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Abstract. Let X be a projective scheme over an artinian commutative ring R6. Let
f be a coherent sheaf of. Oy- modules. We present a sample of bounding results for
the so called cohomological Hilbert functions

hk,r : V' - No, r2 - hk,r(r) : lengthao H'(X,.F("))

of F. Our main interest is to bound these functions in terms of the so called cohomol-
ogr diago na (h!*,r(-i))i$(r) off. Our results present themselves as quantitative
versions of the vanishing tlieorems of Castelnuovo-Serre and of Severi-Enriques-Zariski-
Serre. In particular we get polynomial bounds for the (Castelnuovo) regularity at ar-
bitrary levels and for the (Severi) coregularity at any level below the global subdepth
6(F):: min{depth (f') | " 

e X, t closed } of f. We also show that the cohomol-
ory diagonal of f provides minimal bounding systems for the mentioned regularities
and coregularities.
As a fundamental tool we use an extended version of the method of linear systems of
general hyperplane sections,

1. Introduction

I'et C be the class of all pairs (X, f) in which
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X - Proj(R) is the projective scheme induced by a positively
graded homogeneous noetherian ring .R : O'>oR, with artinian (1.1)
base ring R6.

f is a coherent sheaf of Ox-modules.

For any pair (X, g) e C and any i e Ne, the i-th cohomologg module Hi(X,9) of
X alith cofficients in I is a finitely generated Ra-module (cf.'[29, III, Theorem
5.21, [43, $66, Theorem 1]) and hence of finite length. So, for each i € Ns and
each pair (X,f) € C, we may introduce the i-th cohomological Hilbertfunction
of (X with respect to) T

h ' x , r : h ' r : Z * N o  ( i e N o )

defined by
hk,r(n) :: n'r @) ;: lpo (A'(X, "F("))) (n e Z), (1.4)

where f ( " ) : : f  @ox Ox(")  is the n- thtwis tof  f ,  andlpo(N) denotesthe
length of the .Ro-module N.

There are some general constraints on the cohomological Hilbert functions
h'y : Z -' No given by classical vanishing theorems. So, the aanishing Theorern
ol Grothendiecle [29, III, Theorem 2.7] says that

h ' r - 0  f o r a l l  i > d i m ( f ) ,  ( 1 . 5 )

where dim(-F) :: dim(supp(f)) denotes the dimension of the support of f .
Another constraint on ihe functions hi is grven by the Vanishing- iheorem of
Castelnuouo-Sere (cf. [44, $66, Theorem 2(b)]).

h ' r ( n 1  : g  f o r a l l  i > 0  a n d a l l  n ) 0 .

(1 .3 )

(1 .2 )

(1.6)

(1.8)

(1.e)

There is yet another important constraint on the cohomological Hilbert functions
h'r. To formulate it, let us introduce the subdepth of (X with respect to) f :

6(f): :  min{depthe" , ,( f ,)  |  "  
e X, closed}. (1.7)

Now, the Vanishing Theorem of Seaeri-Enriques-Zariski-Serre (cf. [43, $76,
Theorem 4]1, 124)) claims:

h ! y ( n ) : A  f o r a l l  i < 6 ( f )  a n d a l l  n ( 0 ,

ho;') @) * o for all n (( o.

Moreover, there is an observation which essentially goes back to Mumford [39]
and which gives a further constraint on our functions:

Let /c € No and let  r  €Z besuch thathts ( t - i )  :0 for  a l l  i  > k.
T h e n h ' r 1 7 - - i ) : 0 f o r a l l  i > k a n a l t i  n 2 r .  ( 1 ' 1 0 )

This observation gives rise to the concept of rcgularitg of f aboue leuel k.

r e g p ( f )  : :  i n f { r  e V ' l h t r @ -  i ) : 0 ,  Y n 2 r ,  V i  >  k } .  ( 1 . 1 1 )

which in the case k : 0 coincides with the so called Castelnuouo-Mumford
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re4ularity of f (cf. [39]). Observe that by (t.b) and (1.6) we have re&(f) ( oo.
Similar to (1.10) we also have:

Let k € No and let c €Z be such that h|("-i) :0 for all i < lc.
T h e n h t ( n - i ) : 0  f o r a l l  i < k  a n a l t i  n 1 c .  ( 1 . 1 2 )

The obsenration made in (1.12) gives rise to the concept of ure4ularitU of f at
and belou leuel k:

c o r e g f t  ( f ) : : s u p { c  e T l h ' r @ - i )  : 0 ,  V n ( c ,  V i S h } .  ( 1 . 1 8 )

BV (1.8) and (1.9) we have coreg* (f) > -oo if and only if k < 6(f).
The constraints on the functions hi which are given in (l.b), (1.6), (1.8), (1.9),
(1.10) and (1.12) merely concern the vanishing or non-vanishing of these func-
tions in certain ranges. But there are also constraints on the rate of growth of
these functions. Let us only mention two such constraints.

If dim(f) : d, then hf(n + 1) < ma:c{0, nI@) - dl for all
n  € Z;  (1.14)

hor(" - 1) < max{0, n%@) - 6(f) } for all n e Z, (1.15)
The principal aim of this paper is to establish bounds on the cohomologrcal
Hilbert functions h'7 for i : 0, . . . which depend only on the ,,d,iagonal ualues,,
h!r(-j) (, : 0,''') of these functions. Obviously these bounds should be such
that they are in accordance with the above constraints. It turns out that such
bounds naturally split up into two types:
I: Bounds of. Castelnuouo type which, for each i ) 0, bound the rralues hrr(n) in

the range n 2. -i in terms of the diagonal ualues (h!r(-j)) i>i at ond aboae
leuel i.

II: Bounds of Seaeri tgpewhich, for each i < 6(f), bound the values hi(n) in
the range n I -i in terms of the diagonal values (htr(- j)) jsi at ond belou
leuel i.

As for the bounds of Castelnuovo type we shall define bounding functions.

4; t * r ,  'N3*1-d x  Z>- i  '  No

( 0 < i < d )

4!.r '  Nfi*t-d ) z2-;
such that (cf. Corollary 4.2):

For each pair (X, f) e C with dim(.F) < d:

(") h'r@) s 4l).t, (n'ret),"' ,hdr(-d);r), vn) -i;

(b) h'r(n) :  g, Vn ) 4').r(n'req,.. .  ,h|(-d));  (1.16)
(") regi- JF) S e[l).,r @Tet),. . ., hdredD + i.

Clearly, in view of statement (1.16)(b) the constraint (1.6) is reflected by our
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bounds. Moreover, the above bounding functions are defined such that

a{00*r l (0, . . . ,0;n) :  g for al l  n )  - i  and'  gl l l t , (O,. . .101 :  - i ,  so that
the constraint (1.10) is respected. Finally, according to our definitions we shall

have 4if r, @;") :: malx{h - d(n + d),0}, and this is in accordance with the

constraint mentioned under (1. 14).

Actually,we shall deduce the above bounds from a class of sharper bounds,

which in addition depend on the global subdepth 6V) of the coherent sheaf

F (cf. Corollary 4.6).

Concerning the bounds of Severi type, we shall define bounding functions

B[; i  'Nb*t * zs-, * Ns
( 0 < i < , )

C[ii ,Nb*' * z>-i

such that (cf. CorollarY 5.3).

For each pair (X, f) e C with I 3 6(f) :

(u)  nT@)s B[ ; ] ( r , ] (o) ,  . . . ,h i ( - i ) ; r ) ,  Yn < - i ;

(b) hir(n):s, vn ( c[; ](n%(o),. .  .  ,hi(-, ;));

(") coregi(fl > cl,it,rl(0),.. . ,h'r(-r;)) + z.

Here, statement (1.17)(b) reflects the constraint given in (1.8), whereas the

bounding functions are defined such that we have accordance with the con-

straints (1.12) and (1.15).

So, conceptually the bounds mentioned under (1.16) present a quantitative ver-

sion of the vanishing theorem of Castelnuovo Serre (a^s formulated in (1.6)) which

is in accordance with Mumford's observation (1.10) and the constraint (1.14).

Smilarly, the bounds mentioned under (1.17) present a quantitative version of
the rranishing theorem of Severi-Enriques-Zariski-Serre (cf. (1.8)) which is in ac-
cordance with the constraints (1.12) and (1.15).

As our bounds hold for a.rbitrary pairs (X,F) € C,.wecall them a priori bounds.
As the bounds depend only on the "diagonal values" h!r(-i), we sometimes refer
to them as diagonal bounds

Our bounding functions a[;4*,t, e[l)*,1, U[ii, C[,'i, are defined recursively.

Sometimes one might prefer to dispose on explicite bounds - even if they are
weaker. As an example of this latter type of bounds we shall establish the

following estimates (cf. Remark 6, Remark 10):

For each pair (X, f) e C with dim(f) < d

(1.17)

(1.18)re8i-r (4 S a?-ff: i)n,(-i))"-'
For each pair (X, f) e C with i < 6(F)
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(1. le)coregr (F) >

We also shall see, that the diagonal values hL?j), which occur in our bounding
results (1.16) and (1.1?), form a minirnal bouniling systan: If we allow that one
of the diagonal values hr(-j) becomes arbitrary large, whereas the other ones
are bounded, regi-1(f) and coregd(f) need not be bounded (cf. Remark 5,
Construction and Remark 5.4).

The aim of this paper is two-fold:
- To extend the exist[ng results on a priori bounds for cohomological Hilbert

functions which were established over algebraically closed ground fields
(cf. [5,7,9]) to the case of arbitrary artinian gound rings.

- To grve a self-contained introduction to the subject of a-priori bounds for
cohomological Hilbert functions addressed to a reader familiar with basic
knowledge of local cohomolory as presented in [14].

Clearly, in view of the second aspect, our paper partly will have expository chal

acter. Moreover, we attack our task from the algebraic point of view: We namely
first establish bounding reults for the cohomological Hilbert functions of finitely
generated graded modules over noetherian positively graded homogeneous rings
R : Ro @ Rr @ ... with artinia.n ground ring .Rs (cf. Theorem 4.2, Corollaries
4.3-4.5, Theorem 5.2). Then we use the Sene-Grothendieck @rnespond'enceto
translate these results from the language of local cohomolory to the language of
sheaf cohomology.

In Sec. 2 of the present paper we list a few facts on cohomological Hilbert func-
tions of finitety generated graded modutes over-positivety graded noetherian rings
with artinian base ring. Our basic reference here is [14J.
The main technical tool we shall use, relies on the method of linear systems of
hyperplane sections which was used to deduce our earlier bounding results over
algebraically closed ground fields (t"" [5,7,8,9, 13]). To make use of this idea
we need some preparatory results which allow to adapt the method of linear
hyperplane sections to the case of arbitrary artinian ground rings. These results
shall be presented in Sec, 3. In view of the expository aspect of our peper we
allowed ourselves to give a complete prove of the lifting result Proposition 3.2.
Some of the ideas presented in this section were already used in [4].
In Sec. 4 we deduce our bounds of Castelnuovo type, as mentioned under (1.16).
These results extend and complete what already was done in [14] where the
bounds of (1.16) where deduced in the special case i : 1 by means of the

"Lernrna of Murnford and Le Potier". If, i ) 1, this latter lemma is not available,
but a substitute for it (i{'hich gives sharper bounds and applies for all i > 0) is
our adapted version of the method of linear systems of hyperplane sections.

In Sec. 5 we give the bounds of Severi type as mentioned under (1.17). Here,
using multiple Segre products of projective lines a.nd the Kiinneth formulas,
we show that the diagonal values hl(0), h|(-1), ... ,h'r(-i) form a minimal
bounding system for the coregula.rity coregi (f), even on rather special subclasses

-(2I (])^r(-i))'',
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of, C. It should be noted, that this minimality result is closely related to the
problem of an "anciomatic characterization" of. cohornologim,l pattem"s

P ( F ) : { ( i , n )  e  N s  x z l h T @ ) 1 0 }

of pairs (X,f) € C. Let us also mention in this context'the non-rigidity theorem
of Evans-Griffiths [21, (4.13)] (i" which the occuring isomorphisms need not be
graded).

One appearent disadva"ntage of our bounds of Severi type is the fact that they
apply only if i < 6(f). On way to get satisfactory bounding results (in the
range n S -i) for a 2 6(f) is to estimate the so called cohomological deficiency

functions. For a pair (X, f) € C and for i € Ns, the i-lh cohornological defi,ciency

function ol 6 with respect to) .F is defined by

Lk.r : A'F :: h'r - p'r , (1.20)

where pi i" the i-th cohomological Hilbert polynomial of f , i.e. the unique
polynomial in R[t] such that

p'r@) - h's@), Vn ( 0.

These deficiency functions where investigated by the second author in [36]. We
shall present bounds on these functions and apply them in the context of the
present paper in a later investigation [12].
Obviously bounding cohomology or Castelnuovo-regularity for special pairs (X,F)
has a long tradition in algebraic geometry which goes back far beyond the time
in which cohomology was available. The starting point was the study of linear
systems on projective varieties. Here, for the "Castelnuovo root" of the subject
the interest is focussed to pairs (X,f) € C for which X - IF is a projective
space over &n (algebraically closed) field K and f : J e Ov is a coherent
sheaf of ideals (cf. [16, 26,34,41,45]). The study of the cohomological behavior
of such pairs became the driving force of ma^ny investigations and is of basic
importance for the theory of Hilbert schemm (cf. [22,25,27,32,37,38J) and for
computational algebraic geometry (cf . 12,3]). The algebraic aspect of the theory
("f. lL7, 421) initiated a considerable number of investigations on graded rings
and their cohomological inrvariants (cf. [30' 46,47]).

Another point of interest is the study of pairs (X,f) € C, wherc X e IF' is
a smooth or normal variety and f : 4 is an invertible sheaf. This "Severi
root" of the subject had its pre-cohomological origin in the study of canonical
linear systems and their generalizations (cf. 120,44, a8]) and lead to fundamental
vanishing results for cohomology groups (cf' [ffi'  0]).

Finally, let us also mention the "vector bundle root" of the whole subject,
whose interest focusses on pairs (F',t) € C, for which t is locally free over
IF' (cf. [5, 13, 19,28]). Here, the interplay between topological and cohomologi-
cal properties of bundles is one of the main points of interest.

Clearly along each of the above three main lines one finds bounding and va.nish-
ing results for cohomology which are formulated in terms of invariants suitable
to the special class of pairs (X,F) € C under consideration. Obviously it is not
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2. Preliminaries on cohomological Hilbert F\mctions

1", t:. Or,>o ft" be a noetherian, positively graded homogeneous ring such
that ^Ro is an artinian ring. set ft+ : O'>o .R,, the ,,irrelevant ideal" ofR.

are finitely generated ̂Rs-modules and thus of finite length (see [14, (1b.1.b),
(17.1.4)]). Therefore, it makes sense to introduce the fun.iiotrr 1ct. jt+, trO.r.rj,(17.1.a) l ) :

h 'y :Z - r  No and ty  :Z ,  No,  ( i  e  Ns)  (2.1)

which are defined bv

n'u @) ;: lpo (Hh. QtI)")

tu @) :: lno (R' D** (M)")

where ln. (N) is used to denote the length of the Re-module N. In view of the
natural exact graded sequence

o -+ HL@) - M -. DR*(M) - HrR.@) -,0

and the natural graded isomorphisms RiD n-(M) = Hi*_t(M) for all i e N (see
[14, (L2.4.2), (I2.4.b)]), we now get for a\l n € Z

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

d, @) : IR.(M,) - hor(") + ntr@),

tu@) -- h'it(n), (Vi > 0).

Observe that, for each i e No we have (cf. [14, (lb.l.S)])

.  h 'u(" ) :  0  for  a l l  n  > 0.

As a consequence of this we get by (2.a) and (2.b)

d*@) - rRo(M^), tda@) _g (vr, > 0, vi > 0). (2.7)
It is well-known that h\a(n) is represented by a polynomial for n ( 0.
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To be precise: for each i e No there is a unique polynomial piv, € Akl of degree
( i such that

h'u @) : p'u (n) for all n ( 0

(see [14, 17.1.9]). We call p'* the i-th cohomological Hilbert-polynomial of M.

Two concepts which are needed for our purpose are the notions of end and
beginning of a graded r?-module ? : @nez Tni

(a) end(") ': sup { t e V, I f, * 0} ;

(b )  beg( " )  : :  i n f  { t  eV , l ' 4  +  0 } .

For k € No, wedefine the regularity of M at and aboueleaelk (see [14, (15.2.9)J)
respectively the coregularitU of M at and below leuel lc by

(") reg&(I4) ,: 
?ll {end (Hh.@)) + i};

(2.10)
(b) corege (M) :: 

{[{ 
Ues (T Dn.WD + i - t}.

In the definitions (2.9) and (2.10) the occuring suprema and infima are supposed
to be formed in the ordered set {-m} UV,U {m} with the additional convention
that sup 6 : -m and inf Q: q.

It is important for us to notice that (see [14, (15.2.9)J)

regk(trrt1< oo for all /c e No. (2.11)

In view of the definition of coregularity it is natural to ask whether -m (
coreg& (M). The answer to this question is more subtle than the corresponding
statement for regularities (2.11). Namely, we first have to introduce another
invariant - the minimum Ra-adjusted depth of M - which is defined by

I(M) : )a. (M)

: inf 
{dupth(Mp) 

+ height((R + R*)/p) | F e Spec(e) \ Var(R.)} ,Q.rz)

where the infimum is formed as above under the usual conventions that depth
(0) : oo and height (R/R) - oo. Observe that in the definition of ̂ (M) we ma,y
take the infinum over gra.ded primes p ( Var(^Ra ) ftee [14, (13.1.17)]). Now, by
Grothendieck's finiteness theorem we have (see [14, (9,5.2)]):

l(M): inf{i € No I Hh-(M) is not finitely generated}, (2.13)

where the right-hand side infimum is understood a^s above. In view of (2.6) we
thus get

) ( M )  : i n f { i  €  N o  l V n  e  V , : l m S n :  h ' y ( m )  * 0 ) .  ( 2 . L 4 )

As lpo (M") and hla (n) vanish for all n ( 0, (2.4) and (2.5) therefore imply

A ( M )  -  i n f { i  €  N  l V n . e  Z : 3 m  1 n ,  t M ' ( * )  #  o } .  ( 2 . 1 b )

As a consequence of this we obtain

(2.8)

(2.e)
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-oo < coregr (M) e k < ^(M) - 1.

,&ter, various types of reduction arguments shall be performed so that we need
o know how the above invariants behave if .R and M are subject to certain
hanges. The first of these changes is taking classes modulo R+-torsion.
io, let fn* (M) e M denote the ̂ R1-torsion submodule of. M.
)hen II$* (U/fr.@)):0 and moreover there are natural isomorphisms of

raded .B-modulo IIh* @) = Hh- (Mlln- (M)) for all i € N and Dp* (M) =

4.(U/f n-(M)) (see [14, (2.1.7), (2.2.8)]).  So, we get in view of (2.b).

(r) ho* tr^*1u1(n) 
= 0 (Vn e Z);

(b) h!* /, ** fu{n) 
: h'u @) (Yn e Z, Vi e N);

(.) d* /r**tul(r) 
:  d'u@) (Yn e Z, Vi e Ns).

\s a consequence of this we have

(") rc{ (u/rn. (M)) : resk (M) (v,t e N);

(b) corege (U/f *-WD: cored (M) (Vk e Ns);

(2.16)

(2.r7)

( . )  ^(MltR.@)):  A(M).

t also will be important for us to know how the above invariants change if we
eplace M by M/hM, where h e Rt is a.n M-regular element. In this situation
ve have an exact sequence of graded R- modules

0 + M ( - \ L U - M / h M + 0 .

fhus, in cohomology we obtain, for each n e Z, the following exact sequences
rf Rs-modules

0 -)  4.(U)"- ,
-) Hrn_(M)"-,

Hh-  (M)"- t
_' H'i, (M)*_,

md

L HHr (M), ---+ Hfl. (M lht t),
-) H',*t (M lhM)"

i* Hh_(M), Hh.(MlhM)^

(2.18)

-) vo Dn* (M lhM)"
-+ ?.i-r Dn. (M lhM)"

pi Da* (M /hM)"

(2.20)

0 VoDn+(M)^- t  4  VoDn*(M)^
-) Rr Dn* (M)"-r . . .

Ri Dn* (M),-, -1-, vi Dn* (M),

?4i+r Dn. (M),-r L 7 1i+r Dn* (M)n

lor all i e No and all n € V, we thus get the estimates

(") h'r(n) S hiu(" - 1) + h'r1nr@);

(b) h'r/o*(r,) < h'r(") + h!frt (" - 1);
(2.2r)
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(^) du(") < d'u(n - 1) + i lutou(n);

(b) i lulou(") S ilu@) + tfr' (" - 1); (2.22)
(.) ti '@) S ti ' (n + 1) + d', to*(n + 1).

For any Ic e No we may conclude from (2.21Xb), respectively from (2.22)(b),
that

(') rc{ (ufhM) < redV); 
e's)

(b) coreg* (MlhM) > coregfr+'(M).

Observing (2.16) we now may conclude from (2.23Xb)

A ( M l h M ) > , \ ( M ) - 1 . (2.24)

Another important step in the present paper is the reduction to the case where
our artinian base ring Ra is local. To pave the way for this reduction, we assume
that .Rs is not necessarily local and we denote the different maximal ideals of R0

Uy * [ t ) , . . . , rn [ ' ) .  Moreover ,  fo r  each i  €  {1 , . . . , r }  le t  p ' ( r )  4snote  the  pos i -

tively graded homogeneous ring .R 8no (&)*rl : (En20(&,)*rl with artinian

local base ring (&)*;r,. Finally,let MtU) denote the finitely generated and

graded R'(i)-module M 8no (Ro)*t,r = @nez(Mn)*51. Using these notations

we have (see [14, (16.2.5)]):

(") h'u@) : Di=t hir,1,1(n\ '

(b) i lu@): Dl=r dnr,, , ,(n); 
(vi  € Ns' vn ez) '

Flom these equalities we obtain immediately for all k e No

(")  reg& (u)  -  moc{re{1t4 ' t i l )  l r  -  1 , . . .  , r } ;

(b )  co reg*  (M)  :m in {co re* (U ' t i l )  I  r  -  1 , . . . , r } .

In view of (2.16) the last equality furnishes

^ ( M ) :  m i n { ) (  M t ( i ) )  |  j  :  1 , . . .  , r } .

There is still another important step of reduction which will be performed later.
It concerns the situation in which our artinian base ring fto is local with maximal
ideal ms. We suppose given an artinian local flat extension ring .R6 of Ra with
maximal ideal *6 : *0ft6. In this case.R' ': E6 8no R: @n€No(n6 On. ,%)
is a positively graded homogeneous noetherian ring with base ring Rd and such
that Ri : (R+)R'. Moreover M' i: R'8n M - ftf 8no M - @nez (n6On,U")
is a finitely generated graded r?'-module. Now, by [14, (15.2.2) (iv), (vi)]. We
get isomorphisms of Rf,-modules

(u) H'R.(M')* = Ho 8no I/h* (M)" , (Yn e Z, Vi e Ns);
e.281

(b) * Dn*(M'), = Ri &no ?7c'Dn* (M)" , (Yn e Z, Vi e No).

(2.25)

(2.26)

(2.27)
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Ar ft6 is flat ovel& with unique ma.ximal ideal *04 we have ra,^(Mgao N) :
h. (/v) for each ̂ Rs-module N. Therefore the isomorihir*, (2.2g1r together with
i2.5) imply the equaliries

(") h'u,@): hfu(n) (Yn €2, Vi e Ns);
(b) tu,@) = i lu(n) (Yn eZ, Vi e Ns).

As a consequence of this we get for each rt € Ne:
(a) reg* (M') - red (M),

(b) coreg& (M,) - coreg* (M),

rnd hence finally by (2.16)
A(M') _ A(M).

Concerning the Krull dimension dim(M) of M we should keep
relations

(2.2e)

( t )  M + 0 + d i m ( M ) : m a x { z € N o | 3 n e  Z : h t  ( " )  I 0 } ;
( b ) d i m ( M ) < O < +  y n € Z : & u ( n ) : o ;  Q ' 3 2 )

(see [14, (6.1.12), (12.1.10)J and (2.4)). we convene that dim(0) : -m and
notice for later use

(") dim(M/t*(M)): {  
di*1u; '  i f  dim(M) *0

L -oo, if dim(M) : 0;
(b) h e Rt, M-regular =* dim(M/hM) :dim(M) - 1;
( " )  d im(M)  -  max{d im(M 'U) )  |  j  -1 , . . . , " } ;
(d) dim(M) : dim(M');

where in statements (c) and (d) we respectively have used the notation intro-
duced in (2.25) and (2.28).
Ihere is a last and somehow more specific step of reduction which has to beperformed later. T.lo prepare it, we need to introduce some t,'or" ,rotation andnotions' I'et i € No. We consider the following finite set of graded primes

(2.30)

(2.31)

in mind the

(2.33)

(2.34)

(2.35)

A"fi] (M) :: {r e Assn @) ldim(n/p) S j}.
Moreover we introduce the graded ideal

out _ olit 1M) :_ n p
pear"j{ ' l ( ,u)

which equals it if and only if Assf'l (M) : @. Then, we introduce the so calledj-rd,uction of M as the graded r?-hodule

yl i t  .-  Mfr4it(M). (2.86)
As As"fil (M) : Var(ob'l @)) fl Assa (M) : Assp (Io,,, (M)), we get

Assn (uat) : Assn(M) \ Assgl (M), (2.37)
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(see [14, (2.L.2)]). Moreover we see that dim(fo,,, (M)) s j, so by (2.82)(a)
we see that.lltft+*t(fo,r'(M)) :0 for all i> j.If y" apply cohomology to the
graded short exact sequence 0 -'four (M) - M + MUI - 0 and keep in mind
(2.5) and (2.32)(b), we thus get

d*,, ,(r) :  tu@) for al l  i> j  and al l  n e?. (2.38)
Next we give a few remarks concerning the relation between local cohomology
and sheaf cohomology. We keep all the previous notations and consider the
scheme

(2.3e)
For any i e No and a^ny .on.r.nJr;#l?'8-mod,rl", F, weconsider the i-th
mhomological Hilbert function of f

which is defined by
hk,r : h'7 :2 "-'* No,

h ' r@); :  l3o ( " t ( " ,  f  &ox O*(d)) ,

where Hi(X,9) is used to denote the i-th Serre cohomology module of X with
coefficients in the sheaf of Ox-modules 9. For k € No we define the re4ularity
ol F aboae leuelkby

r e g l ( . F ) : : i n f { r  e Z l h T @ - i ) : 0 ,  V n  )  r ,  Y i  >  k } . (2.42)

Observe that regs(f) is the so called Castelnuouo-Mumfordregularity introduced
in [39]. The coregularity of. f at and below leuel k is defined as

coreg f t  ( f ) : :  sup{c  eZ lh ! r@ -  i )  :0 ,  Y  n  1c ,  V  i  S  / c } .  (2 .43 )

If M is a finitely generated graded .R-module,let fif denote the coherent sheaf
of, Oy-modules induced by M. In these notations, the Sen'e-Grothendieck cor-
respondence yields (see [14, (20.4.4)]).

(2.40)

(2,41)

(2.44)

(2.45)

(2.46)

n i p @ ) : t u ( n )  ( V i e  N s ,  Y n e Z ) .

As an easy consequence we get the equalities

(") reg*(ff) - reg;k+z(M), for all k e No;

(b) coreg* (U): coreg* (M), for all ft e Ns.

For a coherent sheaf f of. O;-modules we also consider the invariant

6( f ) : :  min{depth( f , )  I r  e  X,  n c losed}

which we call the subd,epth of, f. As fto is artinian, we have

6 ( M ) : ) ( M )  - 1  ( 2 . 4 7 )
for each finitely generated graded R-module M (see lI4, (20,4.18), (20.4.19)l).

Finally, let us keep in mind that



Bounds for Cohornological Hilbert-Functions ol Projectiae Schemes

if dim(M) > 0,
if dim(M) < 0;

sheaf of. 9x-modules is defined as

8. A Lifting Result for Algebraic Field Extensions to Local Rings and
Linear Systems of Homomorphisms

Lemma 3.1. Let (B,nB) be a discrete ualuation ring (DyR). Let L be an
algebraic ertension field of BlnB. Then there is an integral flat extension ring
B' of B , which is a DVR with marimal ideal r B' : (tr B) Bt and such that there
is an isornorphism of B-algebras L d B' f nB' .

Prcof. L€t F be the algebraic closure of Quot(B). L"t R be the set of all pairs
(C,ec) for which C g F is an integral extension ring of B such that (C, rC) is a
DVR,andec : C -.Lisahomomorphismof .B-algebras. Letes: B - ^Lbe
the natural map. Since (B,ea) eR, we have R + 6. For (C, ec),(D,ep) e R
we write (C,ec) S (D,ep) if C E D and if €c : €D fc,, where uli ' i. used to
denote restriction.
Clearly the relation "S" defines a partial oder on R. Let (Cr,uc,)i.z be a chain
in R with respect to'((" and let C : Ur..;. C;. Then C is integral over B and
nC is the unique marcimal ideal of C. By [35, (21D)J, Ci is faithfully flat over
C; whenever (Ci,ect) S (Ci,eci), U, j e /). This shows thattrnCAC; : TnCi
for all n € N and for all i e T. We thus must have ['lnen nnC : 0. Therefore
(C,nC) is a DVR.
For each e € C, there is some i e I such that e € Ci. Moreover if j € T is
a second index with e e Ci, we have ec,(e) - eci(e). So we can define a map
es : c -> L by setting ,c(") 2: €c;(e) if i eT is such that e € c;. It is easy to
see that the map es is a homomorphism of B-algebras. So we have (C,ec) e R.
It is clear from the definition of ec that (Cr,rc,) S (C,ec.) for alli eL This
shows by Zorn's lemma that R has a ma><imal member, say (8,, eB,).
Our next step is to show that el : B' .L is surjective. Assuming the
opposite, we find an element A € tr\.a,(B').Observe that es, (8,) is a subfield
of L. Let the polynomial / - ;n * bn-tx'-l + . . . + b0 € B,[x] be such that
x'  *es,(b,,-r)x"-1 +...€y,(bo) e eB,(B') [xJ is the minimal polynomial of y
ov€r €s, (B'). Then / is oI degree n > r and irreducible in B'[xJ. Now let u € F
be such that /(z) :0. We have u 4 B'.
Let Btt : B' [uJ and let tp: B'[x] -) B" be the homomorphism of B'-algebras
which sends x to u. Then B" is a finite integral extension of Bt. As B, is
normal, there is a canonical isomorphism B'l*) I (/) = B,Iul : 8,, (see [18,
(4.13)J or [14, (8.1.7)]). As zrB'[*]+ (/) ir a prime ideal in B,t[x] we thus obtain
nB" e Spec(B"). As B" is integral over B', this shows liat rB,, must be
the unique maximal ideal of 8". This means that (8,,,T8,,) is a DVR. Let
tb , B' [*J --' L be the B'-homomorphism which sends Do, xd to Dr",(or)ar.
As d(/) : 0, there exists a homomorphism of B'-algebras €e, 2 8,, ->; such
that the following diagram, in which e denotes the inclusion map, is commutative

353

(2.48)d i m ( M ) :  {  
a i * 1 M ) - r '

L -oo,

where the dimension dim(f) of a coherent
the dimension of the support of f .
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B'
t l

B'[*]

L

I es"

8,,

It is not diff icult to check that (B',€n,) < (8" 1ep,,). As B' 
F 

U", this contra-

dicts the supposed marcimality of (B', eB,).So B' I f is surjective. As .L is a

field, we get a^n isomorphism of B-algebta,s B'frB' = L. r

Proposition 3.2. Let (A,m) be a loenl, noetheri,an, cornplete ring and let L

be an algebraic ertension field of Al^. Then, there 'is a loenl, noetherion, flat
ertension ring (A',m') ol A such that m' : mA' and such that there is on

isomorphism of A-algebrus L e A' /^' .

Proot. We have to consider two cases.

Case 1: A untains a field. Let o1 t... tar be a system of generators for m. By

Cohen's structure theorem, 4 contains a field K such that K = Alm and there

is a surjective homomorphism of K-algebras from the formal power series ring

z;, for i : tr.., ,r. Hence we c&n write

, o f  K  [ l * t , . . . , * ' ] ]  .

;i'i; ;; {;"ItT"*"Ir" l?',:i"i:'ff
noetheria^n, flat extension ring of A with ma>cimal ideal m': (*t,...,x") /,' :

mA' and A'fm' = L.

Case 2: A d,oes not contain a fietd. Let a1,...tar be a system of generators for

m. By Cohen's structure theorem , there is a DVR, say (8, nB), such that there

exists a surjective homomorphism from the power series ring B [*t,...,xrJ]
onto A. Thus we may write A= B [[*t,...,*,]] /o, with an appropriate ideal

o of B [l*r,... ,*,]] . Applying Lemma 3.1 we can find an integral extension

DVR (i,nC) ot E such that ClnC = L. Set ,S - B [xr,." ,*']] and ̂ 9' :

C [*r;... ,x,n. Then by [35, 21-D], I is flat over S bv. IIet A' - S'loS'' We

no* may conclude as previously in the case 1. I

proposition 3.3. Let(&, *o) be an artintan local ring and let L be on algebroic

exteision field o! Ro/*o . Then, there is a fl,at artinion local integral estension

,ing (4,m,0) o/Ro siiuch thatmb : *04 and such that there is an isomorphisrn

ol Rn-algebros frl*o = L.

prcof. By Proposition 3.2, there is a local, noetherian flat extension ring (n6' *6)

of fto wiitr m6 : *0ft6 a"nd such that there is an isomorphism of .Rs-algebras
p6l^6 = L. Ar & is artinian, there is some n € N with mfr : 0. It follows

tfrat 1m51" 
- *6 Ho:0, and so R6 is artinian. It remains to show that R[ is

integial-ovet Eo] So, let a e 4. As Ri/m6n6 = .L is an algebraic extension field

of .Rl/mo, we find a polynomial x* * am-lx--l +... * ao : / e &[xJ with

f @ L.rnt. It follows that f (il € rn6ni - 0. This is an integral equation for

y over R6. I

e B-)

/,t'
+

I
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Flom Proposition 3.3 we obtain

Corollary 3.4. .Det (^Rs,ms) be an artinian locat ri,ni. Then there is a flatartinian lonl integral extension ri_ng (n6,*6) of Ro sich thatm6 = msilt and,
such that Rl/mfi is an algebroically ctosed, fiLla,

Remark 1' Let..B: QneNo& be a noetherian positively graded homogeneous
ring such that (.Rs,ms) is local and artinian. Let II = dnezMn be a-finitely
generated graded .R- module. Moreover let (.fi[,m[) be as itr botollary B.a ani
consider the noetherian positively graded homogeneous ring H ::4 @no R:
91.n0 (R684, R") and the finitely generated and gra.ded ^R,-Lodul 

" 
Ii, :-R,g"

M = @"ez(4 @no Mn). Theh, by (2.29), (2.80) and (2.31) we have

htu,b) _ h'a@), tu,@) : tu@); (Yn ez, vi e Ns);
rc{1u'y : regklM'1, coregt (M,) : coregr (M), (vk e Ne);

^(M') = A(M) .

So, if studying cohomologlcal Hilbert functions, we may replace r? and M re-
spectively by H and M' and hence assume that Ra/ms is algebraically closed.

Later, we shall use Corollary 3.4 to extend some results on the growth of
cohomological Hilbert functions of graded modules over graded algebrr" o*, *
algebraically closed field K to the case, where K is r.ptr"ua by an arbitrary
artinian ring Rs. The main ingredient of the *t.oponding a^rguments is the
notion of linear system of homomorphisms of modules over r loJl ring,

.k, (ao,mo) be a local ring and let p and e be ^R6-modules. we write
$ /*o :t k: By a linear system of homomorphisms from F to e 11," mean a set
.L CHom no(P,Q) such that the set

T ,: {t 8no tcp e r} g Homp (p gao ft, e gao k) :,8

does not contain 0 and such that Z u {0} is a ,t-vector subspace of F. The
dimension dim(r) of the linenr syste'rn ^L is defined to be dim*iz, t 0 ) ) - 1.
Now, let r € Ns, let 10,...,1, € H9*"o e,Q) and let U E ft6*t be a set
which is mapped onto fr"*t\{O} under the natural map 

S*t 
J, p'+i gi;

by  (oo , . . . td r )  *  (oo  *m0,  . . . , d r  +*o ) .  I f  t he  se t .L  t :  { Ia ; t ; f (os , . . . , o " )  €

t/) lHomio (P, e) does not meer Hompo (p,.og) e rrori]l,r,q,it obviously
is a linear system of dimension r. We then calf , the li'near' i:ytt"^ induced
by lo,...rl, andl/. These induced linear systems play an imfortLt role in our
investigations. So we will study them in this section. As one basic ingredient
we need the following Lemma which is found io [b, (g.1), (g.2)] and which treats
the special case where & is an algebraically closed field.'

Lemraa 3.5. Let k be on olgebraimlly closed fietd, ond V, W nonzeno k-aentor
spo,ces of finite dimension. Let h,... ,1, € Homlr(V, W).
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(t) If the homomorhism Dl=o aili i V -+ W is injectiae lor att (o0,..., @,,) €
6n*1\{A} then dim(W) >- dim(V) + n.

(b) If the hornomorphismDlo ail; i V + W is surjectiue tor all (oo, ... ,an) €
6n+r \{Q} then dim(V) > dim(W) + r,. I

We also will use the following lemma, whose proof is easy.

Lenrma 3.6. Lett be an ideal of a ring A and h' : P - , Q on injertiae
homontorphism of A-modules. Then h-l(0 :e o) :0 :p c.

Proposition 3.7. Let (Ra, ms) be an artinian local ring for which ft - ft6/ms r"s
an algebraiu,lly closed field. Let P,Q b, nonzero finitely generated Ra-modules.
Letlo,...,l, be Ra-homornolhisrns from P to Q. Assurne that there is a setU I
R[*t such that Il is mappel onto k'*l \t0) under the canonical rnap fi6*t -
k'+r given by (as,...tlr) r+ (oo + rng, ...r a, * ms) and such that Dl=o oil; :
P =-' Q is injectiue for all (oo, ..., a,) e U. Then

In, (Q) )  IRo (P)  + r .  s(8) ,

w h e r e  s ( 8 )  : :  m i n { n  €  N o  l * 3 ' Q : 0 } .

Prcof. We make induction on s(Q). If s(Q) : 1, then m08 : 0. As Di=o o;li i
P --+ Q is injective, it follows that msP - 0. Thus, P,Q are k-vector spaces in a
natural way. Now by our hypothesis, 16, ... ,1, are k-linear maps and !!o ali :
P + Q is  in ject ive,  for  a l l  (d0, . . . ,d")  : :  (oo +rng, . . . ,c"  *m0) € k"* t \ {q} .
Therefore, this case is proven by statement (a) of Lemma 3.5.
Now aasume that s :: s(Q) > 1 and that the proposition is true for all finitely
generated target modules Q' with t(8') < s(Q) : s. Clearly 0 :p mfi-' + O
and 0 :a T3-' + Q. Note that s(0 :a mfi-t) -^s - 1, as otherwise we had
s(0 :q  *b -1 )  S  " -2 ,hence(0 ,o  

rn6 - t )  q  (0 :e  m6-2 ) *d thus thecon t rad ic t ion
that (0 :O m6-') : Q. If we apply the induction hypothesis to the injective
homomorphisms

f  * r t , lo ,pmi- , :  (o:p *6- ' )  - - ,  (o 'o *3- t )
d = 0

for all (oo, ... ,0r) € U, we obtain

lno(0:a  rn6- t )  >  J"o(0 :p  mf i - t ) t  
" ( r  

-  1 ) .

On the other hand, by Lemma 3.6, any injective homomorphism g : P - Q
induces an injective homomorphism g' : Pl(0:p m6-t) * QIQ:A m[-t). At
t(Q/Q:c m3-t)) : 1, this implies bv induction that

IR, (e lQ:a m6- t ) )  >  tR, (p lQ:p m3- t ) )  + ' .

Combining (*) and (**), we get

(** )

l n , ( Q )  - -  l n , ( P ) * r . s .  r

Corollary 3.E. Let Ra,PrQ,lo,...,I, be as in PropositionS.T but such that P
and Q ore not necessari,lA * 0. Then
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In, (P) ( max {ln, (Q) - r,0} .

Next, let us give a "dual version" of Proposition 3.7.

tpo(PlmsP) > lno(Q l^oQ) + ,.

The induction is now completed by combining (*) and (**).
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Proposition 3.9. Let Ra,P,Q,lo,...,l, and s(Q) be as in Proposition 3.7.
Assume that there is a setl.{ E n;*t such thattl is mapped, onto k'+t \{Q} under
the natural map R6*t I kr+r ; giuen by (o0,... ,er) r-r (oo + rr0r ... , ar + m0)
and such thatli=oa;Ii : P + Q is surjectiue for all (o0,... ,a,) eU. Then

ln, (P)  )  Ino(Q) +r  .  s(Q).

Prcof. We make induction on s :-- s(8).

I f  s : 1 ,  t h e n  * o Q : 0 .  T F s ,  e a c h  h o m o m o r p h i s m  I ; :  P  - Q  ( i : 0 , . . . , r )
induces a homomorphism 16 : PfmsP - Q.For each (CI0,.. . ,or) e. U the
surjective ffi&p, Dl=oaili : P + Q induces a surjective map Dl=o orf :
P/mgP -, Q. As PlmsP and Q are ,k-vector spaces in natural way, we thus
can apply statement (b) of Lemma 3.5 to complete the case s(8) : 1.

Let s ) 1 and assume that our statement is true for every target module Q' with
s(8') ( s. Note that s(m6 Q) : s - 1. FYom the surjective homomorphisms

f

Iortr fmop : moP -+ moQ
i = 0

for al l  (o0,. . .  ,dr) eU we get by induction

lpo (msP) 2 lao (*oQ) * r .  (s - 1). (*)

On the other hand, for all (o0,...,o") e tl the homomorphism Dl=oor7r :
P/msP - Ql^sQ which is induced by the surjective map D;=oa;li : P -

Q is again surjective. If we apply statement (b) of Lemma 3.5 to the k-vector
spaces P/msP and QlmoQ *e obtain

( * * )

I

Corollary 3.10. Let P, Q, R4, f0,... ,1, be as in Prcposition 3.9 but such that

P and Q are not neenssarily 10. Then

ln,(Q) S ma>c {ln, (P) - r,0 }. I

Tio apply the previous results to local cohomology, w€ need the following
result, which will ensure us, that there are appropriate induced linear systems of
homomorphisms between consecutive graded parts of local cohomology modules.

Proposition 3.11. Let R : O,,2s &, be a positiaely graded, homogeneous
noetheri.an ring, such thot (fto,*o) is local artinian and uith infinite residue

field k: Ro/mo. Let M: Onez Mn be a finitely genemted, graded R-module.
Let r € No be such thot r < dim(^R/p) for all p e .Assp @).
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Then, there are linear forms 10,...,1, E R1 such that D. j=o a;I; €. R1 is an M'
regular element for each (r + t)-tuple (as,... ,dr) e R5* L with the propertg that

a i  /  ms fo r  so tne  J  €  {0 , . . .  , r } .

Prcof, L"t tpt,...,F,) - AssR(M). As & is artinian we have Fi nRo - rns

so that R/p, is a homogeneous k-algebra of dimension ) i for all i e {1,...,n}.
Therefore, the linear forms of the graded ring .R/p1 constitute a k-vector space

of dimension ) r and hence E; :: Pi fi ftr/.oRt e Rr/*ofit is a k-vector

subspace of codimension 2 r * 1, for all i e { 1, ... , n } . As k is infinite, we thus

find a lc-vector space T, g Rt/*oRt of dimension r * 1 such that Z nfri :'0 for

a l l  i €  { 1 , . . . , n I .
Now, let Is,...,1, € ftr such that their images 70,... ,1, € R1/msrt1 form a rb-
basis otT and let (o0,...,ar) € ,R[*t be such that ai / ^o for some j €

t0, . . . , r ) . I f  we denote bJ d i  the image of  o1 in  k  ( i  -  0 , . . . , r ) ,  i t  fo l lows that

the el"*Lnt Dl=o tt e Z does not vanish and thus avoids the subspace TIi :

Fi o Rr l*o&, i 'Rlfms&l for al l  i  e {1,. .  .  ,n}. But this implies Dl=o a; l i  /
Pr U . . . U F' and hence proves our claim. I

Corollary 3.12. Let R: (Er,>0 R^ be a positiuely graded, homogeneous noe,the-

rian ring, such that (Ra, m0) r$ Iocal artinian and with infinite residue field
/c : Ro l*0. Let M : @nezMn be a finitely genervtel, graded R'module and

let r € No. Assume thatlp*(M) :0 and that r < )(M), where the inuariant

)(M) is def,ned as in (2.L2). Then, the same conclusion as in Proposition 3.Ll

holds.

Prcof. Let p €Ass (M).As fp* (M):0, we have p / Var(^R.'), so that

dim(n/p) - depth( Mp) +ht((p * R+)/p) > ,\(M) ) r .

Now, we may conclude by Proposition 3.11. r

4, A Priori Bounds of Castelnuovo TVpe

In the present section, we shall establish the bounds which were already men-

tioned under (1.16) in the introduction. We do this in a module theoretic way

and then translate to sheaf cohomology.

We begin with constructing the occuring bounding functions

4i',, 'Nfi-t xz>--i -r No and

el ; } ,  'N3- '  -z>- i

for all i,I,d € No with 0 <i < d. We do this by induction on d-i starting with

d - i :1 hence with i  -  d - 1. We set

4i;i '  :Ns x z,-a+r - No,
( "a-r , ;n)  -  ma"\ {  ed-r  -  (d-  1)(n + d-  t ) ,0} (4.1)
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and

Ai,;i) : Ns -+ Zr--a+rt €d,-rt- -d+ 1 + [[ffi]]'
where [ r ] ]  : :  min{ t  eZI t> o l  for  a l l  a  € lR.
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(4.2)

( 
", 

+D-,*r.-=" E[i)-r, o-ry(d;*) if 
-i 1n 1 c

4;L , (e ; " ) : { .7 : , : : , ; i : " - l ]_ ' ' , - l , : , , . " .
( *o{4i),0)@;c) - k(n - 

"),0} 
\f n } c

e[lL,(e)': . + [4lLr-ts; "1,, (4.4)

Now, assume that d - i > 1 and tU"t E['o)") *d S[i]r, are already defined for
a l l  j , h , s € N s w i t h 0 < 1 < s a n d  s -  j < d - i .  W e s e t

7 - max{l, 1} and lc - max{i, min{l, d - U }.

For each (d - i)- tuple e : (ei, . . .  ,  
"a-) 

€ N$-t we set

d  :  ( " r *  e i + r , . .  . ,  e a - z  *  
" r - r ) €  

N $ - i - t ,

c:: m&x {- i ,Al l_l ,d_r)(s')  -  1}.

Then we put

and

Remark 2. (A) It is immediate from the above definitions that 4iL, (e; n) : 0

for all n> Qll),.,(t), ,tr,4;L, (e,n) > 0 for all n with -i < n < e[;L,(d rod

tf,* a[;)"y(e; -i) - ei.In particular we have 4;L,(0;"):0 for all n ) -d and

Ai.,r(Q) :  - i  where o: (0,. . .  ,o) € N6-' .

( B )  L e t  g - ( " ; t . . . a d - r ) , o :  ( o , , . . . , a d - t )  e  N f i - t .  W e w r i t e  e 2 a i f  e i t  a i
for al l  j  e { i , . . .  ,d - 1}. Now, by induction on d-i ,  we easi ly see

Ir e > a, then 4;f, @;n) > 4lf, @;n) (v, 2 -i) and 4?n k) > e[;],tsl .

(C) Now, let i, h,l,d € No with 0 < i < d and h S l. Then, by induction on
d - i we easily can prove the inequalities

Ai),'r@;") s 4i),ot @;n) (vn > -i) a.rrd s[;b(4 s s[;l,tel.

It also follows easily by induction on d-i that these inequalities become equalities
if h S I S i. This means in particular that for all I e Ns we have

4;1, @;n) s 4lb @;n) (v n 2 -i)

and 
A?,or(s) < g[:]r, t'l with equalities ir I < i '
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(D) It is important for us, to notice the following inequalities

Ai',r@;n) > 4;:?'1(e;n 
- 1) ror all n ) -i,

sli),r) (e) > s[;ll'r (e) + r .

We prove these inequali t ies by induction ond,- i .  I f  d- i :  I  hence i  :
d _ I , b o t h i n e q u a l i t i e s f o l l o w e a s i l y f r o m ( 4 . 1 ) a n d ( 4 . 2 ) . S o , l e t d _ i >
1, thus i < d - L. By induction, c : ma)c {-i,Al!,)_r, d-l)(g') 

- 1} > C +

1 where C :- max{-(i + 1),e[;]llr,(e') - 1]. By induction we also have

Al;f r,d-r) @;*) > A[;]l: y(d;*- 1) for att m > -i. But now, it follows from

(4.3) that 4;)"y(e;rr) > 4;:?t{e;n- 1) for all n > -i and that 4i!,(s") >

4illt, @;C).In view of (a'a) this completes our proof.
(E) Next, let 0 < i < d - 1. In this situation we have the inequalities

4lll,, @;n) > 4;:i' (f ;") (v', > -i - 1), s[;]f,r(e) 2 e[;:i)(I) ,
where  f  :  ( " r * r , . . .  ,  "o - r )  

e  N f ; - i - t .

We prove these inequalities again by induction on d-i. If d-i:2 hence
i :d, -2wesee by (4.3)  that  f ,1 , ; t * ' r l@;")2ea-1 for  a l l  n  wi th -d+1 S n S

c: mar({-a+ t,Al!,_r,)o)(q') - 1} and trrat r[f,oil l(e; n) > max{ea-r - (d -

lX,z-c),0) for all n > c. By (4.1) we thus see that 4i;il, @;r) > 4i;i' (L;")
for all n > -(d - 1). By part (A) of the present remark is follows immediately,
tn"t Cff}il,tel >{i,;i) (I). If d-i < 2, thus i < d-2,weget by induction
tr'at a[i+i]r,tu" nt) > a[;]l]r_,t(I';rn) for attm> -i- 1 and e[;]l:_,1(e') >

Ali : t l , r - , , ( / )  where f , . , :  ( t ,* ,  *ei+z' . . .  '  ea-z*"0-r)  € Nf;- i -2.  From this,

the requested inequalities follow easily by (4.3) and (a.4).
(F) Let 0 < i < d - 1. Then if we combine the estimates given in part (D) and
(E) of the present remark, we obtain the inequalities

4 i f ,  ( " , , . . . t ed - r ;  n )  >4 i : i ' ( t , * , ' ' . . '  ea - r i " -  1 )  ( vn )  - i ) ;

4 ' , ' ,^(" , , . . . ,  ed-t)  > E;: i '  (" ,*r  r  . , .  r  ea- r)  + 1.

(G) Finally, we also shall need the following estimate

4l,or1r=+ s;n) > 4lL, @;n) * 4llrl @;n),. Ye,a € N3-', Yn ) -i.

This statement is again shown by induction on d - i. If d - i : t hence i :
d - L, we may easily conclude by (4.1). So, let d - i > L. By induction we

then have 4;1, ,a-r1(d + d;m) > a[i)_,,r_,1(e'; rn) + ali)_r,o_,1(e';rn) for all
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m )  - i . By part (A) of the present remark we also t*. S[ill,d_r) @ + d) >
a:i:[ilr,o-11(e'), al?-r,a-r1(4'). As e' * s' : (e+ o1' we may conclude by (a.B).

( i )

Now, we are ready to prove the central result of the present section.

Proposition 4.1. Let i,I,e € N6 tuith 0 < i < e. Then, for each positiuely
gradd noetherian homogen@us ring R: (E'>oR, Un argilan loml-base rinlg
(Eo, mo) and for each finitely generated gradut R-module M uith t < \(M) anld
dim(M) S e ue haue the following estimates:

(a) d'u@) s 4i]"r (o*e8,...,d"i '(-(" - 1)) ;n), vn > -i;

(b) d'u@): 0, vn > s{;1", (o'*(-.01,... ,d"Mt (-(, - r)));
(.) regd+t @) s A|,"r(u*?r),...,d:it (-(, - r))) * o.

d"i,!-,, (') < *o{4ntl_,, (, - t) - (e - r),0}
for all n € Z. By (2.38) we thus get

di ; '@) s -o{a i r - '@- 1)  -  ( ,  -  1) ,0}  ,  vn ez .

In particular, if n ) -(t - 1), a repeated application of this estimate gives

drfn-'t(") s n^x{a\fr-t) (-(, - t)) - (e _1)(n + e _ 1),0}
: 4i;i' @fi,-')(-(' - r)); ").

This proves claim (a) if i: e - L

S o ,  l e t  e - i
max{ i ,  min{ l ,  

"  
-  1}  } .
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tpttt 1 nr4rrr (n) S 4;]"- ry(duwt 1 no Mttt (-i), " ' , tr i,?, 
t ha Mtrt (-(t - 2)); 

")

= u l i l r ,  e - r )  ( t4avt1n,uwt? i ) , " ' , t r * , l t th .Mtht  (  . ( "  
-  2 ) ) ; " )

for all n2 -i and all a €V. Note that from (2.22Xb) and (2.38) we get

dflrvt tnrur*r(--) I {favt(--) + dlrii(-* - 1)

: dfr(-*) + {if '(-(- + t)) for all m ) k : i.

Using the monotony property Remark 2(B) of the function a[i)-r,"-r; we thus
get

daau/h ,Mt* t ( * )  <  a [ i | , , " -  , t ( t  ( - i )  +  t i l t?U '+  1) ) , " '

. . . , f f * ' ( - ( r  -  2 ) )  +  t r i t ( - ( ,  -  r ) ) ; * )  : ,  B(* )  ( * )

for all rn 2 -i and all o € V. By Remark 2(A) we thus conclude in particular
that

diyt* t1h,Mr*,(r)  :0 ,vn )  4i ' - r , "-r l ( tu(- i )  + t i t?Q+ 1)) , . . .  
(**)

. . ,dx ; '  ( - ( "  -2) )  +  t i ' ( - ( ' -  1) ) ) : '  " '  .
for al l  a eV.

Using the estim ates (2.22)(a) for Mltl with ho instead of h and keeping in mind
(2.38) we see that ily(m) S d'u@ - 1) + d*nr/h"Mrrt(rn) for all m eZ and all

a €V. So, the estimate (*) gives us

t u @ ) 3 t u @ - L ) + B ( r n ) ,  V r n  >  - i + 1 .  ( * * * )

Let c: max{-i,C - 1}. Then the estimate (* * *) yields

t u@)S tu ( - i ) +  t  B ( * )  : -D (n ) ,  i f  - iSn1c .  ( . )
- i * l S m S n

Now, let  n > c.  By (**)  we then get i lywlhoM' ' t ( t ) :0 for  a l l  c e V. So, i f

we apply the sequence (2.20) to Mttl with h= instead of h, we get a surjective

homomorphism

&
ho :Dorn,  :  Ri  Dp, (Ulr l ) , , - ,  -  Ri  Dn* (ulx l ) , , ,  V a €V .

t=0

So, by Corolla^ry 3.10 we get diyvt(") S *o{4lr*,(, - 1) - k,0}. In view of

(2.38) we therefore obtain

tu@) S mu<{d,rr("  -  1) -  k,0},  Yn) c.  ( . . )

A repeated application of this estimate gives

tu@)  <ma:< {D( . )  - k (n -c ) ,0 } ,  Yn )c .  (ooo )
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In view of (4.3) the estimates (o) and (o o o) prove statement (") in the case
l < i .

So, let I  > i .  In this case we have k - min{d- \ ,ry and I:1. BV (2.1?)(c),
(2.18[c) _and (2.83)(a) we may replane M by M/ip-(M) and hence assume
that fa* (M) - 0. As /c < ^(M) we conclude by CotJfi"ry 8.12 that there are
elements ho,...,hr € R1 such that ho :: Df=o eth e r?r is M-regular for all
G: (a0,.. . ,oe) € ,?6*t \  (ro x . . .  x mo) - l)- .  By (2.2 ) and by (2.33)(b) we
now get

^(M/IsM) >, - | : T - t and dim(M/h,M) S e _ l
for all o € V. As i < e-I we thus may apply the hypothesis of induction to
M/hsM and obtain

t i lorr(") s E[i '-,,,- ,1(d'r1o.r(-i), ... ,di i fo,u?k - z));n)
for all n) -i and all o €v, Now, (2.22)(b) glves the inequalities

i l f t /o .u?* )  Sdf t ( - * )+ t f r * ' (_ ( -+  r ) )  ,  ym)  i .

using again the monotony property Remark 2(B) of the function afilr,r_r) we
get in the notation introduced in (*) that

t* /o , r (* )  S B(*) ,  Vm) - i ,  ys €V.  (* , )
By Remark 2(A) and using the notation of (**) we thus get

d'u1nru(r) - 0, Vn 2 c', Ve € V. (** ')

Now, (2.22)(a) and (*') give again the previous estimate (* * *) and hence the
estimate (o).

Next, let n ) c: ma>c{-i ,  c - l l ' .Then, (** ')  shows that d*n,u@):0 for
all o € v. so, by (2.20) we get a surjective homomorphism 

' :

k

ho :E"rn,  :  Ri  Dpr (M),-r  - )  V, Dn* (M), ,  V o € y .

So, Corollary 2.10 furnishes again the estimate (oo) and hence the estimate
(o o o). Now, statement (a) follows by (4.8).
3o, claim (a) is proved completely. Now, claim (b) is obvious by Remark 2(A).
linally, by statement (b) and in view of (2.b), we have for all j e {i,... , e - 1}

nti' @): 0 , vn ) alt,",u@!*?il, ... , d"i t (-(, - r)).
\ repeated application of the second estimate given in Remark 2(F) furnishes
he inequalities

,J])"r(or(- i) ,  . . . ,d"i ' (-(r-r))) s el l l"r  (o,rt- i1,. . . ,d"i ' (-(r-ry))+r- i
c r a l l  j e { i , . . . , e - 1 } .
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Altogether we rhus see that end( Hh:t@)) s gll].1 (t*(-j),...,d.iit(-(r -

1))) + i- j - l for all 7 ) i. In view of (2.10)(a), this gives statement ("). I

Now, we obtain the main theorem of this section.

Theorem 4.2. Let irl,e € No with 0 < i < e. Then, for u,ch posi'tiuely graded'

noetherian homogeneous ring R: @n>0 R- uith artinian base ring Ra and for
each finitely generateil gradetl R-module M uith I < I(M) and dim( M) S e we

haue the following estirnates.

(") d'*(n) S 4l 'r, (o*en),... ,dei '  (-(" - 1));r,), vr, > -i;

(b) i lw@): 0,  vn > S[ i ] , ,  (o*ei l , . . .  ,dfu- ' ( -( '  -  r ))) ;

(.) res'+r (M) se{l l ,  (oreil,... ,tr^r '(-( '  - 1))) * o.

Dj=, dr,r,r(n) for all i e Ns and all n €2. By (2.27) we also have,\(M'U)) >

I(M) > I for al l j  € {1,. . . ,r} .  By (2.33)(c) we obtain dim(M'U)) < dim(M) S 
"

for all j € {1, ... , r}. So, by Proposition 4.1 and by a repeated application of the
estimate in Remark 2(G) we get for all n 2 -i

r r

tu@): D d*,,,,(") s I4;1, (dr,,,,(- i), . . . ,d.f i , I , t  (-( '- r l);")
j = L  j = L

s 4ll"l (f,or',,r (-i), "',i d"r'',,,(-('- rl);')
j = l  j = l

: a[ll,l (oren), "' ,dT;' (-(' - rl);")'

This proves statement (u). Statement (b) now follows immediately by Remark
2(A). Finally, by (2.26), Proposition 4.1(c) and Remark 2(B) we get

resd+' (u): 
*{regd+t @'( ' l  )}

s yg{g[l),4(t*,,,,(-i), "' ,d'i,1,lit (-(' - r11) + l]

< e[l]", (o*e,),... ,dfr'(-(' - r))) + r; '

This proves statement (.). I

The statement of Theorem 4.2 will also furnish bounds on the cohomological
Hilbert functions if nothing is known about the rralue of )(M). To formulate the
corresponding result, we introduce a few notations.
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So, let  i ,d e N with i  < d.  For e , :  (e i t . . .  ,ed-t)  e N$-d,  we set

4lltc n) :: Ai',r(e;n), Vn ) -r;

all\tst ': e[;],,te).
So, we get the new bounding functions

4;l ' Nd-i x zz-i -, No and e[;), ' N6-' -> z>-i .

By Remark 2(C) we get, for each t e No for each n ) -i and each e € N3-'

(') 4;l @;n) > 4lL, (e;n) ,
ft) e[;](e) z Ait,o{e),

with equality if I < i.

Using the above notation, we now have the following result.

Corollary 4.3. Let i,e € N with i < e. Then, for each positiuely grudel,,
noetherian, homogeneous ri,ng R - @n>o&r uith artinian base ring h and
for each finitely generatel, gradel, R-rnodule M with dim(M) ! e we haue the
following estimates

(") d,u@) s 4:l (r*eq, ... ,din ' (-(. - 1)); ,,), v,' > -i;

(b) i lu@): 0, vn > 4!r(o*f-n\, . . .  ,dj i ' (-( '  -  r)));

(.) regd+t @) < 4'"',,(o*(-i), ...,dfrt (-(r - t))) * n

Proof. Clear from Theorem 4.2 and the inqualities (4.7). I

In view of (2.5) it seems natural to seek for formulations of Theorem 4.2 and
Corolla.ry 4.3 which depend entirely on the functions n a hiu(r) rt defined in
(2.2).To do so, we introduce some notations. So, let j,l,d € No with 1 < j < d.
For each (d - j  + 1)- tuple 

":  
(" j , . . .  ,ea) € Nf;- j+t we set

365

(4.5)

(4.6)

(4.7)

(4.8)

(4.e)

/ i lrr|r,l;n),:4i;i '(e;n+1), vn > -i;

4i1,,(s),- 4.;l(4 - r.
This defines new bounding functions

{iltr: Nf;-i+t x Z>-i + No and

Using this notation, we get the following equi

Corollary 4.4. Let j,I,d e Ns u,ith I < j < d,. Then for each positiuely graded,
noetheri,an homogeneous ring R: @r,>sfin with artinian base ring h and for
each finitely generated grad,ed, R-module M with, < l(M) and dim(M) S a

4lrr: Nf,-j+r - z>-i .
valent formulation of Theorem 4.2.
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(r) ntu@) Sdl,rt(|rL'reil,... ,h!M?d);") for all n > -i;

(b) n!u@): 0, vn >-drl,rr(n'*?il,... ,hfu(-a));
(") regi (M) Sd<I!,rti.t;'*eil,...,n!u(-a)) + i.
Proof. As )(M(-1)) : ^(M) > I and dim(M(-l)) : ajq(u) S f ye mav
.ppli Theorern i.zi" M(-i) with i: i- 1. As nr*fil : dr*- t(t ) - d'\r-t-ry(n+

l) for all k 2 j and all n e Z, our claims follow easily from the corresponding

estimates of Theorem 4.2, I

In order to give a corresponding formulation of Corollary 4.3 we suppce

grven j ,d€Nwi th  L  <  i  (  dand in t roducethe  bound ing func t io " t4 l )1  :

Nf,-r+r xV,>- j +Ns and {to'r, Nf;-r+t -+ V,>-, by setting for each g € M-'*t

4iltt' n) :: 4'r;" (rrn+ 1) : 4t,'u,a1(ein), Yn2. -i, (4'10)

(4.11){l\rul ,: EL;')(e) - t:4','-,,ay(e),

where At;r) and Al;tl _*" -defined 
according to (a.5) and (a.6). Then au

equivalent'formulation of Corollary 4.3 is:

Corollary 4.5. Let jd e N withl < i 3d. Then, for eachpositiuely Yvnd
noetherian homogeneous ring R: @n>o& ruith artinian base ring fu and fot
each finitelg generated, groded R-module M uith dim( M) S a

(*) n!u@) 54"\(n'*?il,... ,hfu(-a); n) , vn 2 -i;

(b) n'u@): o, vn >alh\@lreil,... ,h4M(-a));

(.) regj(M) sd|\@'r?il,...,hfu(-a)) + r.
proof. We conclude in the same way as Corollary 4.4 was deduced from Theorem

4.2.  
I

Rernarke. (A) rhe bounding functions 4i!,,e{!Ll (cf. (4.1)- (4.4)), 4;)1' 4rli
(cf. (a.5), (4.6)), drl),rr,dfilrt (cf. (4.8), (4.e)) *d 4i| ,/1r\ (cf. (4.10), (4.11))
are independent of ttie choiie of the graded ring R and the graded R-moduh

M. Therefore, we call the bounds given in Theorem 4.2, Corollaries 4.3, 4-4

and 4.b o priori bounds on the cohomological Hilbert functions dia, respec-

tively hry, and on the regularity regi (M)-.. As all these estimates a"re ginen

in terms of the "ualues du?i), . . . , fr f '*  )-t  (-(dim(M) - 1)) in the diosu

nal at and aboue leuel i ", respectively in terms of the "cohomologico.l lengtfu

h!r(- j) , . . . ,h|f(M)1-ai*1U)) i"  the diasonal at and aboue leuel j" ,  we saSr

that our bounds ate ol diagonal tgpe'

In 1893 G. Castelnuovo proved a geometric result which can be expressed in
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terms of local cohomology as follows (see [16]). Let o E C [*0, *r, x2, x3] be
the (graded) vanishing ideal of a smooth curve X E 4 of degree d. Then reg2
(o) S d-1, with equality if X is rational. This is appearently the first regularity
bound and hence the first vanishing result for cohomological Hilbert functions
in the range n 2 0. As the estimates given in Theorem 4.2, Corollaries 4.3,
4.4 a^nd 4.5 bound the cohomological Hilbert functions n e diu(n) respectively

n r- hty(n) in the range n ) 0, we caJl them "Castelnuouo bounds". So, in this
respect, we follow the same "policy of giving names" as found in [39,42].

(B) Let j,d € N with L < i < d. Let R : On20&r be a positively graded
homogeneous noetherian ring with artinian base ring.Ro. Then Corollary 4.4(a),
the definition (4.8) and the last statement of Remark 2(A) yield that hl6(n) : 0

for al l  k>- j  and at l  n) -k whenever htr(- i) :  "  '  - ;rdin(M)(-dim(M)) :0

for a finitely generated graded R-module M, This is an algebraic version - which
is also shown in [14, (15,2.5)J - of a va"nishing result on sheaf cohomology found
in [39], namely the vanishing constraint (1.10). So Corolla^ries 4.4 and 4.5 may
be viewed as extensions on the mentioned vanishing result.

It is easy to verify that the bounding functions 3(a) ' N3- t x V.,>--2 + No and

gU) , N3-t -, No of [14, (16.2.1)] coincide respectively with the f,rr,.tiort {1}
-/r\ -Ir\ 12\

*d q;i * 2, wher"q;i r"a Qij are defined according to (4.10) a"nd (4.11).

So, if i'6 apply Corollary 4,5 with j :2 (and assume moreover that .Ro is in
addition local), we get back the bounding result [ta, (16.2.4)]. So, Corollary
4.5 extends this latter bounding result to arbitrary values i e {2,... , d} and
Corollary 4.4 gives a refinement of this extension which becomes interesting for
j e { 2 , . . . , ) ( M )  - 1 } .

In geometric terms and in the notation introduced in (2.41), Q.a\ and
(2.46), the main results of the present section may be formulated as follows:

Corollary 4.6. Leti,l,d e Ns ?rith 0 < i < d. Then, for each aftinian ring Ro,

for eoch projrctiae Ra- scheme X and for each enherent sheol of Ox -modules

f aith I S 6(f) and dim(f) S d we houe the estimates

( ') htr@) s 41L., , (n'r(- i), ...,h|(-d);"), v n) -i;

(b) h 'r@):0, v "> Q', \ ,0*,1 (hi(- i ) ,  . . . ,h|(-a)) ;

(") resi-r(f) S ellL.,, (n'ret),...,h|(-a)) + r;.

Prcof. Write X : Proj (R), where .R : @,,>oR" is a positively graded, noethe-

ria.n, homogeneous ring a^nd write f - M, where M is a finitely generated
graded R-module. Then, the given estimates follow immediately from Theorem

4.2 by the equalities (2.44),' (2.47), (2.48) and (2.45)(a). I

Corollary 4.T Let i,d e N ufith i < d. Then, for eoch ortinion ring h, fo,
eoch prcje.ctiae Ra -scherne X and for ench coherent sheof ol Ox -modules f

urdth dim(f) S d, we hoae the estirnotes
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(r) h'r@) S 4l)-,1 @'r(-t), ... ,hdr(-d);n), v n ) - i;

(b) h ' r@)== 0, Y n )e[o '*r ,  (n ' ret ' ) , . . . ,hdr(-a)) ;

(") resi- Jfl < e[04*,, (hTeil,... ,h|(-a)) + l.

Proof. Follows from Corollary 4.3 in the same way as Corollary 4.6 follows from
Theorem 4.2. r

Rernark 4. @) Fbr projective schemes over an algebraically closed field K, the
estimates given in Corollaries 4.6 and 4.7 correspond to the bounds found in [7,
(6.11), (7.9)l if in these latter the "reduced linear subdimension" lsdim(o)(.F)
and the "reduced subdepthrt 6(0)(f) are both replaced by 6(.F). In the present
paper, we did not use linear subdimensions, as these are not invariant under the
changes of base rings we had to perform, ild thus only make sense if ftg : K is
an algebraically closed field.

(B) In view of the last statement of Remark 2(A), the bounds of Corollary 4.7
satisfy the requirement (1.10) mentioned in the introduction.

Definition 4.8 [14, (16.4.1)]. (A) Let C be a category and let D be a class of
objects of C. By a numerical inuariant for objects in D or a nurnerical inaariant

onD we mean an ass ignement  p :D +  ZU{*m}  such tha t  p (U) :  p (V)

whenever U, V €. D are isomorphic in C. We say that numerical invariant p is

fi,nite, if p,(U) € Z for all U e D.

(B) Let pt,... , ps, p be numerical invariants on a class D of objects in the category

C, We say, that pt,...,p, form an upper (top. lower) bounding system for p on

D if the in'rariants lrrr...t ps &te finite and if there is a function B : Z' - V'

such that

p(U) 3 BArr(U), ... , t ',(U)) ('" 'n. pV) >

for al l  U eD

(C) We say that the invariants Pr,...,p" form a minimal upper (resp. lower)
bounding system for the invariant p on 2 if they form an upper (resp. lower)
bounding system for p on D and if no s - 1 of the numerical invariants pi,... , ps
form an upper (resp. lower) bounding system for p onD.

Remark 5. (A) Corollary 4.5 tells us.in particular that - in the sense of Definition
4.8(B) - the numerical invariants h{.,(-i), ... ,h(.1(-d) form an upper bounding

system for the numerical invariant reg' on the class of all finitely generated
graded fi-modules of dimension not exceeding d, (i e {2,... , d}). It is important
to notice that this is not true for i € {0, 1} (see [14, (16.4.4)]), By [14, (16.4.3)J
the invariants hi.)(-i),...,ht )(-d) form an minimal upper bounding system

for the invariant regr on the class of all finitely generated graded R-modules
if, j - 2. A straightforward modification of [14 (16.4.3)] shows that the same
statement holds for any j e {2,...,d}. Finally note that the bounding function

B(u t (U) , . . . ,  p , (U ) ) )
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gU) ' Nd-1 -, No is given by a polynomial of degree ,a-z (see [14 (16.3.3),
(16.3.4)l), so that the same holds for the bounding tunction d|\ : 6@) - 2.
(B) L€t i,d e N with i < d. Let X be a projective scheme over an artinian ring
ft0. By Corollary 4.7, the invariants hfr(-z),...,t6(-a) form Ln upper bounding
systern for the invariant regi-1 on the class D of all coherent Oy-modules of
dimention S d. By what is said in part (A) it follows by (2.4b)@), (2.M) and
(2.5) that this upper bounding system in minimal.

Remark 6. (A) In many cases one might wish to replace the bounds given in
Theorem 4.2, Corollaries 4.3- 4.7 by possibly weaker but simpler bounds. This
may be achieved if one replaces the bounding functions Ai',r, rna e[i]01 uv
"bigger" functions which are easier to describe. In order to propose a *ay of
doing this, we want to establish the inequalities

*-,t4;f y @;n) ln> -i) s i (rf
7 = t

We do this by induction on d - i. The case d - i: 1 is obvious by (4.1) and
(4.2).So, let d-i  > 1 and let r, ! | t$ :_ f j=i $:r\  " i .  

Then, using the
Pascal formulas for binomial coefficients and in the notation introduced at the
beginning of this section we have P(g)-r)(e') _ r,!1t4. So, by induction we
have

a[i,_,,r_ ,]d;*) =]frr;;](r))"- '- '  ror au m) -i* 1 ;
n U )  t - t \ . l q p ( i ) , , - \ \ 2 " - ' - '  ;s1i- r,a- ry (e')

First, using (4.3) and observing that

we get, for each n 2 -i,

4lL, @;n)

But now, using (4.4) and observing that c S (zPft]{d)"-i-2 - i we get

Aitrtk)

/ a - i - 1 \  \ 2 '

f  i - i  ) " t )  
i

eli f ,rer s (r i  ( ; : ; ' )  " ,)" ' - ' - , .; 1 \  r - x  /  r
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Altogether, this proves our claim.

(B) As a consequence of the above inequalities, we get particularly simple esti-

mates, namely:
For each positively graded noetheria.n ring E: @r,>oftn with artinian base ring

.Re and for each finitely generated graded .R-module M of dimension d > 1, we

conclude from Corollary 4.5(c) and (4.11) that

d  
/ s  - ; \  o d - i

reg i  (M)  S  (2 I  ( ; _  , )n ' r ( - i ) ) ' ,  ( 1  <  i<d ) .
i t  \ J  

- ' e /

Similarly in the notations and under the hypotheses of Corollary 4.7 we get

d

regi-, (r) s (2t (i -i)nr(-j))" 
' 

(, s i<d,).
j = i

5. A Priori Bounds of Severi TYPe

In this section, we shall establish the bounds which were already mentioned under
(1.17) in the introduction. Again , we first establish the corresponding results for
local cohomolory modules and later translate these into sheaf theoretic terms.

We first construct the occuring bounding functions

B[ii ' Nb*t * Zs-; * No and Clii ' N|*t * zs-,

for all i,I e Ns with i < I by induction on i as follows. First of all, set

U[l i  ,  No x Z<o - '  No, (to, ')  l* max {"0 + ln,O}, (5'1)

c[,ti ' Ns --+ Z<0, €o '-' - 
[?]]'

(5.2)

where ttr]] :: min {t eZl t 2 a} for all @ € IR'.

Assume that i € N and that B[i] a"d C[il are already defined for all i, k € IS

w i th  j  < , t  and  i  < i .  Le t  I€  N  w i th  i  <1 .

For each ( i  + l)-tuple e: (eo ,. . , ,ei) € Nb*l we set

d, , :  (ro + e\t. . .  tei-t  1 ei) € Nb and c ::  min{- i 'Cl i-- l i (g')}.

Then we set

c[Nr,::c- tt 4#r]] (5.1)
and
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Rernark 7. (A) It is immediate from the above definirions that a[j](e;n) :0

fo1..all 
"sct'tl(s), 

that a{jlte; n)> 0 for all nwith c[1i(s) < n<-iand that
afflk; -i) = 

"r, 
Let 0: (0,...,0) € NA*t. It then is obvious from the above

definitions that ulii tq' ') = 0 for all n S -i and C['iO - -i .
(n)  Let  9= (e0, . . ._ ,e i ) ,o  -  (oo, . . . ta i )  e  Nt* t .  We wr i te  again g)  g] f  e i  )  a i
for all j € {0, ... , i}. By induction on i, we easily see that

ez a* (B[,i @;") > ulii (s;n), yn .--r) n (cl;i(e) < cfr'i(d)

(C) Let i,h,I € No with i < h < l. Then, our previous definitions give

a[i]fe;n) < a[i),@;") (v n < -i) and c{Nid 2 cfi}1e) .
(D) Now, assume that 0 < i < l. In this situation we always have

cf,it '( '0, ... t€i-t) > cl, ' i("0,... , er) + 1.

This may be seen from the above definitions as follows If qD t, (*, ... ,?;_r) :
- i + 1 , w e c o n c l u d e t h a t c [ i i ( e o , . . . , e ; ) s _ i . I f c I i i ' ) ( * , . . . , e i _ t ) <

(E) Finally using induction on i and observing that the assignement e r--+ e, is
linear, we can show similarly as in Sec. 4 Remark 2(G) that

,llifr + s;n) > BI;l @;n) + B{;i @;n\ vs, a e Ni+r, vn I -i.

Now, we are ready to prove the main result of this section.

Proposition 5.L. Let i,l e Ns with i < l. Then for each positiuely grad,ed,
noetherian homogeneou,s ring R: Or,>0 R^ uith artinian local base ring (Ro, mo)
and for each finitely generated gmded-R-rnodute M with I < )(M) we haue the'
follouing estirnates

(") d'u@) s B[;i (&uQ),...,d*(-i); n),,vn < -i;

(b) du@):0, vn s c[; ](dr(o), . . . ,d'M(-,;));

(") coresi(&/) > c[i]@M(o),..., d,MeD) + i.

Proof. We proceed by induction on i. By Corollary 3.4 and by Sec.3 Remark
1 we may assume that k :: Rol*o is an algebraically closed field. Then, by
(2.L7) and (2.18), we may e-ssume that f.a. (M) - g. By Corollary 3.12, we
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can find ho,...,ht €.R1 such that ho :: Dl=oa1ha is M-regular for each a -

(oo, ...at) € 4*t\(tno x . . . a mo) :: Ll. If we apply the exact sequence (2.20)
with h: ho and by Corollary 3.8 we get that

dr(n) S r"o{d,rr (n + 1) - 1,0},. Yn e Z.

In particular, if. n 10, a repeated application of this estimate grves

d, (n) < ma*{dM (0) - t(-n),0} : u[?] fa*(o); ") 
.

Moreover, by Remark 7(A), we have il*(n):0 for all n S Clfi '(dM(0)).Thus,
t h e c a s e i - 0 i s p r o v e n .

So, let i > 0. Since, by (2.24),

^(Mlh"M) > r(M) - 1 > t -  L ) i  -  L,

we can epply the hypothesis of induction to MlhsM and get

t i in,*( ') < B[i-- i i  (8*,0,r(0)," '  ,di io,*(-i+ r);"), vn S -i+ I

and

t i lo,*(r) :0,vn ( c[;: i i  ( i l*,o,r(0),.. . ,di io"*(-t + r)).

Note that from (2.?2Xb) we get

dfr/o"u?*) S dtr?d + {f i+'(-* - 1), Ym €2.

Using the monotony property Remark 7(B) of the functions f[;:ii r"d Cl;--ii,
we see that

ti) 0,,,*, 
:,$";f li:,Jjjl',,,di'(-i 

+ L) + tM(-r); *) (*)

and

diln,*(') : 0, vn < c[;:i i (dr tol +d'!M(-l), ... ,t;t (-,+ L)+d'M(-i)) :: c -

Using the estim ate (2.22)(c) we also see that 
(**)

tu@) S ti lor*(m + r) + tM(rn + 1), Ym € Z. (* * *)

Set c : min {-i,C}. Then, for all n with c ( n I -i, the estimates (*) and
(* * *) yield
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tu@)s I  t i iu .u@)+tr ( - t )
n * l ( m ( - d

s I B@) +tMei) : ,D@).
n + 1 ( n r ( - i

I*t n 1 c- 1' By (**) we get tM)^" u@): 0. we thus obtain from the sequence
(2.20) an injective map

I

ho :D"rr, : Ri Dp*(M), !:. n'n**(M)n+r, ye €ll.
d :0

So, Corollary 3.8. qiuP i: d,rr (") S max{ilr(n + 1) _ ,,0} for all n ( c_ 1. A
repeated use of this finally shows that

d'u@) S max {D(.) - t("- n);0} .

Hence,

tu@)  =  {  
o r (  

- ' )  
*  D , ,+ r<mS - ,8 (d , :D@)  fo r  c  s  n  <  - i

[  **  {D(c)  -  I ( "  -  n) ,0}  for  n < c .

Therefore ilu@) s B{,'i (4, tol, ... ,dr(-,;);r,) ro, ail n ( -i. This proves state-
ment (a). Now it is clear from Remark Z(A) that

tu @): o, vn S c[,i (f, tol, ... , t (_i)) .
This proves statement (b).
Now, statement (b) furnishes

a t r @ ) : 0 ,  v n  s c [ L )  ( d r ( o ) , . . . , d r M ( - j ) )  f o r  7 : 0 , 1 , . . . , i .
A repeated use of Remark Z(D) thrr,s gives

d fu (n )  :  s  fo r  a l l  n  S  C [ ; ] (d r (o ) ,  . . . , t u ( - i ) )  +  i  -  j  f o r  j  :  0 ,1 , . . . , i ,

so that
beg (7v Dn. (M)) + j - t > c,!'i(d, (o), ... ,d*(-r)) + r;

for 3 - 0, ... , i. This proves statement (c). r

Now we prove the announced main theorem.

Theorem 5.2. Let i,l €. Ns uztlr. i 1 l, tet R: On>oR, be a positiuety graded
noetherian homogeneous ring uith artinian base riig Rs. Let M be i finitetggenerc,td graded R-module uith I < A(M) . Then:

(') d'u@) s BI;i(drr(o), ...,du(-i); '), vn <. -i;
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(b) i l*(n1 : s, Yn 1ct; l@r(0),. . .  , tr(- i)) ;
(") coregd(M) > ct i l i@ *(0),. .  . ,d*(-t)) + t .

Proof, Let m[1),...,r[') be the different ma>cimal ideals of ftg. For each j e

{1, ... , r} let Et(j) dsnote the positively graded homogeneous ring (rto),r,rir eno

R with artinian local base ring (&)*,1 and let Mt$) be the finitely gener-

ated grad"6 6r(r)-6odule (Ro),nrl &no M.Then, by (2.25) we have t*1n1 -

DI=t d*,,,r(n) for all z e No and all n €2. Moreover, by (2.27) we know that

\(ttt ' t i l) > ,\(M) for j - 1,...,r. So, using Proposition 5.1(a) and Remark 7(E)
we get for all n 1 -i

tu@): i dr,,,,(r,) s I u[; i  (dr,,,,(o),... ,diM,u) (-,;);r)
j = l  

,  r  
J = l  

r

s B[;i (I 4,,,, (o), ...,Ld*,,,, (-,;); ")j = l j = l

:  B[ i i (dr(o), . . . ,d*(- i) ;") .

This proves statement (a). Now, statement (b) is clear by Remark 7(A).

Finally, by (2.26), Remark 7(B) and Proposition 5.1(c) we obtain

coregd (M) :rrln{.or"st (.n'r'til ; I

= p1,{"f il(d*,,,,(o),... ,t*,,,,1-t)) + l}

> c[,'i(dr (o), ... ,d'*(-r;)) + r; .

This proves statement ("). I

Remark 8. (A) The bounding functions a[j] 
"ra 

C[if ur. independent of the
choice of R and M; so we call the bounds given in Theorem 5.2 "o priori boundl'
for the Hilbert functions il* and the invariants coregi (M). As the estimates
given in Theorem 5.2 bound the functions dr and the invariant coregdM in
terms of the values dr(O), ...,d'Meq "in the diagonal at and below leaeli", w€
say that our bounds are of. diagonal type.

In t942, Severi proved a geometric result which can be expressed in terms of
local cohomology as follows (see [  ]). Let R be the homogeneous coordinate
ring of a smooth projective surface X g 4 and let Q be the * canonical module
of R. (.f. [15]). Then dn@): dh(t):0 for all n < 0. This is appearently
the first vanishing result for a cohomological Hilbert functions in the range < 0.
As the estimates grven in Theorem 5.2 also bound the cohomological Hilbert
functions n * tu(n) in the range n ( 0, we call them bounds of Seueri type.
We thus follow the same "policy of giving names" as in [9].
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(B) Let i € Ne and let R - @"20ft,, be a positively graded, homogeneous
noetherian ring with artinian base ring n0. If M ls a finitely generated graded
.R-module with i < ^(M) - 1, then Theorem 5.2 and the second half of Remark
7(A) show that ily(0) : ... _ ilu?i) - 0 implies that di*(n) - 0 for all
j 3 i and all n S - j. This implication may indeed easily be proved directly by
induction on i, and Theorem 5 might be considered as an extension of it.

(C) Theorem 5.2 tells us in particular that the numerical invariants {.1(0),...,
dt.l(-i) form a louer bounding systern for the numerical invariant coregd on
the class of all finitely generated graded ,R-modules M with i < A(M) - 1. In
Construction and Remark 5.4 below we shall see, that there are choices of ^R
such that d,o.r(0),...,di.1(-r) is a minimal lower bounding system for coregi on
the class of all finitely generated graded .R-modules M with i < A(M) - 1.

In geometric terms, and using the notation introduced in (2.41), (2.43) and
(2.46) the main result of the present section may be formulated as follows.

Corollary 5.3. Let i,l e No with i < l, Then for each artinian ring Ra, for
uch projutiue Ra-scheme X and for each coherent sheaf of Ox -modules f with
I < 6(F), we haue the following estimates:

(') h'r@) s B[ii (r,](o), ...,h'r(-i); n), vn 3 -i;

(b) n'r@): 0, v " s c[;](r,] (o), ... ,h!(-c)) ;
(.)  coreg' (f)  > c[; ](ht (0),. . .  ,n7(l) + t .

Prcof. Immediate from Theorem 5.2 by the equalities (2.44), (2.45)(b), Q.aT).t

Remark 9. For projective schemes over an algebraically closed field K, the
estimates given in Corollary 5.3(a,b) essentially correspond to the bounds given
in [9, (4.10)], if in these latter again the "linear subdimension", is replaced by
the "subdepth" 6(f).

We now will show that the inrrariantr 4.1(0),...,di.y(-r; form a minimal
lower bounding systern for the inrrariant coregd on the class of all finitely gen-
erated R-modules M with i < )(M). We shall do this in the context of sheaf
cohomology and perform a construction, which shall give us a more specific
insight.

Construction and Remark 5.4. (A) Let K be an algebraically closed field.
Let d € N. We write Y for the Segre-product (Ph)*'  -  Pl x.. .x IF|,  of d
copies of the projective line lP].. For all k € {1, ...,d},let pp :Y -+ F}6 be the
projection onto the k-th factor. Then, the tensor product

d

0v0) , :  I  p i  2pLQ)
rb= I

is a very ample sheaf defined on Y by the (multiple) Segre-embedding Y & P';-t
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given by
/ r  I

(t"[  
" 

"[ ' )) , . . . ,(#) ,  "[")) 
H

/ 0 ,
\.b,"[r,...44 : {t l4zl ...Ji-\"11) ,... , 

"{r)"tz)..."[0,),
(cf .  [29,  I I  (5.11),  p.  125] for  d:2).

Now, we fix a d-tuple r : (rr,...,ra) e Zd with rr 3 rz S . .. ( ra a.nd consider
the invertible sheaf of, Oy'modules

pE) 1:6 epri- (rr).
f t= l

We write D ::  {1,. . . ,d}. For al l  n €, Z wehave p{d@)= 8l=, piOpk(rr +rr).
So, for eanh j € {0,...,d} and foreach n eZlhe Ki.inneth formulas [23, III $6J
give

hidl(r) : 
-- t_ fl-eMhbr, ("- +a) flrep\ru n$r,x(r1 + rz),
MgD; #M--j

where #M denotes the cardinality of M.

At 4l("* +n) :  ma,:c{O, -rm - n- U and h$, ("r + n): max{0,r1 *n+ U
we thus get

hoass(n): { ilt=,(rr 
+n* 1), 

"l*il
hd4.s(n): { ;,*= 

r(_r^ _ r_ 1), 
Hffira 

_2

a n d , f o r 0 < j < d :

, i  ,  \  [ n ! * = r ( - l ^ - n - 1 ) t r f = i * r ( t r + n * 1 ) ,  i f  - r i a r S n S - r i - 2
trc@\n): 

I o, otherwise.

In particular, we may conclude that

hi2s(n):0 (Vn e z) e r i+r 2 r i  *2 (0 < i  < d)

and that with the convention r0: -oo we have coregd (CtO; - min{-ri+r*
j  - L  l j  S  i : r i  < r j + t  -  1 )  f o r  a l l  i  e  { 0 , . . . , d -  1 } .

(B) Now, fix k € {0,...,d- 1}. For t € N, we consider the invertible sheaf of
Oy-modules

Kr,, : :  L(-k'" '  ' - l '  t+k+1' t+t+2'" '  ' t+d)

If we apply the formulas of part (A) with ro - -k * p - I for I S p S k and
rp : t * m for k + 1 < p < d we obtain
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h%,,:,Tfrf= 
{ ilt='(-k 

+ t + n) rlf=t*' (t + t * I * n), i f . k < n

otherwise

1 ) ,  i f  n  <  - t - d - 2

otherwise

i f - t - k - 1 S n ( - 1 ,

otherwise

i f  k+0  and

hl , , , (n)  :  o,  (o i  .  { t , . . . ,d  -  L} \ {k} ,  vn ez) .

In particular, we obtain

hlr, ,(-r) :  o for al l  i  € {0, . . .  ,  d}\{fr} ,

c o r e g ' ( K t , t ) :  - t - 2  f o r a l l  i e  { k , . . . , d - 1 } .

(C) Now, let k € {0, , . . .  ,d - 1} and i  e {k,. . .  ,d - 1}. Then, the last two
statements of part (B) show that the invariants

h?.) (0), ... , ht )t (-(l' - 1)), htjt (-(r + r)) , ... , hti(-d) (*)

do not form a lower bounding system for the invariant coregi, even on the class
of all invertible sheaves of. Oy-modules.

Next, let zr : Y + fr a finite surjective morphism induced by d * 1 global
sections of Oy(I), Then, for each t € N the direct image n*Kh,t:: tr,t is a
locally free sheaf of rank d! over lPd . As h!rr,,(r) : n|*-.,(n) for all n e Z (see

[29, III, (4.1), p.222)), we thus see that the invariants (*) do not form a lower
bounding system for the invariant coregi on the class of all vector bundles of
rank ( d! over ff6.

(D) Now, let.R be the homogeneous coordinate ring of Y ind]-l o. the poly-
nomial ring K[xs,...,xa] and let Cibe the class of all f initely generated graded
R-modu les  w i th  i  S^(M)  -1 ,  where i  €  {0 , . . . ,d -1}  i s  f i xed .  I f  M is  a f in i te ly
generated graded .R-module such that the induced sheaf M is I 0 and locally
free (on Yresp. onlPd),  then )(M)-1:  6(M) -  d,> i  shows that M belongsto
the class C;. Now, by Remark 6(C), the observations of part (C) and the equal-
it ies (2.44) and (2.45)(b), we see that the invariant.4.l(0),... ,di,\Gi) form a

minimal lower bounding system for the invariant coregt on the class C;.

Finally, by the base change arguments and the equalities (2.29)(b), (2.30Xb)
and (2.31) it follows easily that the above statement is true whenever R -

&[x0,...,xd] is a polynomial ring over an arbitrary artinian ring .R6.

Rernark /0. (A) As in the case of bounds of Castelnuovo type it might be useful
to replace the bounds given in Theorem 5.2 and Corollary 5.3 by weaker but
simpler bounds (cf, Sec. 4 Remark 6). To do so, one may use the following
inequalities

( nk,:r (k - * - n)n!r=**r(-t - n'L - n -hLr,,(r) : 
t ;:
(  nkr=r(k -  *  -  n)TI! ,=**,  ( t  +,  + 1+ n),hkr,,(r): 
t ;:
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*-.{r[;](e,,,) l, < -i] s ;(, E 
(])"",)' ' ,

cfjlrd

which can be shown by induction on i as follows: The case i : 0 is obvious
bv (5.1) and (5.2). So, let i > 0 and let QG\(e) :: I i=o ()"i. Then, in

the notation introduced at the beginning of this section we obtain Q$-r) @) :

8(,)(e). So, by induction

B[i:iite';"rl s lr?Qr't (e))" 
' 

for all m 1 -i* 1 ;

cl;--iik')
As ei < q$l (e) ,",d c > min{ -i,-(zQ(')(e))' 

' 
- i+ 1} , (b.B) shows that,

fo reachn(  - i ,

B[li(e; "l s ", + (QQ(') (e))' 
' - 1) i;,q"(r))''-'

s |(tzor'Xr))''-')' : i(re,r(e))" .
But now, by (5.4)

c[, ' ] t4 > -(zQtq (e))' '- '  - i+1- 
I{rq"(e))' '  2-,(zgrt)(e))" - i .

Altogether, this proves the stated inequalities.
In the notations and under the hypothesis of Theorem 5.2 we conclude from
Theorem 5.2(c) that

cord (M) >-(2 E }rr(-i)) ' '  
(o s I < A(M) - 1).

J = 0

Using the notations and under the hypothesis of Corollary 5.3 we obtain the
estimate

coregi (r) >-(2 D (;)O(-i))' ' (o s r < 6(11).
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