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Abstract. We prove common fixed point theorems for a pair of condensing (respec-
tively compact) commuting self-mappings on metric spaces. Examples and applications
are also discussed.

1. Introduction

In {1] we established common fixed point theorems for a pair of commuting self-
mappings fi, f2 on a complete metric space (X,d) which satisfy the so-called
g-quasi-contractive condition for a function g : RT — R* with the following
properties:

(g1) g is a non-decreasing function;

(92) g is right-continuous;

(g3) Vt>0 g(t)<t;

(94) 3 Jlim g(#)/t <1;
and also a metric condition of Fisher-Sessa type or Fisher-Iseki type. A natural
question arising here is to what extent one can relax the conditions above for
the function g, say, if g satisfies only property (g3) for all z,y € X such that
fiz # foy? In this case for the existence of a common fixed point it is desirable
to impose conditions of topological nature to the mappings, or to the total space,
such as compact or condensing properties.

The aim of the note is to give some results on common fixed points for
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compact and condensing mappings which generalize the case of one mapping
extensively studied by Janos, Leader, Shih-Yeh, Liu and others (cf. [2- 5}).

2. Results
Before stating our main theorems we need the following definitions.

Definition 2.1. A self-mapping f of a metric space (X, d) is said to be compact
if there exists a compact subset K of X such that f(X)C K.

Denote by v(A) the Kuratowski measure of non-compactness of a subset A
of a bounded metric space (X, d).

Definition 2.2. A mapping f: X — X is said to be condensing if f is continuous
and for any non-empty non-totally bounded subset A of X, we have v(f(A)) <

7(A).

Throughout the note we use the following notations: fi, fo are commuting
self-mappings of X, A C X a subset of X;

Of ()= {fllz: n=0,12,...}, i=12

O (A):={flz: n=0,1,2,..., Vxe A}, i=1,2;
O(z,00): = {f{*fFz: mn=0,1,2,...}

Theorem 2.3. Let (X,d) be a bounded complete metric space; f;, 1 = 1,2
commuting self-mappings of X satisfying the following conditions:

(1) Vz,y with fix # foy
d(frz, f2y) < 8§(Or, (z) U Oy, (y)) (1)

where 6(A) :=sup{d(z,y) : z,y € A} for a subset A C X.
(ii)  f1, f2 are condensing.
Then there exists a unique common fized point in X for fi, fo.

Proof. Let O(z,00) := {f*fiz : m,n =0,1,2,...} be the orbit defined as
above; z a point of X. Since

’Y(Ofl (Q?)) = ma‘x{’)/(x)/)/(ofl (flx))} = 7(f1(0f1 (.’)3)))

and f; is condensing one concludes that Oy, (z) is precompact. Similarly for
O(z, )

¥(O(z,00)) = max {7(0r,(2)),7(0, (O (x))) }-

in view of the commutativity of fi, fo and the above. Therefore (i7) implies that
O(z, >0) is totally bounded, hence precompact (because of the completeness of
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X). Now putting Dy = O(z,00), so that Do is compact. Clearly fi(Do) C
Dy, i =1,2. Next let us consider the following sets

Dl = n f'ln(DO)7

n=1

o0
DQ = ﬂ fg(Dl)
n=1

Thus D;, i = 1,2, are fi-invariant, and by the finite intersection property,
non-empty compact subsets. Suppose u € D1, there exist @, € f "~1(Dg) such
that fi(z,) = ufor n = 1,2,.... From the compactness of Dy and by proceeding
to a subsequence, if necessary, one may assume that x,, converges to some point
v € Dg. Since {Tni1:Tnt2s---+ C fi'(Do) and f'(Dy) it follows that v €
f(Dg) for n=1,2,.... Sov € D, and fi(v) = u. This shows that fi(D;) =
D,.

Furthermore by the definition of Dj, the condition (ii) of the theorem and
the above fi(D3) = Da. Next we shall prove fa(Da) = Ds. Because Ds is
fo-invariant it suffices to establish Dy C fa(Dg). Take T € Da, there exist
ZTn € _f'g”_l(D_[) such that fao(z,) =0 for n=1,2,.... As above one can assume
that =, converges to some point T € Dg, and in a similar way it can be shown
that 7 € Dy and fz(ﬁ) =wu. Thus fZ(DQ) =Ds, 1 =1,2.

Now we claim that Do is a singleton, say {z}, and hence z is a common
fixed point in X for fi, fo. If not, then 4(D2) > 0. Since Dy is compact,
there exist a # b € Do such that 6(Dg) = d(a,b). From the above clearly
a= f1(a1), b= fa(by) for certain points a1,b1 € Ds. Hence

Op (a1) U sz(bl) C Dy =D,
and by (2.4)

0 < §(D2) = d(fra1, fab1) < 6(Os,(a1) U O, (b)) < 6(D2)

which is a contradiction. The uniqueness is obvious.

Corollary 2.5. Let f;, i = 1,2, be commuting self-mappings of a bounded
complete metric space (X, d). Suppose that fi, f2 are condensing and satisfy

d(flwany) < 5({$,y,f]_.'17, f2y}) (2)
for all x,y with fiz # f2y. Then fi, f2 have a unique common fized point in X.

Remark 1. In the above theorem for the condensing property and metric condi-
tion (1) it is sufficient to require for some iterates of f1, fa.

Theorem 2.6. Let f;, i = 1,2, be commuting self-mappings of a metric space
(X, d) satisfying the following conditions:

(i) Vz,y with fiz # f2y one has (1),

(i) fi, 9= 1,2, are compact and continuous mappings.
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Then f1, f2 have a unique common fized point in X .

Proof. From (ii) there exist compact subsets K1, K3 C X such that f;(X) C
K,, i=1,2. Putting K = K; U K> one has

X D K12 fi(X) D fi(K) D fH(X) D FA(K) D ... D f(X) D fI(K)D ...
SO

Di:= [ f(K)
n=0

is a non-empty compact subset by the finite intersection property. Clearly D;
is fi-invariant, i = 1,2. In fact it can be shown also that f1(D;) = D;. Thus
putting

Dy: = ﬂ f3(D1)

n=0

one can see that D, is a non-empty compact subset and f;(D3) = D, i =1,2.
As in the proof of Theorem 2.3 D5 is a singleton, say {z}. Hence z is a unique
common fixed point for fi, fs.

Corollary 2.7. Let f;, i = 1,2, be commuting continuous self-mappings of a
metric space (X, d). Suppose that f1, fa are compact and satisfy condition (2)
for all z,y with fiz # foy. Then f1, f have a unique common fizred point in
X.

Remark 2. 1) It should be noted that (cf. Remark 1) the same conclusions hold
true if one replaces f;, ¢ = 1,2, by their iterates in the formulation of Theorem
2.6 for the compactness property of mappings and metric condition (1).

2) As a special case if fi = fo one obtains well-known results previously
due to Janos, Leader, Shih-Yeh, Liu and others [2-5].

3. Examples

3.1. The following example shows that the condensing condition in 2.3, 2.5
is essential. Let X = N be the set of positive integers which is complete with
metric d(n,n) = 0, d(n,m) = d(m,n) =a+1/(n+1) if n < m, where a is a
fixed positive number. Consider fi(n) = fa(n) = n + 1, which have no fixed
points in X. One checks easily that fi, f2 satisfy conditions of 2.3, 2.5, except
the condensing property, since v(X) = v(X\{1}) = a. One can show also that
the compactness of fi, f2 in 2.6-2.7 can not be omitted, for a counter-example,
let X = [1,+400) with usual metric and f;(z) = a;z, where a; > 1, i =1,2.

3.2. The motivation of this part seems going back to Euler. We work over
non-negative real numbers. Let a > 0, a1 > /a4, 0 < ay < v/a. Consider
the following two self-functions of R which are obviously commuting: f;(z): =
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(e +a)/(z + i), i=1,2 (In a similar way one can consider such piece-wise
fractional linear type transformations). It is easy to verify (2) holds for fi, fa.
So in view of the compactness of fi, fz and 2.6-2.7 above one sees that fi and
f2 have a unique common fixed point. In general, on a suitable compact subset,
say I, = [0, /a], the family of continuous functions {f(z) == (ax+a)/(z+a)}
which are commuting, obviously has a common fixed point V.

On the other hand the uniqueness and the question on the rate of con-
vergence of the iterated process may be well understood due to Banach’s con-
traction principle for a suitable iterated power f™ of f. In fact the iterated
approximants converge quite fast to the common fixed point y/a. In partic-
nlar if @ = N, where N is not a perfect square, g = a; = 03 = [m, or
= [‘/_T\?] 4+ 1 for the initial value of the iteration, one sees that the iterated
process gives enough good rational approximations for the irrationality Vv'N.

For instance, numerical illustration with N = 2 exhibits all the solutions of
the well-known Pellian equation z* — 2y? = £1. A similar assertion holds true
for N =3,5,8,10,....

As for another numerical illutration one takes N = 163, zo = a = 12
then the 8-th iterate gives the answer accurate to ten decimal places: V163 =
12.7671453348...

Tt should be noted that extending to the whole R one can consider also the
iteration for negative powers of f. The result of the process then converges to
—+/a. Another interesting application is to investigate the complex behaviour
of the iterated process, i.e., if one takes the initial value zo from the complex
plane.
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