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Abstract. In 1978, S. Brown proved that each subnormal operator has an invariant
subspace. In 1981, C. Apostol obtained an invariant subspace theorem on uncondi-
tionally decomposable operators. In this paper, we prove the Mohebi-Radjabalipour
Conjecture under an additional condition, and obtain an invariant subspace theorem
on subdecomposable operators. Our theorem contains the results of S. Brown and C.
Apostol as special cases.

1. Introduction

In [11], Mohebi and Radjabalipour raised the following conjecture.

THE MOHEBI-RADJABALIPOUR CONJECTURE (see [11, p.236]). As-
sume the operators T € B(X) and B € B(Z) on Banach spaces X and Z,
and the nonempty open set G in the complex plane C, satisfy the following
conditions:

(1) ¢T = Bq for some injective ¢ € B(X, Z) with a closed range ¢X.

(2) There exist sequences {G(n)} of open sets and {M(n)} of invariant sub-
spaces of B such that G(n) C G(n+ 1), G = U,G(n), o(B|M(n)) C C\G(n)
and o(B/M(n)) C G(n), n=1,2,....

(3) o(T) is dominating in G.

Then T has a (non-trivial) invariant subspace.
It is easy to see that the Mohebi-Radjabalipour Conjecture, if true, will
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contain the main results of [1,2,4,5,7,8,10, 11] (and others) as special cases.

In the present article, using the §.Brown Technique, we prove the Mohebi-
Radjabalipour Conjecture under an additional condition, and obtain an invariant
subspace theorem on subdecomposable operators. Our theorem contains the
main results of [2,4] as special cases.

2. Preliminaries

First we recall some basic notations and facts, and give some lemmas.

We denote by H>(G) the Banach algebra of all bounded analytic functions
on G equipped with the norm || f|| = sup{|f(N)], X € G}. It is well known that
H®>(G) is a w*-closed subspace of L(G) relative to the duality (L1(G), L>(G))
and that a sequence {fx} in H>(G) converges to zero relative to w*-topology
if and only if it is norm-bounded and converges to zero uniformly on each com-
pact subset of G. In particular, we can identify H*(G) with the dual space
of the Banach space Q = L1(G)/(H™ (@))*. Since Q is separable, the above
characterization of w*-convergent sequences in H (@) immediately implies the
w*-continuity of all point evaluations €, : H> (@)—C, f—=f(\) (AeG).

For f € H®(G) and A € G we denote by f) the unique function in H*(G)
with (A~ p) falp) = F(A) — f(w) for all p € G. It is easy to check that for fixed
A € G the map H®(G) — H®(G), f — fx, is w"-continuous.

A subset o of C will be called dominating in G if || || = sup{|f(\)]; A € oNG}
holds for all f € H*(G).

Let E be a Banach space. Then E* denotes the dual space of E. If M is a
subspace (=closed linear manifold) of E, then E/M denotes the quotient space
of E modulo M. If M and N are subspaces of E, then we set

a(M,N) = inf{|lz —yl; ze M with ||z)| =1 and y € N}.

If M is a nonempty subset of E, then we denote by M~ the annihilator of M
and by VM the closed linear hull of M. If N is a nonempty subset of E*, then
we denote by N+ the preannihilator of N. If E and F are Banach spaces, then
B(E, F) stands for the Banach space of all continuous linear operators of E into
F. We write B(E) for B(E,E). For S € B(E), if M is a subspace of E with
SM C M, then we denote by S|M the restriction of S onto M and by S/M the
quotient operator induced by S on E /M. As usual we denote by a(9), 04(S) and
0,(S) the spectrum, the approximate point spectrum and the point spectrum of
S, respectively.

Lemma 2.1. Let Y be a Banach space. Let Yo be a finite codimensional subspace
inY. IfAe B(Y) and A € oa(A)\op(A), then there is a sequence {yn} of unit
vectors in Yy such that limp_eo(A = A)yn = 0.

Proof. Define Ay : Yo — Y by Aoy = Ay for all y in Yy. Then Ao € B(Yo,Y).
Since dim(Y/Ys) < 0o, there are a finite dimensional subspace Y7 in Y such that
ViNYy={0}and Y = Yo + Y1. Consequently

(=AY = (A= A)Yo + (A — A)Y;
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and (A — A)Y; is a finite dimensional subspace in Y. Therefore we claim (A —
Ap)Ys is not closed in Y. In fact, if (A — Ag)Yp is closed in Y, then by the
foregoing argument (A — A)Y is closed in Y. Therefore it follows from A & o,(A)
that A € o,{A), a contradiction.

Since (A — Ag)Y) is not closed in Y, it follows that there is a sequence {y,}
of unit vectors in Yy such that ||y,|| = 1 for all n and ||(A — A¢)yn| — 0, and
Lemma 2.1 is proved. [

In the rest of the present article, we shall assume that X, Z, T, B, ¢, G, G(n)
and M (n) are as in the Mohebi-Radjabalipour Conjecture except Theorem 3.2,
Lemma 3.3 and Corollary 3.4.

For any z* € M(n)! we define the functional 2*/M(n) : (Z/M(n))* — C by

(z"/M(n), z+ M(n)) = (2", z),z € Z.

It is well known that the map p : 2* — 2z*/M(n), 2* € M(n)', is an isometric
isomorphism of M (n)* onto (Z/M(n))*.

By Lemma 1.2 in [11] we have M(n)* C M(n+ 1) for n = 1,2,---. Let
M(G) = U,M(n)*. Then for every z € Z and every z* € M(G), there exists a
positive integer n such that z* € M(n)*. Noting that o(B/M(n)) c G(n) C G,
we can define a linear functional z ® z* on H*°(G) by

(z@2")(f) = (z"/M(n), F(B/M(n))(z+ M(n), feH>(G),

where f(B/M(n)) is defined by the Riesz—Dunford functional calculus with ana-
lytic functions. It is easy to verify that 2@ 2* is a w*-continuous linear functional
on H>(G) which is independent of the particular choice of n.

Set Y = ¢X. Defineqg: X — Y by gr = gz, z € X. Then g is a bounded lin-
ear operator that is bijective. Consequently the inverse operator ¢ ~! is bounded,
and BlY =gT¢ . Put A= B|Y. Then A=gTq '

Lemma 2.2. Let n be a fized positive integer. Let y € Y, z* € M(n)L be given.
Then for any € > 0 there exist two subspaces Y' C Y,Z¢ € M(n)L such that
dim(Y/Y') < oo, dim(M(n)*/Zy) < 0o, Z% is w*-closed and

ly' @ 2| <ellyll, ¥ €Y,

ly ® zl < ellzgll, 2 € Z5.

The proof of Lemma 2.2 is completely similar to that of Lemma 2.2 in [2].

3. Main Results

Theorem 3.1. Assume the operators T € B(X) and B € B(Z) on Banach
spaces X and Z, and the nonempty open set G in C, satisfy conditions (1),
(2) and (3) in the Mohebi-Radjabalipour Congecture and the following additional
condition:
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(4) There exists a constant a,,, depending only on T, such that for each posi-
tive integer n, and for any finite dimensional subspace M(e) = V{yk(e); yrle) €
Y, lux(e)|| = 1, and ‘there is a px € o(A) N [G\G(n)] with ||(ux — B)yx(e)|| <
e. k= 1.,2.....r, where r is a positive integral}, € > 0, as well as for any w*-
closed subspace Zg§ in Lemma 2.2 with dim(ﬁ'f(n')'l'/zg} < oo, the inequality
llyll < ally+ 2| holds for all y € M(e),z € (Z3)*.

Then T has an invariant subspace.

Proof. First note that it suffices to show that A has an invariant subspace, and
assume without loss of generality that o(A) = ga(4)\op(A).

We now prove that for any given u € G, there exist sequences {ym }oo_y in
Y and {z3,}5°_, in M(G) such that

*

1 . a
”ym_ym—lu < sm=2: “zm_zm—ln < m7;4’ m=12,..,
2 2
. 1
llew — ym ® 2m |l < el m=0,1,2,.... (1)

Proceeding by induction, we assume that y; and 27 have been constructed up
through j < m with yo = 0 and 25 = 0. We wish to construct ym+1 and z5, 1
satisfying (1).
Since z¥, € M(G), there exists a positive integer n{m) such that z;, €
M (n{m))*. Since ¢(T') is dominating in Gand A=GTq ' a(A) is dominating
in G. Thus by the maximum modulus principle for analytic functions, o(A4) N
[G\G(n(m))] is clearly dominating in G. It follows from Proposition 2.8 in [6]
(or Lemma 4.4 in [4]) that there exist ¢1,63,...,¢ € C and py,po, ... . py €
a(A) N [G\G(n(m))] such that
. 1 - 1
Z lex| < Fo0m-1)° llex = Ym ® 2 — Zw‘:emll S (2)
k=1 k=1
By Lemma 2.2 there exist two subspaces Y' C Y, Zi C M(n(m))' such that
dim(Y/Y") < oo, dim(M (n(m))*/Z3) < 0o, Z is w*-closed and

I A
Iy ® zmll < 3" WHT/H, y €Y’
. 1 1 2 |l
lym ® 2 ||<3—a;'22—m;§||2 I, 2* € Zg. (3)

Therefore (Z3)* D M(n(m)).

Fix a non-zero vector yh € Y’. Then by Lemma III 1.1 in [12] there exists
a finite codimensional subspace Y3 in Y’ such that a(V{yy},¥1) > 1 - 3.0 It
is plain that Y7 is a finite codimensional subspace in Y. Fix a real number
¢ > 0. Then by Lemma 2.1 there exists a vector y1 € ¥y such that llyill =1 and
(p1 — A)h]l < e, that is |[(p1 — B)yall < e Again by Lemma IIT 1.1 in [12]
there exists a finite codimensional subspace Yz in Y’ such that a(V{yo, v1}, Y2) >
1 — 1. Again by Lemma 2.1 there exists yh € Y1 MY, such that [y5]| =1 and
(2 — B)ysl < e. Continuing in this way we obtain vectors ¥}, v5, .., 4. € Y’
such that the relations
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1
”y;c“ = 17 ||(Hk - B)y;c” < E’a(v{y(l)vyllv - )y;c—l}? V{y;c, ay;-}) >1- E
hold for k = 1,2, ...,r. It is standard to deduce that the inequality

T
max{lagl; 1 <k <7} < 4> argil
k=1
holds for all a1, as, ..., ar € C and that the canonical projection of L = Vi_q ¥}
onto M = Vi_, v} has norm less or equal to 4. By the Zenger Lemma (see
[3,p-20], [9,p. 129], or [13]. If necessary, decompose ck.) there exist a bounded

linear functional [ on L and complex numbers A1, Ag, ..., Ar such that
T T T 1/2
1Y Aeuill < Z jexD)/2, Il < 403 lewl)™,
k=1 k= k=1
Ml (ys) = ck, k=1,2,...,7, l(yo)=0. (4)

Write o = I|M, where I|M denotes the restriction of [ onto M. Then ¢o € M*
and

lpoll < 40> lex)™2. ()
k=1

On the other hand, it follows from the condition (4) in Theorem 3.1 that
lz1]} < aT||z1+Z2|| for all 21 € M, z3 € (Z§)*. Define ¢(21+ 22) = wo(z1) for all
21 € M,z € (Z%)*. Then by (5) ¢ is a bounded linear functional on M +(Zo) ,
and |o|| < 4a,.(3r_; lek])*% ©((Z§)") = 0. Extend ¢ to an element v* € Z*
by the Hahn-Banach theorem. Then

o] < 4an (D lex)*/ (6)

k=1
and v* € Z3(C M(n(m))*t).

Putting v = Y, _; Ay, and noting that

|o* (i) f (1) — (0™ /M (n(m)), F(B/M(n(m)))(ys, + M(n(m))))|
= [(v* /M (n(m)), fu,(B/M(n(m)))(ex — B/M(n(m)))(yx + M(n(m))))|
< Jo* |l N fun(B/M (n(m))I| 1| (s — Bl
holds for all f € H*®(G), we deduce that the inequality

- a1
”cheuk_v®v”<§'22_m+_1 (7)
k=1

holds, if € is small enough.
Let Ymi1 = Ym +v and 25,1 = 25, +v*. Then by (2), (3), (4), (6) and (7)
we obtain

T
ms1 ® 2t = Um © 70 = S kil < 10 ® 2]l + l1gm ® 0°
k=1

-
7 1
+lv@v* - E ke || < 22mt1 (8)
k=1
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Consequently, it follows from (2), (4), (6) and (8) that

1 a
lym+1 = ymll < 5mzgs Memsn — Zmll < 53 s

1

llew — Ymt1 ® zp i1l < 22m

This completes the proof of (1).

Finally, we prove that A has an invariant subspace. In fact, it follows from (1)
that there exist y' € Y, 2* € Z* such that ¢ =limm oo Ym, 2* =limpy, oo 275,
Define y = {u— A)y’, where p is as in (1). Let Y denote the subspace generated
by (A— A)"ly,A € c(A) UG. As in [2,p. 10], we can prove y € Yy,y’ ¢ Y and
AYy C Yy. This proves Theorem 3.1. ]

From now on assume that B is an unconditionally decomposable operator
on a Banach space Z, that Y is an invariant subspace of B, and that A denotes
the restriction of B onto Y. Then by [2] it can readily be seen that the uncon-
ditionally decomposable operator B satisfies the condition (4) in Theorem 3.1,
where a,. is replaced by a,, depending only on B. Thus by Theorem 3.1 and
the properties of decomposable operators we obtain the following:

Theorem 3.2. Let A be the resiriction of an unconditionally decomposable
operator B on a Banach spaces Z. Let G be a nonempty open set in the complex
plane C such that o(A) is dominating in G. Then A has an invariant subspace.

In order to derive the main results of [2,4] from Theorem 3.2, we recall
Theorem 3 in [5].

Lemma 3.3 (|5, Theorem 3]). Let K be a compact set in the complex plane
C with the property that for all nonempty open set G in C, the set K is not
dominating in G. Then R(K) = C(K), where the symbol C(K) denotes the
space of all continuous functions on K, and R(K) denotes the closure in C(K)
of the rational functions with poles off K.

Theorem 3.2 and Lemma, 3.3 together yield immediately:
Corollary 3.4 (2, Theorem 2.7]). Let A be the restriction of an unconditionally

decomposable operator B on a Banach space Z. Let G be a simply connected set
such that R(c(A)NG) # C(oc(A) NG). Then A has an invariant subspace.

As in [2], the next corollary can follows from Corollary 3.4.

Corollary 3.5. ([4, Corollary 4.8]). Every subnormal operator has an invariant
subspace.

Remark. From the above argument it is easy to see that our main results contain
the main results of [2,4] as special cases. Moreover, from the properties of
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decomposable operators and the counterexample IL.1 in [10,p.237] it can be
seen that our main results still possesses the further value.
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