariant
of the group G will be (Rn F')llR,F], which by I. Schur [9] is isomorphic to
ttre Schur-mult ' ipl ' icator of G, or (Rayq(F))l lR,cFl (F' is repeated c times),
respectively (see [2,  ]).

Theex tens ione :  1 - - - - - -+  l [  -  H  +G - -+  l  i s sa id tobeV-marg , i na l
ertens'ion of the group N by G with respect to the variety y, if N gV-(H).

In particular,if V is the variety of abelian or nilpotent groups of class at most
c, then the extension e is called a central ertens'ion or N"-marginal ertension,
respectively.

C lea r l yes :  |  - - - - - -V * (H )  -  H  - - - - -+  H IV* (H)  . - - -+  l i sa lwaysaV-
marginal extension. Let 1 -----+ R ----+ F --+ G ------+ l be a free presentation of a
group G, then

l R F- F t  n - F r ^ - G - |
is a V-marginal extension, which is called freeV-marg'inal ertens'ion, see [6,7] for
more investigations.

Definition L.L. LetV be a uariety of groups defined by the set of laws V and let
e : I ------+ -Ay' -----+ H -----+ G -----+ 1 be aV-marg'inal ertens'ion of N by a finite group
G. Then the ertension e is calledV-i,rreduci'ble, if there'is no proper subgroup
K  o f  H  s u c h t h a t H : N K .  I f  i , n a d d i , t i , o n l V ( H ) n l / l  : l V M ( G ) l , t h e n e ' i s

called a V -primitiue extens'ion.

We have the following useful lemma.

Lemma 1.2. Let I ------+ R ---+ F ----+ G ----+ I be a free presentat'ion of a
group G andl -----+ 1+ B -!- Q + 1 be a))-marg'inal ertens'ion of a group
C. If a : G + C 'is a homomorph'ism, then there enists a homomorph'ism

B: FIIRV-F) - B such that the followi,ng d'iagram'is commutat'iae

1'---- tr t f ;n_'drn-G-I
I l 3 t  I B  J o

1 ------+ A ----+ B -!- C ----- 1,
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where Bf is the restri,cti'on of B to RllRV.Fl'

Proof. Due to the freeness of F, there is a homomorphism f : F -+ B such

that the following diagram is commutative:

F ----- G

I f  J o
B ----, C

Consequently, / maps the group R into kerzr' Now if

w  :  u ( r t , . . . ,  x i r , ' . . ,  r " ) u ( r 1 " " , r " ) - L

is a generator of IRV*F], where u eV, r e R, ri € F and 1 ( ti ( s' then we

have

f  ( r )  : ,  ( f  ( r  ) ,  . . . ,  f  ( ,  o )  f  ( r ) ,  . . . ,  f  ( ,  
" ) ) '  

(  f  ( " ) ,  " ' ,  f  ( '  
" ) ) - ' '

clearly, f (r) e A:kerr. But ,4 is a V-marginal subgroup of B, which implies

that

u ( f  ( n ) , . . . ,  f  ( r . r ) f  ( r ) , . . ' ,  f  ( * " ) ) , ( " f  ( " t ) ,  " ' ,  / ( , " ) ) - t  :  1 '

Thus, / maps any word of lRV"Fl into 1. consequently,lRVlFl is contained

in the kernel of /. Now, / induces a homomorphism B t 
ffirn 

------+ B such

that the following diagram is commutative

r -- d;n--,drn......+ Q --..+ r
I A  I P  l a

1 - - r  A  - - - +  B  _ _ - C - I ,

where B1 is the restriction of B. This completes the proof of the lemma. I

An exact sequence 1 -- ly' -- H --+ G -. t is said to be a V-stem couer of

G, if t/ qv(H)ny.(1/) and N =vM(G). Note that this isomorphism is the

restriction of B tovM(G).In this case.[1 is called av-couering group of G. It

is clear that in finite case fI is a V-covering group of G, if and only if the exact

sequence e is V-primitive and lHl: lGllVM(C)l'
The following lemma is also useful in our further investigations.

Lemma L.3. LetV be a uariety of groups and G a group with a normal subgroup

N contained i,n V- (G). Then the sequence

vM(G) --VM(2) ------V(G\rlly' -----+ I
/ v '

is eract.

Proof. Assume that G o Ff R, where -F is a free group and N :TlR, for some

suitable normal subgroup T of. F. since l[ e v-(G), then by the property of
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ITV* Fl, we have lfv" Fl c E. The inclusion maps -R tl V @) l' T )V (F) and,

1: aV(F) -l- f aV@)R induce the sequence of homomorphisms

R . V ( F )  f .  : f  . v ( F )  g .  T  1 V ( F ) R  1-W{-...+T*{

Owing to the modular law, (TaV(F)R) : (?nV(F))R, and so 9* is surjective'

Clearly
Rav(F)_ :  Imf* ,Kerg - 
w;t

that is the above sequence is exact. Finally the domain and codomain of /* are

the groups VM(G) andVM(GlN), respectively, and

v(G)n  r / :  (v (F)R lR) . (1 : lR) :  (7  n  v (F)R) lR '

Thus the assertion follows. r

Keeping the above notation we have the following

Lemma L.4. Let

I R F '- f r 1 -  v i v . F l - G - r
be a free V -marginal extension of a finite group G, and I - N + H ------+

G -----+ I be any v -irreduci,ble ertension of G. Then H is a homomorph'ic 'image

of FIIRV-FI, in such a way that there eu'ists a normal subgroup SIIRV-Fl of

RIIRV- Fl such that

H = ll,!4_Y. !1, and Ar = 4_1,!!Y. {:! .:  -s11nv.p) '  ' ' ' *  "  -  
sl lRV.F)'

Proof. By Lemma 1.2, the following diagram commutes

,....-,drn- drn..-+ G'-..+ |
I l t  I B  I i

1 ------+ // ------+ H -- G ' 1,

a n d s o w e h a v e N B ( I F I I R V . F D : n ' B y t h e a s s u m p t i o n f / i s V - i r r e d u c i b l e '
so B@llRV-F]) : H. By the commutativity of the above diagram we have

ker B' c n 1 1av; 4. Pfi S I IRV. Fl : ker A, then fr e (F I lRV" FD I 6 I llv. Fl)

and so we have

^, - RllRv.Fl
t \  :  s l4u*P1'

2. V-Irreducible Extensions

In this section we give some properties of V-marginal extensions and their con-

nections with the Baer-invariants of a group. A necessary and sufficient condition
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is given for a )-marginal extension to be V-irreducible. Also the connection of
such extensions with )-perfect groups will be discussed.

tet 1.+ R------+ F -------+ G ----+ 1be afreepresentationof afinite group G,
where F is a,finitely generated free group. Let e: 1 ------+ ly' ------+ H ------+ G ------+ I
be a )-irreducible extension. By Lemma 1.4, there exists a normal subgroup

. q - t r

Wil,q 
of 

,i-q 
such that

( - -
lRV.F l ._  lRV.F l '

and 
rylRv. Fl ,iffi6=w

Clearly, if ,9 is a normal subgroup of F such that IRV- F] c ^9 c R, then

t * * - - - - - - : - G - - - - - - r
J J

is a V-marginal extension of G, but it is not necessarily V-irreducible.
In the following we give a necessary and sufficient condition for the above

extension to be V-irreducible.

Theorem 2.L By the aboue notation and assumptionthe V-marginal extension
| ------+ R/S -----+ FIS ------+ G ------+ l,isV-i,rreducible i,f and only i,f euery matimal
subgroup of F, which conta,ins SV(F) also contains R.

Proof. The sufficient condition is equivalent to saying that a maximal sub-
group T/[.RV*Fl of FllRV.F], with TIIRV-FI I SV(F)llRv*f'1, contains
RllRV. Fl. Clearly

sv(F) / s
lRV .F l ' lRV .F l

is the verbal subgroup ot (F llRV- Fl) l6llRV. Fl) = fI. This is also equivalent
to the fact that every maximal subgroup M of H with M )_V(H) contains N.

Now,assumethat 1 ------ Rl S ---- FIS ------+ G ------+ l isnotV-irreducible,then
there ex is ts  aproper subgroup K of  H suchthat  KN: f I .  S ince N CV.(H)
and  by  f 1 ,  Theo rem 2 .41V(H) :V (K ) [NV*H) :V (K )  wehaveV(H)  c  K ,
but fI and hence H lK is finitely generated and so fI has a maximal subgroup
M say, which contains 1{. Clearly V@) e M,b:ut M does not contain.ly',
which gives a contradiction. This proves the "if' part of the theorem.

Conversely, if there exists a maximal subgroup M of H with V(H) C M and
N g M , then II : M N and hence fI is not V-irreducible. r

Now we have the followins useful lemma.

Lemma 2.2. Let e: I -----+ N ------+ H -!- G ----+ | be aV-primttr,ue marg,inal
ertens'ion oi a fini,te group G. Then using the notat'ion of LemmaI.2, the map
B 'induces the followi,ng ,isomorph'isms:

( i )  v (H) .N  =_vM(G) ;

R,S



44 M. R. R. Moghadd'am, A. R. Salemkar, and' A. Gholarr,i

(ii) V (H) - V (F)S I S, for some noryrual subgroup S of F .

Proof.
(i) Bv the definition of primitivity of e and using Lemma 1.3, we conclude

that V(H) n.^{ = VM(G).
(ii) Let F be the free group freely generated by the set X and let r : F + G

be an epimorphism with iR: kerzr. Clearly, for each r e X there exists h, € H
such that Q(h") :z-(r) .  Now, put K :  (h" € H; r  €X) we obtain H :  NK.
But as the extension e is V-irreducible, it implies that .FI : K. Now, consider

$ : F --+ fI given bv rb@) : h,, for a\l r €X. Then Ty' is an epimorphism such
that r : 6 " tb. Clearly ,b@) e l[, and hence

th{RV- Fl) c 1!'}(R)V. Hl c ['^'/v.fI] : 1'

Thus ry' ind,uces a homomorphism r/ from FIIRV*F] onto fI, with ket{ :

S llRV. Fl, say. This implies that

u =  F  /  s
' -  -  

lRv.Fl ' lRV.Fl

and so V(H) - (V(F)SllRV. FDl6llRv.f']), which gives the required asser-

tion. I

A group G is said to be V-perfecf with respect to the variety V , if G : V (G).

See [5] for more discussion on this concept.
Let }/ be a variety of groups, and G a V-perfect group' then clearly every

V-covering group of G is also V-perfect.
Now we are in a position to prove our main results.

Proposition 2.3. LetV be a uariety of groups, and G aV-perfect group. If

e: ! ------+ ly' ------+ H ------+ G ------+7 is aV-marg'inal ertension, then 1-----+ Iy'O

V(H) ------. V(H) ------ G ------+ | 'is aV-'irreduci'ble marg'inal ertension.

Proof. Since G is V-perfect, we have

G =v (H lN) :  NV(H) IN

and hence NV(H):11. This implies that

v ( H )  _ H  _ n
N  O V @

and so V(H) is an extension of G. This extension is V-marginal, since fI :

NV(H) impl ies V.(H) :  V.(V(H)) lNy.Hl .  Hence l ' /  n  v(H) I  V.(V(H)) .

Now if M is a subgroup ot V(H) such that M(N nV(H)) : V(H), then fI :

NV (H) : N M, and since N c V. (H), M contains V(11) and hence M : V (H).

This gives the irreducibility of V(H)
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Theorem 2.4. LetV be a uariety of groups, and G aY-perfect group w'ith a free
presentat' ion7 ------+ R ------+ F ------+ G + 7, thenV(F)IIRV-F)'is al-couering
group of G.

Proof. See 16, Theorem 3.1].

Finally, using the above theorem we have the following result

Theorem 2.5. LetG be a finiteV-perfect group, and' e: 1 --- ly' ------+ H '-----+

G ------+ ! be aV-merg'inal entensi'on of G. Then
(1) The ertens'ion e 'is Y-'irreduci'ble i'f and only i'f H i's l-perfect.

( i i )  Theertensionei ,sV-pr imi , t i ,ue i f  andonly i ' f  H i 'saV-couer inggroupof  G.

Proof.
(i) If e is'P-irreducible, then I/ is V-perfect, since H: NV(H). Conversely,

1f H: V(fI) then the extension e is V-irreducible by Proposition 2.3.
(ii) If e is V-primitive, then it is V-irreducible by Definition 1.1, and 11 :

V(H) by part (i). Now by Lemma 2.2, V(H) n N ^r VM(G), thus lf l l  :

lcllv M (G) . Hence .F/ is a V-covering group of G. The converse clearly holds,
since every V-covering group of G is V-primitive.
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