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l-. Introduction and Statement of Results

Let Pp :: F2lr1,...,rnl be the polynomial algebra over the field of two
elements, IF2, in k variables n7t...trp, eo.ch of degree 1. It is equipped with the
usual structure of module over GL6 :: GL(k,Fz) by means of substitutions of
variables. Furthermore, the mod 2 Steenrod algebra, A, acts upon P;, in the
usual manner.

Let G be a subgroup of GLp. Then P7, possesses the induced structure of
G-module. Denote bV Pf the subalgebra of all G-invariants in P7.. Since the
action of GLn and that of A on Pk commute with each other, P*G is also an'

"4-module.
In 13], the fi.rst named author is interested in the homomorphism

ic : Fzq)(PkG) * (lFz 
9"*)"

induced by the identity map on P1". He also sets up the following conjecture
for G: GLp and shows that it is equivalent to a weak algebraic version of the
long-standing conjecture stating that the only spherical classes in QgSo are the
elements of Hopf inuari,ant one and those of Kerua,ire ,inuariant one.

Conjecture 1.1 (l3l). icr* : 0 in pos'it'iue degrees for k > 2.

This has been established for k : 3 in [3] and then for arbitrary k > 2 in
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[6]. That the conjecture is no longer valid for,k: 1 and k:2 is respectively
shown in [3] to be an exposition of the existence of the Hopf invariant one and
the Kervaire invariant one classes.

In the present note, we are interested in the following problem: Whi,ch sub-
group G of GLp possesses jc :0 'in pos'it'iue degrees? It should be noted that,
as observed in the introduction of 13],

jc :0 in positive degrees <+ (pf )* C A+ . p1",

where (P*G)+ and '4+ denote respectively the submodules of P*G and Aconsisting
of all elements of positive degree. Therefore, the smaller the group G is the
harder the problem turns out to be. For instance, we have understood that
jc * 0 for G : {1}, G : GLr or G : GLz. F\rthermore, let 7p be the Sylow
2-subgroup of GLp consisting of all upper triangular matrices with entries 1 on
the main diagonal. Then j7* f 0, indeed Vr : nL is a T6-invariant, however
q  /  A +  ' P n .

The problem we are interested in is closely related to the hit problem of
determination of JF2 I P* This problem has first been studied by F. Peterson

[11], R. Wood [15], W. Singer [14], S. Priddy [12]... who show its relationships to
several classical problems in cobordism theory, modular representation theory,
Adams spectral sequence for the stable homotopy of spheres, stable homotopy
type of classi$'ing spaces of finite groups. The tensor product F'2 S P7, has

explicitly been computed for k < 3 (see l9]). It seems unlikely that an explicit
description of 1F2 S Pp for general k will appear in the near future. There is

J+
also another approach, the qualitative one, to the problem. By this we mean
giving conditions on elements of. Pp to show that they go to zero in IF2 Q P;,

i.e. belong to A+ , Pp. Peterson's conjecture 111], which has been established by
Wood [15] , claims that lFz I Pr :0 in certain degrees. Recently, Singer, Monks,

Silverman... have refined Wood's method to show that many more monomials
in Pp arein A+ . P7". (See Silverman [13] and references therein.)

The main theorem of this note shows that js : 0 in positive degrees, or
equivalently (Pf)* c A+ - P1", f.or a family of some rather small groups G. This
family contains most of the parabolic subgroups of GLn.

Suppose G1 is a subgroup of GLn and G2 is a subgroup of GLp-n for n I k.
Let us consider the subgroup

B )

We are especially interested in the case Gr : GLn and Gz : Ik-n, the unit
subgroup of GLp-n. Here is an interpretation of this group, which does not
depend on coordinates. Let V be an IF2 - vector space of dimension k and W a
vector subspace of dimension n. Then, the group GLno Lp_n can be interpreted
as the subgroup of GL(V) consisting of all isomorphism 9 : V --+ V with p(W) :

W and Q : idv/w , where r/ denotes the induced homomorphism of g on V lW .

We compute the algebra of GLn r 1;r-r-invariants by combining the works

l A e G l , B € G r l c G L n .G 1 o G 2 :  t  ( f
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of Dickson 11] and Mui 110]. Mui's invariant of degree 2n-r is defined as follows

U" :  I I  ( ) r " r  + - . - I \ n -1 rn - r : - rn ) .
' \3 €F2

Dickson's invariant of degree 2n - 2" is defined by the inductive formula

Q n,"  :  Q' . - r , " - ,  I  VnQ n_ r , " ,

where, by conventiofi, Qn,n : 7t n,s: 0 for s < 0. Then, Dickson proves in [1]
that

F  z l r r ,  . ' . ,  * r fG  L *  :  F  z lQ  n ,o ,  . . ' ,  Q  n ,n - t l ,

while Mui shows in [10] that

F z l r t ,  . . . ,  r * ]T*  - -  F z lVt ,  . . . ,  Vn] .

To generalize these works, we set

Vna l ( r , )  :  f l  ( f r " ,  +  . . . +  \ n rn  I  n r , ) ,
.\3 €JF2

for n 1z < k. Then, we get

Proposition L.2. For k ) n,

F  z [ *  t ,  . . . , ,  * ] G  "  " '  
r  -  *  :  F  z l Q  * , o ,  . . . ,  Q  n , n  -  r ,  V n  + r  ( r  n  +  t ) ,  . . . ,  V n + t  ( r  n ) 1 .

Theorem 1.3. (Main theorem) icr^.tr_. : 0 i,n pos,itiue degrees if and only i,f
n ) 2 .

Obviously, GLso 1-6-3 is the smallest group among all the ones of the form
GLn o Lp-n for n ) 2. Being applied to this group, the main theorem shows
that

lFz [Q : ,0 ,  QsJ ,Qs ,z ,V+ ( rq ) , . . . ,Vn ( rn ) ]n  C  A+  .  P1 " ,

where degQs,o :  7 ,  degQst  :  6 ,  deg Qz,z :4,  degV+(r)  :  8  for  3 < i  < k .
This gives a large family of elements, which are hit by A in Pp. Remarkably,
the degrees of all the generators of this polynomial algebra are small and do not
depend on k.

Let us now study the parabolic subgroup of. GLp:
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It is easily seen that GLpro 16-6, is a subgroup of GLpr,..., l ,-. Therefore, we
have

Corollary 1.4. jcr,q. ,*^ :0 'in pos'it'iue degrees i'f and only if kL > 2.

Note that GLn is a special case of the parabolic subgroup with k : kr and
m: l. Hence we obtain an alternative proof for Conjecture 1.1:

Corollary 1.5 [6]. icz* :0 in posit'iue degrees i'f and only if k > 2.

The readers are referred to [4] and [5] for some problems, which are related to
the main theorem and Corollary 1.5. Additionally, the problem of determination
of F2 @r(P*G'* ) and its applications have been studied by Hung-Peterson 17, 8].

2. Outline of Proof of the Main Theorem

It suffices to show the theorem for the group fI : GLz o 1r-r for k > 2, since
this is the smallest one of the groups GLn o lp-n for k > n > 2.

The fundamental }/-invariants Q3,s, QzJ,Qs,z,V+(r+), ... ,Vq.(rn) wil l re-
spectively be denoted by Qo,Qr,Qz,W+, . . . ,Wp for brevity. Using Proposition
L2, we need only to prove that

( P { ) +  :  l F z l Q o ,  Q r , Q z , w q . , . . . , w n ] +  c  A +  '  P p

for every ,k > 2.

Definit ion 2.L. Each monomtal i,n the uariables Qo, Qt, Qz, Wn, . . . , Wn of
PF l,t called an H-monom'ial. G'iuen an H-monom'ial R, let io(R),iL(R),iz(R),
i + (R ) ,  . . .  ,  i n (R )  be  respec t ' i ue l y  t he  powers  o f  Qo ,Qr ,Qz ,W+, . . . ,Wp ' i n  R .
Set

h (R)  : :  i 0 (R )  +  i l ( .R )  +  i z (R )  +  i 4 (R )  + . . . +  i k (R ) .

Let s(R) denote the m'indmal non-negatiue i'nteger wi,th 2"@) m'iss'ing i,n the
dyadi,c erpans'ion of i,z(R).

The following two lemmata will play a key role in the proof of the main
theorem.

Lernrna 2.2. Let R I 7 be a product of some d'i'sti'nct elements in the set

{ Q o , Q r Q z , W t ,  . . .  , W n } .  T h e n  R e  S q t P n l  S q 2 P n .

Lemma 2.3. Suppose R 'is an H-monomi,al in P{, u + | 'is an arb'itrary
element 'in Pp and n is a pos'it'iue 'integer.

(i) f/ s(R) I n, then Ru2* e A+ . Pn.

(it If iz(R) : 2n - r (nt'od,2n) '"0 (r9l) : o. then Ru2" e A+ ' P*.

(ii i) #tr(E) : 2n - | > ir(R), h(R) = 2" - 7 (mod2n) and, u e sql Pv t sqz P1,,
then Ruz^ € A+ .Pr"..
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Outline of proof of the mai,n theorem

suppose -R is an .I/-monomial of positive degree in P{. We need to show

that i i  A+ .pn. Set n :: s(S). Then, by definit ion , iz(R) = 2n -I (mod 2'+1).

The proof proceeds by considering the following 4 cases'

Case 1: Q!" divides R.

Case 2: There exists u e {Qo,Qr,W+,' . . ,Wt"} such that 22"-' divides R'

Case 3: ?0(-R), i1(R) , iz(R), i+(R), . ' . , i*LR) all are < 2n*L - 1 and there

exists  u e iQo,  Qr,Qr,W+,. . . ,Wp) wi th u2"  d iv id ing R'

Case l: io(R), it(R), iz(R), i+(R), . . '  , in(R) all are < 2" - t '

The results of this note will be published in detail elsewhere'
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