Vietnam Journal of Mathematics $29:1$ (2001) 67-70 Vietnam Journal

o f MATHEMATICS o Springer-Verlag 2001

Generalized Indices of Graphs*

Zhou Bo

Department of Mathematics, South China Normal University, Guangzhou 510631, P. R. China

> Received January 15, 2000 Revised July 6, 2000

Abstract. We obtain the maximum value for generalized indices of bipartite graphs of given order.

The index and period of a given digraph D are the minimum nonnegative integer $k = k(D)$ and the minimum positive integer $p = p(D)$ such that for any ordered pair of vertices x and y, there is a walk of length k from x to y if and only if there is a walk of length $k+p$ from x to y in D. A digraph D is primitive if D is strongly connected and $p(D) = 1$.

Let D be a digraph of order n with period p, and let $x \in V(D)$. The index, $k_D(x)$, of x in D is defined to be the minimum nonegative k such that for each $y \in V(D)$, there is a walk of length k from x to y if and only if there is a walk of length $k+p$ from x to y in D. If we order the vertices of D in such a way that $k_D(v_1) \leq k_D(v_2) \leq \ldots \leq k_D(v_n)$, then we call $k_D(v_i)$ the *i*th generalized index of D, denoted by $k(D,i)$. It is obvious that $k(D,1) \leq \ldots \leq k(D,n) = k(D)$.

Generalized indices have been investigated in $[1]$. If D is primitive, then $k(D,i)$ is just the quantity $\exp_{D}(i)$ introduced in [2].

A symmetric digraph D is a digraph where, for any $x, y \in V(D)$, (x, y) is an arc if and only if so is (y, x) . An (undirected) graph G naturally corresponds to a symmetric digraph D_G by replacing each edge $[x,y]$ by a pair of arcs (x,y) and (y, x) . In this paper we will identify the graph G and the digraph D_G . Note that any edge of G corresponds to a directed cycle of length 2 in D_G . It follows that (see [1]) for any graph G, $p(G) = 1$ or 2. If G is connected, then G is primitive

^{*} This project was supported by Guangdong Provincial Natural Science Foundation of China $(990447).$

if and only if $p(G) = 1$, and G is bipartite if and only if $p(G) = 2$.

For a connected graph G, $d_G(x, y)$ denotes the distance between x and y for $x,y \in V(G)$.

If G is a primitive graph of order n, it is known that [3] $k(G, i) \leq n - 4 + i$ for $3 \leq i \leq n$, $k(G,i) \leq n-2$ for $i=1,2$ if n is even, $k(G,i) \leq n-1$ for $i = 1,2$ if n is odd, and that the above bound is the best possible. Hence we will be concerned with bipartite graphs. Note that it has recently been showed in [1] that $k(G, i) \leq \lceil \frac{n-1}{2} \rceil + i$ for a connected bipartite graph G of order n with $1 \leq i \leq n$, where [a] denotes the least integer $\geq a$. We improve this result.

Lemma 1. Let G be a connected bipartite graph with $u \in V(G)$ and let $d =$ $x\in V(G)$ $\max_{a} d_G(u, x)$. Then

$$
k_G(u) = d - 1.
$$

Proof. If there is a walk W of length $d-1$ from u to x, then there is a walk of length $d + 1$ from u to x by attaching a cycle of length 2 to W.

If there is a walk of length $d+1$ from u to x, then $d_G(u,x) \leq d-1$. This is because $d_G(u, x)$ and $d+1$ have the same parity and $d_G(u, x) \leq d$. By attaching cycles of length 2 to the path with length $d_G(u, x)$ from u to x, we can obtain a walk of length $d-1$ from u to x.

Hence there is a walk W of length $d-1$ from u to x if and only if there is a walk of length $d+1$ from u to x, which implies that $k_G(u) \leq d-1$.

On the other hand, take a vertex x such that $d = d_G(u,x)$. Clearly there is no walk of length $d-2$ from u to x, but there is a path of length d. Thus $k_G(u)\geq d-1.$

It follows that $k_G(u) = d - 1$.

Let |a| denote the largest integer $\le a$. We have the following.

Theorem 1. Let T be a tree of order n. Then

$$
k(T,i) \leq \left\lfloor \frac{n+i-3}{2} \right\rfloor,
$$

and equality holds for some i if and only if T is a path of order n.

Proof. Recall that T has either exactly one center or exactly two adjacent centers and $p(T) = 2$. For a center u of T, let $d = \max_{x \in V(T)} d_T(u, x)$.

Case 1. T has exactly one center u .

In this case, T has a longest path Q with length $2d$ and center u , and $d \leq |(n-1)/2|$. By Lemma 1, $k_T(u) = d-1$. Take $x \in V(T)$.

Let $N_t(u)$ be the set of vertices reachable by a path of length t from u in T. Clearly we have $\bigcup_{t=0}^d N_t(u) = V(T)$. Let $x \in N_t(u)$. For any $y \in V(T)$, it follows from the definition of $k_T(u)$ that there is a walk of length $t + k_T(u)$ from x to y via u if and only if there is a walk of length $t+k_T(u) + 2$ from x to y via u. This implies that $k_T(x) \leq t + k_T(u)$.

Generalized Indices of Graphs 69

Note that $N_0(u) = \{u\}, |N_t(u)| \ge 2$ for each $1 \le t \le d$. For $1 \le i \le 2d+1$, we have

$$
k(T,i) \leq \left\lfloor \frac{i}{2} \right\rfloor + k_T(u) = \left\lfloor \frac{i}{2} \right\rfloor + d - 1 \leq \left\lfloor \frac{i}{2} \right\rfloor + \left\lfloor \frac{n-1}{2} \right\rfloor - 1 \leq \left\lfloor \frac{n+i-3}{2} \right\rfloor.
$$

For $2d + 1 < i \leq n$, clearly we have $k(T, i) \leq k(T, 2d + 1) < \frac{n+i-3}{2}$.

If $k(T, i) = |(n+i-3)/2|$ for some i, then $d = (n-1)2$, and hence T is a path of order n.

Case 2. T has exactly two adjacent centers u and v .

In this case, $d \leq |n/2|$. By Lemma 1, we have

$$
k_T(u) = d - 1 = k_T(v). \tag{1}
$$

Let $N_t'(u)$ (respectively, $N_t'(v)$) be the set of vertices reachable by a path of length t from u (respectively v) in the subtree containing u (respectively, v) of $T-v$ (respectively, $T-u$). For any $x \in N'_t(u)$, $k_T(x) \le t+k_T(u)$; and for any $x \in N'_t(v), k_T(x) \le t + k_T(v)$. In either case, from (1) we have $k_T(x) \le t + d - 1$. Note that $|N'_t(u)| \geq 1$, $|N'_t(v)| \geq 1$ for $0 \leq t \leq d-1$. Hence, for $1 \leq i \leq 2d$ we nave

$$
k(T,i) \leq \left\lfloor \frac{i-1}{2} \right\rfloor + d - 1 \leq \left\lfloor \frac{i-1}{2} \right\rfloor + \left\lfloor \frac{n-2}{2} \right\rfloor \leq \left\lfloor \frac{n+i-3}{2} \right\rfloor.
$$

For $i > 2d$, clearly $k(T, i) \leq k(T, 2d) < |(n + i - 3)/2|$.

If $k(T, i) = \lfloor (n + i - 3)/2 \rfloor$, then $d = \frac{n}{2}$, and T is a path of order n.

Note that $k(T, i) = \lfloor (n+i-3)/2 \rfloor$ for any i if T is a path of order n. Combining Cases 1 and 2, we have $k(T, i) \leq \lfloor (n + i - 3)/2 \rfloor$, and equality holds if and only if T is a path of order n . The proof is complete.

Theorem 2. Let G be a bipartite graph of order n. Then

$$
k(G, i) \le \lfloor (n+i-3)/2 \rfloor,
$$

and this bound is the best possible.

Proof. First suppose that G is connected. Let T be a spanning tree of G . Let $d_1 = \max_{x \in V(G)} d_G(u, x), d_2 = \max_{x \in V(T)} d_T(u, x).$ Clearly $d_1 \leq d_2$. By Lemma 1, $k_G(u) = d_1 - 1 \leq d_2 - 1 = k_T(u)$ for any $u \in V(G)$. By Theorem 1, we have the desired result.

Now suppose that G is not connected. Take any component G_1 of G. Clearly we have $k(G_1,i) \leq |(n_1+i-3)/2| < |(n+i-3)/2|$, where n_1 is the order of $G_1, 1 \leq i \leq n_1 \leq n-1$. This implies that $k(G, i) < \lfloor (n+i-3)/2 \rfloor$ for $1 \leq i \leq n$.

T

References a dealer the latter than act a submitted to be a material during

- 1. Liu Bolian, Zhou Bo, Li Qiaoliang, and Shen Jian, Generalized index of Boolean matrices, Ars Combinatoria, to appear.
- 2. R. A. Brualdi and Liu Boilian, Generalized exponents of primitive directed graphs, J. Graph Theory 14 (1990) 483-499.
- 3. Shao Jiayu and Li Bin, The set of generalized exponents of primitive simple graphs, Linear Algebra AppL 258 (1997) 95-L27.

$$
\left[\frac{1-\left\lfloor \frac{1-\alpha}{2}\right\rfloor}{2},\frac{1-\left\lfloor \frac{1-\alpha}{2}\right\rfloor}{2}\right]=\left[\frac{1-\left\lfloor \frac{1-\alpha}{2}\right\rfloor}{2}\right]=\left[\frac{1-\left\
$$

I hand drives to an a large that we have a

in the book of plans are also in the first easy subjection. The book of the plans of