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Abstract. In this paper, the existence of lim,,—, o || () HEI{Z) for an arbitrary function
f € C(R) such that f™ € (L,,1,), n=0,1,... and the concrete calculation of
limy, oo ”f(n)”(l;’;) are shown.

1. Introduction

Ha Huy Bang has given the following result [1]: Let 1 < p < 0o and f € C®(R)
such that f(" ¢ L,(R),n=0,1,.... Then there always exists the limit

dg = lim || f™]'",

and moreover dy = oy = sup{|¢| : £ € supp f }, where the last equality is the
definition of o5 and f is the Fourier transform of the function f. This result has
been extended to any Orlicz norm by techniques special for convex functions [2].

In this paper, modifying the methods of [1,2], we prove this result for the
norm of (Ly,l4), the amalgam of L, and l; on the real line R. Note that L,(R)
is a partial case of (L,,!,) spaces.

2. Result

When 1 < p, ¢ < oo, denote by (Ly,l,) the amalgam of L, and I, on the real
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line R, defined by

(Lp,lq) = {f S Lp,loc(R) : ”f”(P,Q) < OO},

nmm@=(ff(ﬁwﬂﬂmm@”j”q

n=-—00

where

with the usual conventions applying when p or g is infinite. With the norm as
given above, (Ly,l,) is a Banach space [4,6,7]. The theory of amalgams (Lp,lq)
and their applications can be found, for example, in [3, 7].

We state our theorem:

Theorem. Let f be in C°(R) such that f™ € (Lp,ly) (1 < p,g < o0),n=
0,1,.... Then there always exists the limit dy = lim,_o “f(")”%,{,?;) and dy =
af.

To prove the theorem, we need the following results:
Let {7 : t € R} be the group of translations on (Ly,[y), where 7; is defined

by (1:f)(x) = f(z —1).

Lemma 1. [3,5] Let 1 < p,q < oc. Foreacht €R, 7 is a bounded linear opera-
tor from (Ly,l,) to itself and C = sup{||7| : t € R} = max{21/P-1/4 2Y/a-1/p},

Lemma 2. [3,5] Let 1 < p,q < oo. If f € (Lp,lq), then the map t — T f is
continuous on R.

By virtue of Lemma 1, we have
Lemma 3. If f € (Lp,1,) then | f(- = llp,g) < Cllfllpg), VEER.

Proof of Theorem. We first observe that
T 1
Tm (£l < o7 (1)

It is enough to show (1) for of < co. Given £ > 0, we choose a function ¢ €
I5¢(—oy —e, ap+¢€) such that ¢ = 1 in some neighborhood of [—oy, a¢]. Hence,
it follows from Bernstein’s inequality for F 1 that

Eros 1/n
T 15 S o e
Letting € — 0 we get (1).
Finally, we claim that
< Lim |f™)77. 2
o7 < lim £ ®)
Let 9 (z) € C°(R), ¥a(z) > 0, ¢a(z) =0 for [z] > X and [y ¥a(z)dz =1. We
put fx = f * . Then f) € C(R) and fﬁ") = (") x 5. By virtue of Lemmas
1- 3, we get fi") € (Lp,l,) and f)(\n) € Loo(R). It follows from [1] that
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1/n

of =dp < nli_l%o”f(n)”(p,q)'

Therefore, the problem is now reduced to proving that

¢l < limoy,, VEe€ supp . (3)

Assume that (3) is not satisfied. Then there exist a point { € supp f, a number
€ > 0, and a subsequence A (for simplicity of notation we assume that & > 0)
such that Ofr, S &o—2¢, k=1,2,.... If f5 converges weakly to f then f,\ also
converges weakly to f. Therefore, if we choose a function p(z) € C§(R) such
that (f, ) # 0, supp () C [& — ¢, & — €], then 0 = (fx, ©) — (f, ) # 0,
k — o0o. So we arrive at a contradiction and we get (2).

To complete the proof, it remains to show that f) converges weakly to f.

Case 1: 1 < p,q < co. By virtue of Lemma 2, it is clear that || fx— f|l(p,q) — O
as A — 0. So f) converges weakly to f.

Case 2: p = 0o or ¢ = oo. We prove that fy is weakly convergent to f by
contradiction: assume that for some g9 > 0, g € (Lp,ly) and a subsequence
A — 0,

[ (@) - f@)ate)ds] 2 e0, k21 (@)
Then, it is known that, f, — f as A — 0in Ly joc(R). Therefore, there exists a

subsequence {k,} (for simplicity we assume that k,, = m) such that f, (z) —

f(z) ae.
On the other hand, as {f), } is a weak precompact sequence there exists a
subsequence, denoted again by {f,}, and a function f, € (Lp,{;) such that

/_ " (@)u(@)de — /_ " f(@w@)ds, Yo e (L ly). 5)

Let u be an arbitrary function in C§°(R), then u € (Lp,{,). It follows from
o (z) — f(z) ae. that

| sy~ [ st vue cgm. ©)
Combining (5), (6) and [8, p. 15], we obtain
/_OO . (@)v(z)dz — /_00 f(z)v(z)dx

which contradicts (4). The proof of Theorem is complete. m
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