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Abstract. We obtain the maximum value for generalized indices of bipartite graphs
of given order.

The index and period of a given digraph D are the minimum nonnegative
integer k = k(D) and the minimum positive integer p = p(D) such that for any
ordered pair of vertices x and y, there is a walk of length k from z to y if and
only if there is a walk of length k+p from z to y in D. A digraph D is primitive
if D is strongly connected and p(D) = 1.

Let D be a digraph of order n with period p, and let x € V(D). The index,
kp(z), of z in D is defined to be the minimum nonegative k such that for each
y € V(D), there is a walk of length k from z to y if and only if there is a walk of
length k£ + p from x to y in D. If we order the vertices of D in such a way that
kp(v1) < kp(v2) < ... < kp(vn), then we call kp(v;) the ith generalized index
of D, denoted by k(D,1). It is obvious that k(D,1) < ... < k(D,n) = k(D).

Generalized indices have been investigated in [1]. If D is primitive, then
k(D,1) is just the quantity expp (i) introduced in [2].

A symmetric digraph D is a digraph where, for any z,y € V(D), (z,y) is an
arc if and only if so is (y,z). An (undirected) graph G naturally corresponds to
a symmetric digraph D¢ by replacing each edge [z, y] by a pair of arcs (z,y) and
(y,x). In this paper we will identify the graph G and the digraph D¢. Note that
any edge of G corresponds to a directed cycle of length 2 in Dg. It follows that
(see [1]) for any graph G, p(G) =1 or 2. If G is connected, then G is primitive
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if and only if p(G) = 1, and G is bipartite if and only if p(G) = 2.

For a connected graph G, dg(z,y) denotes the distance between x and y for
z,y € V(G).

If G is a primitive graph of order n, it is known that [3] k(G,i) <n —4+1
for 3 <i<m, k(G,i) <n—2fori=12if nis even, k¥(G,i) < n—1 for
1= 1,2 if n is odd, and that the above bound is the best possible. Hence we
will be concerned with bipartite graphs. Note that it has recently been showed
in [1] that &(G, 1) < [251] +1 for a connected bipartite graph G of order n with
1 <i < n, where [a] denotes the least integer > a. We improve this result.

Lemma 1. Let G be a connected bipartite graph with u € V(G) and let d =

d .
zér%;a()é) c(u,z). Then

ktg(u) =d-1.

Proof. If there is a walk W of length d — 1 from u to x, then there is a walk of
length d 4+ 1 from u to z by attaching a cycle of length 2 to W.

If there is a walk of length d 4+ 1 from w to = , then d¢(u,z) < d— 1. This is
because dg(u, z) and d+ 1 have the same parity and dg(u, z) < d. By attaching
cycles of length 2 to the path with length dg(u, z) from u to z, we can obtain a
walk of length d — 1 from u to z.

Hence there is a walk W of length d — 1 from u to z if and only if there is a
walk of length d + 1 from u to z, which implies that kg(u) < d — 1.

On the other hand, take a vertex z such that d = dg(u,z). Clearly there
is no walk of length d — 2 from u to z, but there is a path of length d. Thus
k:g(u) 2 d—1.

It follows that kg (u) =d — 1. n

Let |a] denote the largest integer < a. We have the following.

Theorem 1. Let T be a tree of order n. Then

k(T,5) < {——”’ i = 3J ,

and equality holds for some i if and only if T is a path of order n.

Proof. Recall that T has either exactly one center or exactly two adjacent centers
and p(T') = 2. For a center u of T, let d = n%/a()%) dr(u, ).
e

Case 1. T has exactly one center u.

In this case, T' has a longest path ¢} with length 2d and center u, and
d < |(n—1)/2|. By Lemma 1, kp(u) = d — 1. Take 2z € V(T)).

Let Ny(u) be the set of vertices reachable by a path of length t from w in
T. Clearly we have U{_oNy(u) = V(T). Let z € Ny(u). For any y € V(T), it
follows from the definition of k7(u) that there is a walk of length ¢ 4 k7 (u) from
z to y via u if and only if there is a walk of length ¢ + kr(u) + 2 from z to y via
u. This implies that kp(z) <t + kr(u).
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Note that No(u) = {u}, [Ny(u)| > 2 foreach 1 <t <d. For1 <i<2d+1,
we have

e oo g socve g2 s[4

For 2d + 1 < i < n, clearly we have k(T,i) < k(T,2d + 1) < |2t=2 |,
If k(T,i) = [(n+i— 3)/2] for some ¢, then d = (n — 1)2, and hence T is a
path of order n.

Case 2. T has exactly two adjacent centers v and v.
In this case, d < |n/2]. By Lemma 1, we have

kT(u) =d—1= kT(U). (1)

Let N{(u) (respectively, N{(v)) be the set of vertices reachable by a path of
length t from wu (respectively v) in the subtree containing u (respectively, v) of
T — v (respectively, T — u). For any = € N{(u), kr(z) < t+ kr(u); and for any
x € N{(v), kr(x) < t+kr(v). In either case, from (1) we have kr(z) < t+d—1.
Note that |[N/(u)| > 1, |N/(v)] > 1for 0 <t < d— 1. Hence, for 1 <3 < 2d we

have
k(T,4) < V;;J bd—1< [z;J . {n;2J . {n+;’—3J.

For i > 2d, clearly k(T,t) < k(T,2d) < [(n+1i—3)/2].

If k(T,i) = |(n+1i—3)/2], then d = &, and T is a path of order n.

Note that k(T,i) = |(n + ¢ — 3)/2] for any ¢ if T is a path of order n.
Combining Cases 1 and 2, we have k(T,4) < [(n+14 — 3)/2], and equality holds
if and only if 7' is a path of order n. The proof is complete. ™

Theorem 2. Let G be a bipartite graph of order n. Then
k(G,i) < |(n+i—-23)/2],
and this bound is the best possible.

Proof. First suppose that G is connected. Let T be a spanning tree of G. Let

dy = zg‘l;a()é)dg(u,w), dy = zg%/a()%) dr{u,z). Clearly di < d». By Lemma 1,

kg(u) =di —1 <dy — 1= kr(u) for any u € V(G). By Theorem 1, we have the
desired result.

Now suppose that G is not connected. Take any component G; of G. Clearly
we have k(G1,7) < [(n1+41i—3)/2] < [(n+1—3)/2], where n; is the order of
G1,1 <4 <ny <n—1. This implies that k(G,7) < |(n+7—3)/2] for 1 < i < n.
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