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Abstract. Let V be a variety of groups defined by the set of laws V. In this paper,
we give a necessary and sufficient condition for a marginal extension to be irreducible
and primitive, with respect to a given variety V. It is also shown the existence of
V-marginal irreducible extension and a V-covering group of a given V-perfect groupl.

1. Introduction and Preliminaries

Let F be the free group freely generated by a countable set X = {x1,zo,...},
and V a non-empty subset of Fo,. Let V be a variety of groups defined by the set
of laws V. There exist two important subgroups associated with a given group
G and a variety V, as follows:

V(@)= (g, ... ,9-) |8 €G1<i<rveV),
VHG)={aeGlvig, - 9i0 ., 9:) =¥(91,-- ,9r), i € G, 1 <i<mv eV},

which are called the verbal subgroup and the marginal subgroup of G with respect
to the variety V), respectively. See [8] for more information regarding varieties of
groups.

Let V be a variety of groups defined by the set of laws V| and let G be a
group with a free presentation

l1—R—F—G—1,
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where F is a free group. Then the Baer-invariant of G, denoted by VM (QG), is
defined to be (see also [3] or [4])

RNV(F)
[RV-F]
where [RV*F] is the subgroup of F' generated by the following set:

{v(x1, ..., z57, ...,z v(2y, ..., xs) |2 € F,r € Ry eV, 1< i <n}.

One can check that [RV*F] is the least normal subgroup T of F contained
in R such that R/T C V*(F/T).

Note that the Baer-invariant of G is always abelian and independent of the
choice of the free presentation of G (see [3]). In particular, if V is the variety of
abelian or nilpotent groups of class at most c(¢ > 1), then the Baer-invariant
of the group G will be (RN F')/[R, F], which by 1. Schur [9] is isomorphic to
the Schur-multiplicator of G, or (RN ~yet+1(F))/[R,cF] (F is repeated c¢ times),
respectively (see [2,4]).

The extension e : 1 — N — H — G — 1 is said to be V-marginal
extension of the group N by G with respect to the variety V, if N C V*(H).
In particular, if V is the variety of abelian or nilpotent groups of class at most
¢, then the extension e is called a central extension or N.-marginal extension,
respectively.

Clearly ey : 1 — V*(H) — H — H/V*(H) — 1 is always a V-
marginal extension. Let 1 — R — F — G — 1be a free presentation of a
group G, then

R F
—_—
[RV*F) [RV*F|

is a V-marginal extension, which is called free V-marginal extension, see [6,7] for
more investigations.

1— — G —1

Definition 1.1. Let V be a variety of groups defined by the set of laws V' and let
e:1— N — H— G — 1 be aV-marginal extension of N by a finite group
G. Then the extension e is called V-irreducible, if there is no proper subgroup
K of H such that H = NK. If in addition |V(H) N N| = |[VM(G)|, then e is
called a V-primitive extension.

We have the following useful lemma.

Lemma 1.2. Let1l — R — F — G — 1 be a free presentation of a
group G and1 — A — B = C — 1 be a V-marginal extension of a group
C. Ifa : G — C is a homomorphism, then there exists a homomorphism
B : F/[RV*F] — B such that the following diagram is commutative

R F
'—mrm —men ¢!
e 1B | a

1— A — B 0 -—1
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where B is the restriction of B to R/[RV*F i

Proof. Due to the freeness of F, there is a homomorphism f : F — B such
that the following diagram is commutative:

F — G

Jf 1R e
B — C

Consequently, f maps the group R into ker m. Now if
A=ty (. g, T o, ) Dy ,T5) L

is a generator of [RV*F], where v € V, 7 € R, z; € F and 1 < i < s, then we
have

Fw) = v(f(@1), ., f@)F (), f@)V(f (@), oons flms))

Clearly, f(r) € A = kern. But A is a V-marginal subgroup of B, which implies
that

V(F(@1)s s F@) )o@ F (1), s F(@0)F = 1.
Thus, f maps any word of [RV*F] into 1. Consequently, [RV*F] is contained
in the kernel of f. Now, f induces a homomorphism £ : WVTT — B such
that the following diagram is commutative
R F

\ = w/v-E — VA C=1
el 18 la

1— A — B — C — 1,

where (3, is the restriction of 3. This completes the proof of the lemma. n

An exact sequence 1 — N — H — G — 1 is said to be a V-stem cover of
G, if N C V(H)\V*(H) and N = VM(G). Note that this isomorphism is the
restriction of 3 to VM (G). In this case H is called a V-covering group of G. It
is clear that in finite case H is a V-covering group of G, if and only if the exact
sequence e is V-primitive and |H| = |G||VM(G)|.

The following lemma is also useful in our further investigations.

Lemma 1.3. Let V be a variety of groups and G a group with a normal subgroup
N contained in V*(G). Then the sequence

VM(G) — VM(%) L V(EINN —1

18 exact.

Proof. Assume that G = F/R, where F is a free group and N = T/R, for some
suitable normal subgroup T of F. Since N C V*(G), then by the property of
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[TV*F], we have [TV*F] C R. The inclusion maps RNV (F) el TNV (F) and
TNV(F) - TnV(F)R induce the sequence of homomorphisms
RNV(F) s~ TNV(F) ¢ TNV(F)R
— BN
[RV*F| [TV*F) R
Owing to the modular law, (TNV(F)R) = (T'NV(F))R, and so g* is surjective.
Clearly

— 1.

RNV(F)
[TV*F]

that is the above sequence is exact. Finally the domain and codomain of f* are
the groups VM (G) and VM (G/N), respectively, and

V(G)NN = (V(F)R/R)n (T/R) = (T NV(F)R)/R.

kerg® = =Imf*,

Thus the assertion follows. [ ]
Keeping the above notation we have the following

Lemma 1.4. Let
R F
— —_—
[RV*F] [RV*F]

be a free V-marginal estension of a finite group G, and 1 — N — H —
G — 1 be any V-irreducible extension of G. Then H is a homomorphic image
of F/[RV*F), in such a way that there exists a normal subgroup S/[RV*F] of
R/[RV*F] such that

G—1

1—

F/|RV*F)] R/[RV*F]
Hx= d N& ———.
S/RV*F)> " S/[RV*F]
Proof. By Lemma 1.2, the following diagram commutes
R F
— — — G —1
' = mver — RV'F
L B L8 L1

1— N — H — G —1,

and so we have NB(F/[RV*F]) = H. By the assumption H is V-irreducible,
so B(F/[RV*F]) = H. By the commutativity of the above diagram we have
ker 8 C R/[RV*F). Put §/[RV*F] = ker 3, then H = (F/[RV*F])/(S/[RV"F)
and so we have

R/[RV*F]

S/[RV*F)

R

N

2. V-Irreducible Extensions

In this section we give some properties of V-marginal extensions and their con-
nections with the Baer-invariants of a group. A necessary and sufficient condition
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is given for a V-marginal extension to be V-irreducible. Also the connection of
such extensions with V-perfect groups will be discussed.

Let 1 — R — F — G — 1 be a free presentation of a finite group G,
where F' is a-finitely generated free group. Lete: 1 —- N — H — G — 1
be a’ V-irreducible extension. By Lemma 1.4, there exists a normal subgroup

[RI§*F] of l such that
s R F/[RV*F]
[RV*F| ~ [RV-F|’ S/[RV*F|

F
[RV'F
~ H

and "
R/[RV*F)] ~ N

S/[RV*F]
Clearly, if S is a normal subgroup of F' such that [RV*F] C S C R, then
R F

1 - — = —G—1
ST S
is a V-marginal extension of G, but it is not necessarily V-irreducible.
In the following we give a necessary and sufficient condition for the above

extension to be V-irreducible.

Theorem 2.1 By the above notation and assumption the V-marginal extension
1— R/S — F/S — G — 1 is V-irreducible if and only if every mazimal
subgroup of F', which contains SV (F) also contains R.

Proof. The sufficient condition is equivalent to saying that a maximal sub-
group T/[RV*F] of F/[RV*F], with T/[RV*F| > SV(F)/[RV*F], contains
R/[RV*F]. Clearly

SV(F) S

[RV*F] / [RV*F|

is the verbal subgroup of (F/[RV*F])/(S/[RV*F]) = H. This is also equivalent
to the fact that every maximal subgroup M of H with M O V(H) contains N.
Now, assume that 1 — R/S — F/S — G — 1is not V-irreducible, then
there exists a proper subgroup K of H such that KN = H. Since N C V*(H)
and by [1, Theorem 2.4] V(H) = V(K)[NV*H] = V(K) we have V(H) C K,
but H and hence H/K is finitely generated and so H has a maximal subgroup
M say, which contains K. Clearly V(H) C M, but M does not contain N,
which gives a contradiction. This proves the “if” part of the theorem.
Conversely, if there exists a maximal subgroup M of H with V(H) C M and
N Z M, then H= MN and hence H is not V-irreducible. ™

Now we have the following useful lemma.

Lemma 2.2. Lete: 1 — N — H 25 G — 1 be a V-primitive marginal
extension of a finite group G. Then using the notation of Lemma 1.2, the map
B induces the following isomorphisms:

(i) V(H)NN==VM(G);
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(ii) V(H)=V(F)S/S, for some normal subgroup S of F'.

Proof.

(i) By the definition of primitivity of e and using Lemma 1.3, we conclude
that V(HYN N 2 VM(G).

(ii) Let F be the free group freely generated by the set X andlet 7: F' — G
be an epimorphism with R = ker 7. Clearly, for each z € X there exists h, € H
such that ¢(h;) = n(x). Now, put K = (h; € H; z € X) we obtain H = NK.
But as the extension e is V-irreducible, it implies that H = K. Now, consider
Y : F — H given by () = hy, for all z € X. Then ¢ is an epimorphism such
that 7 = ¢ o 4. Clearly ¥(R) C N, and hence

Y([RV*F]) € [Y(R)V"H] C [NV'H| = L.

Thus ¢ induces a homomorphism ¢ from F/[RV*F] onto H, with kery) =
S/[RV*F], say. This implies that

F S

H & o F mver

1%

and so V(H) & (V(F)S/[RV*F))/(S/[RV*F]), which gives the required asser-
tion. =

A group G is said to be V-perfect with respect to the variety V, if G = V(G).
See [5] for more discussion on this concept.

Let V be a variety of groups, and G a V-perfect group, then clearly every
V-covering group of G is also V-perfect.

Now we are in a position to prove our main results.

Proposition 2.3. Let V be a variety of groups, and G a V-perfect group. If
e: 1 — N — H— G — 1 1is aV-marginal extension, then 1 — N N
V(H) — V(H) — G — 1 is a V-irreducible marginal extension.

Proof. Since G is V-perfect, we have
G =V(H/N)=NV(H)/N
and hence NV (H) = H. This implies that

VH) H_ a
NNV(H) N
and so V(H) is an extension of G. This extension is V-marginal, since H =
NV (H) implies V*(H) = V*(V(H))[NV*H]. Hence N NV (H) C V*(V(H)).
Now if M is a subgroup of V(H) such that M(N NV (H)) = V(H), then H =
NV(H) = NM,and since N C V*(H), M contains V(H) and hence M = V(H).
This gives the irreducibility of V(H).
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Theorem 2.4. Let V be a variety of groups, and G a V-perfect group with a free
presentation | — R — F — G — 1, then V(F)/[RV*F] is a V-covering
group of G.

Proof. See [6, Theorem 3.1].
Finally, using the above theorem we have the following result

Theorem 2.5. Let G be a finite V-perfect group, ande: 1 — N — H —
G — 1 be a V-marginal extension of G. Then

(i) The extension e is V-irreducible if and only of H is V-perfect.

(ii) The extension e is V-primitive if and only if H is a V-covering group of G.

Proof.

(i) If e is V-irreducible, then H is V-perfect, since H = NV (H). Conversely,
if H =V (H) then the extension e is V-irreducible by Proposition 2.3.

(ii) If e is V-primitive, then it is V-irreducible by Definition 1.1, and H =
V(H) by part (i). Now by Lemma 2.2, V(H) N N = VM(G), thus |H| =
|G||VM(G)|. Hence H is a V-covering group of G. The converse clearly holds,
since every V-covering group of G is V-primitive.
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