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Abstract. I'this paper, the existence of lim,-- llf 
(")llil\) for an arbitrary function

/  e C*(R) such that  f \ " )  e  (L, l ) ,  n :0,1, . . .  and the concrete calculat ion of
^ r ^ t , , 1  / n

Irmn *rc l l/t" ' l l ; ;;) are shown.

1. Introduction

Ha Huy Bang has given the following result [1]: Let 1 < p < oo and / e C-(R)
sucli that f 

( ') e tro(R), n:0,1, . . . . Then there always exists the l imit

di :,qg llf(n)llre/n,

and moreover cly : oy : sup{lf | , € e r,tppl}, where the last equality is the
definition of oy and y is the Fourier transform of the function /. This result has
been extended to any orlicz norm by techniques special for convex functions f2l.

In this paper, modifying the methods of [I,2], we prove this result for lhe
norm of (Lo,l), the amalgam of. Lo and ln on the real line IR. Note that Io(R)
is a partial case of (L*l) spaces.

2. Result

When 1 1p, q ( oo, denoteby (Le,ln) the amalgam of Lo and ln on the real
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line IR, defined by

where
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(Lo, t ) :  { /  e  t rp , ro"( rR)  ,  l l / l lo ,q l  <  * } ,

l/ll<o,qr : (,i-( l-*' lr tdv o*)n'')''n

with the usual conventions applying when p or q is infinite. with the norm as

given above, (Lo,l) is a Banach space 14, 6, 7]. The theory of amalgams (L,ln)

and their applications can be found, for example, in [3, 7].

We state our theorem:

T h e o r e m .  L e t f  b e  i n C - ( J R )  s u c h t h a t f \ 4  e  ( L o , l ) ( l < p , q 1 c r c ) , n :

0,1,... . Then there always erists the timi't d'1: I im'-- l l ft")l l l1.?l and' d'7 :

o f .

To prove the theorem, we need the following results:

Let {r1 :t e lR} be the group of translations on(Le,ln), where 4 is defined

by (4/ ) (z)  :  f  ( r  - t ) .

Lemma 2.  13,5]  Let  7 < p,q < @' I f  f  e  (Lp, I ) ,  then the map t  F+ r t f  is

conti,nuous on R.

By virtue of Lemma 1, we have

Lemma 3. If  f  € (Lr, l) then l l /(  - t) l l rp,nl < Cll f  l lo,qt, Vt € lR.

Proof of Theorem. We first observe that

l l t@lll l , i ,, < ", '  (1)

"rg5 
llf'"' lli,:,, < o r + e.

Letting 6 ---+ 0 we get (1).
Finally, we claim that

"/ < F[* llf(dlla\)' Q)

Letlt ;(r) € Cf (R), ' , l tx@) 20,l l tx(r):0 for l t l  > ) and ifu ${r)dr:1. We

put,f.x : f  *(ts. Then f i  € C-(R) ana {") :7(n) xd.r 'By virtue of Lemmas

1 - 3, we cet /.1') e (Le,ln) and fY' e r-(R). It follows from [1] that
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of^: dr^ < #n-ll/(' ' l lt1,?r.
Therefore, the problem is now reduced to proving that

l(l < lim oy^, V( e suppf.
)+0

Assume that (3) is not satisfied. Then there exist a point {6 € supp/, a number
e ) 0, and a subsequence )r (for simplicity of notation we assume that {s > 0)
such tha t  o f ^o  3€o -2e ,  l c :7 ,2 , . . . . I f  f i  conve rgesweak l y  t o  /  t hen  f i  a l so

converges weakly to /. Therefore, if we choose a function p@) € Cfl(lR.) such

that  ( / ,  g)  + 0,supprp(z)  c  [€o -6,  €o -e] ,  then 0 :  \ i * ,  p)  -  $ ,  g)  + 0,
k ---+ oo. So we arrive at a contradiction and we get (2).

To complete the proof, it remains to show that fi converges weakly to /.
Case 1:  11p,q (  oo.  Byvi r tueof  Lemma2, i t isc lear that  l l f i - / l l1p,ny -*  O

as I -- 0. So fi converges weakly to /.
Case 2: P : oo ot q : oo. We prove that fi is weakly convergent to / by

contradiction: assume that for some €0 > 0, g e (Le,,ln,) and a subsequence
t r t t 0 ,

I ll-r,^.(r) 
- r(r))s@)dnl> €o, k ) r

Then, it is known that, fi ---+ / as ) -- 0 in trp,1,"(lR). Therefore, there exists a
subsequence {k-} (for simplicity we assume thal k*: rz) such that fi*(r) --+

f ( r )  a .e.
On the other hand, as {"fr*} is a weak precompact sequence there exists a

subsequence, denoted again by {"f.rn1, and a function /* e (L,l) such that

l* ,^-(n)u(n)d.r - 
l:f.@)u(r)d', 

vrr € (Le,,tq,).

an arbitrary function in Cfl(R.), then u e (Le,ln). It follows
/(z) a.e. that

r@ f@

I  f^*(y)u(y)dy - |  f@)u(a)du, vue Cfl(R).
J - a  J - a

(3)

Let u be
f  s u @ )  -

(4)

(5)

(6)

from

Combining (5), (6) and 18,p.15], we obtain

t: f ̂ .(r)u(n)d,* .- 
l* f @)u(r)d,r

which contradicts (4). The proof of Theorem is complete.
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