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Abstract. We obtain the maximum value for generalized indices of bipartite graphs
of given order.

The index and period of a given digraph D are the minimum nonnegative
integer k : k(D) and the minimum positive integer p: p(D) such that for any
ordered pair of vertices r and. A, there is a walk of length k from r to y if and
only if there is a walk of length lt+pfromr to y in D. A digraph D is primitive
if D is strongly connected and p(D) : t.

Let D be a digraph of order n with period p, and let r € V(D). The index,
kn(r), of r in D is defined to be the minimum nonegative k such that for each
y €V(D), there is awalk of length k from r to y if and only if there is a walk of
length k*p f rom r toy in  D.  I f  we order thever t icesof  D insuch awaythat
kn(ut)  < ho(rz)
of  D,  denotedby k(D, t ) .  I t  is  obvious that  k(D,1)  < . .  .  <  k(D,n)  :  k(D).

Generalized indices have been investigated in [1] . If D is primitive, then
k(D,i) is just the quantity expr(Z) introduced in [2].

A symmetric digraph D is a digraph where, for any r, y e V (D), (r, y) is an
arc if and only if so is (gr,r). An (undirected) graph G naturally corresponds to
a symmetric digraph Dc by replacing each edge l*,A]by a pair of arcs (2,9) and
(y,r). In this paper we will identify the graph G and the digraph D6. Note that
any edge of G corresponds to a directed cycle of Iength 2 in D6. It follows that
(see f1]) fqr any graph G, p(G) : I or 2. If G is connected, then G is primitive
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i f  and only if p(G) :1, and G is bipartite if and only if p(G):2.
For a connected graph G, ds(r,y) denotes the distance between n andy for

r , y  e  V ( G ) .
If G is a primitive graph of order n, it is known that 13] k(G,i) < n - 4* i,

f o r  3  ( ' i  I  n ,  k (G , i )  <  n  -  2  f o r  i ,  :  7 ,2 i f  n  i s  even ,  k (G , i )  <  n -  1  f o r
'i : 7,2 if n is odd, and that the above bound is the best possible. Hence we
will be concerned with bipartite graphs. Note that it has recently been showed
in [1] that k(G,i) < l+l f z for a connected bipartite graph G of order n with
1 < ? < n, where fal denotes the least integer ) a. We improve this result.

Lemma 1. Let G be a connected bi,parti.te graph wi,th u e V(G) and let d :

"ffib 
d6;(u,r)' Then

k 6 f u ) : 4  -  1 .

Proof. If there is a walk 14/ of length d- 1 from uto r, then there is a walk of
length d + 1 from u to r by attaching a cycle of length 2 to W.

I f  there is  a walkof  length d+1from uto r  , then d,6(u, r )  < d-  1.  This is
because d,6(u, r) and d * t have the same parity and d6(u, r) < d. By attaching
cycles of length 2 to the path with length d6(u, r) from z to r, we can obtain a
walk of length d - 1 from u to r.

Hence there is a walk 14/ of length d - 1 from u to r if and only if there is a
walk of length d+ l from uto r, which implies that k6(z) < d-L

On the other hand, take a vertex r such that d : dc(u,r). Clearly there
is no walk of length d - 2 fuom u to rr but there is a path of length d. Thus
k 6 ( u ) > d - 1 .

It follows that k6(z) : d - l.

Let lol denote the largest integer ( a. We have the following.

Theorem l. LetT be a tree of order n. Therr,

k(r , i l  s l  I  ,
and equal'ity holds for some 'i i,f and only if T i,s a path of ord,er n.

Proof. Recall that 7 has either exactly one center or exactly two adjacent centers
and p(7)  :  2 .  For  a center  u of .T, le t  d:  

,? i6 ld7(u,r ) .
Case 1.7 has exactly one center z.

In this case, ? has a longest path Q with length 2d and center z, and
d < L(n -  I )12J.  By Lemma 7,  k7(u)  :  d ,  -  l .  Take z €V(T) .

Let N1(u) be the set of vertices reachable by a path of length t fton' u in
7. Clearly we have uf:o&(") : V(T). Let r € lrr("). For any a e V(T), it
foilows from the definition of k7(u) that there is a walk of length t l- kr(u) from
r to y via z if and only if there is a walk of length t+k7(u) *2 from r to y via
u. This implies that k7(r) < t -l k7(u).
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Note that Ah(") : {"}, l lfr(")l } 2 for each 1 < t < d. For 1 ( i < 2d+1,
we have

k( r , i ) .  
L ; l  +k7(u) :  L ; l  +d, - t<L;l -L?l -'=L=-l

For 2d + \ < i, ( n, clearly we have k(f , i) < k(7, 2d + l) < PrP J.
l f  k (T , t ) :  l ( "+ i , -3 )12)  fo r  some i ,  then d :  (n  -  1 )2 ,  and hence ?  is  a

path of order n.

Case 2. T has exactly two adjacent centers u and u.
In this case, d < l"lZJ. By Lemma 1, we have

k 7 ( u ) : d - 1 : k r ( u ) .  ( 1 )

Let Ni (u) (respectively, lfi (r)) be the set of vertices reachable by a path of
length t from u (respectively ,r.') in the subtree containing u (respectively, o) of
7- 'u (respect ively,  T -u).For any r  e N!(u),kr(")  <t+k7(u);  and for any
n e Ni@), kr(*)  < t+k7(u).  In ei ther case, from (1) we have k7(r)  < t+d-I .
Note that llfi(")l ) 1, llvi(u)l ) 1 for 0 < t < d- 1. Hence, for 1 I i < 2dwe
nave

k( r . i )=  l+ l  * r - '  =  l+1 .  lu= l  =  l  " * : - '  l" - L 2  r  L - t  L 2 l - L  2  ) '

For ti > 2d,, clearly k(T,i) < k(7,2d,) < l(n + i - 3)12J.
If k(T,t) : L(" + i - 3) l2), then d : ft , and? is a path of order n.
Note that k(T, i ) :  L(rz +i-3)12) for any z i f  7 is a path of order n.

Combining Cases l and 2, we have k(T,i) < L("+ i,-3)12), and equality holds
if and only if 7 is a path of order n,. The proof is complete. r

Theorem 2. Let G be a bi,partite graph of ord,er n. Then

k ( G , i )  <  L ( r + i - 3 ) 1 2 ) ,

and this bound,is the best poss,ible.

Proof. First suppose that G is connected. Let T be a spanning tree of G. Let
d'  :  

,?i&)d"(u,r) ,  
d2 :  

"?f6tdr(u,r) '  
c lear lv d1 I  d2'  Bv Lemma 1,

ks(u) : dr - 7 I dz - | : k7(u) for any u e V(G). By Theorem 1, we have the
desired result.

Now suppose that G is not connected. Take any component G1 of G. Clearly
we have k(Gr, i )  !  L(",  +i-J)12) < L("+ i -B)121, where n.1 is the order of
G 1, I 1,i 1 n1 I n - 7. This implies that lc(G, i,) < l(n + i, - 3) I 2 ) for | 3 i, < n.
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