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Abstract. Let X be a projective scheme over an artinian commutative ring Rp. Let
F be a coherent sheaf of Ox - modules. We present a sample of bounding results for
the so called cohomological Hilbert functions

Wy r: Z— No, n— b £(n) = lengthg H'(X,F(n))
of 7. Our main interest is to bound these functions in terms of the so called cohomol-
ogy diagonal (hﬂ{ (=3 ))J':(‘) of F. Our results present themselves as quantitative
versions of the vanishing theorems of Castelnuovo-Serre and of Severi-Enriques-Zariski-
Serre. In particular we get polynomial bounds for the (Castelnuovo) regularity at ar-
bitrary levels and for the (Severi) coregularity at any level below the global subdepth
6(F) := min{depth (F;) | z € X, z closed } of F. We also show that the cohomol-
ogy diagonal of F provides minimal bounding systems for the mentioned regularities
and coregularities.
As a fundamental tool we use an extended version of the method of linear systems of
general hyperplane sections.

1. Introduction

Let C be the class of all pairs (X, F) in which

*Research supported by Swiss National Science Foundation, Project No.20-52762.97.
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X = Proj(R) is the projective scheme induced by a positively

graded homogeneous noetherian ring R = ®,5¢R, with artinian (1.1)
base ring Rp.
F is a coherent sheaf of Ox-modules. (1.2)

For any pair (X,G) € C and any % € Ny, the i-th cohomology module H(X,G) of
X with coefficients in G is a finitely generated Rg-module (cf.'[29, III, Theorem
5.2], [43, §66, Theorem 1]) and hence of finite length. So, for each i € Ny and
each pair (X, F) € C, we may introduce the i-th cohomological Hilbert function
of (X with respect to) F
hgf'}- =hf;- :Z—-Ny (i€Np) (1.3)
defined by . ' ‘
b 5 (n) = hx(n) = lp, (H'(X, F(n))) (n€2), (1.4)

where F(n) := F ®o, Ox(n) is the n-th twist of 7, and lg,(N) denotes the
length of the Ry-module N.

There are some general constraints on the cohomological Hilbert functions
h% : Z — Ny given by classical vanishing theorems. So, the vanishing Theorem
of Grothendieck (29, III, Theorem 2.7] says that

¥ =0 forall i>dim(F), (1.5)

where dim(F) := dim(supp(F ) denotes the dimension of the support of F.
Another constraint on the functions k% is given by the Vanishing Theorem of
Castelnuovo-Serre (cf. [44, §66, Theorem 2(b)}).

“(n)=0 forall i>0 andall n>>0. (1.6)

There is yet another important constraint on the cohomological Hilbert functions
k. To formulate it, let us introduce the subdepth of (X with respect to) F:

6(F) := min{depthy, .(F:) | z € X, closed}. (1.7)

Now, the Vanishing Theorem of Severi-Enriques-Zariski-Serre (cf. [43, §76,
Theorem 4], [24]) claims:

he(n)=0 forall i<§(F) andall n<0, (1.8)

hi-(f)(n) #0 forall n<«0. (1.9)

Moreover, there is an observation which essentially goes back to Mumford [39]
and which gives a further constraint on our functions:

Let k € Np and let 7 € Z be such that k% (r—i) =0 for all i > k.
Then hix(n—14)=0 forall i>kandalln>r. (1.10)

This observation gives rise to the concept of regularity of F above level k.

regy(F) :=inf{r € Z |hx(n—i)=0, VYn>r, Vi>k}. (1.11)

which in the case k¥ = 0 coincides with the so called Castelnuovo-Mumford
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regularity of F (cf. [39]). Observe that by (1.5) and (1.6) we have regy (F) < oo.
Similar to (1.10) we also have:

Let k € Ny and let ¢ € Z be such that hi-(c—i) = 0 forall i < k.

Then hi(n —i) =0 forall i<k andall n<ec. (1.12)

The observation made in (1.12) gives rise to the concept of coregularity of F at
and below level k:

coreg" (F):=sup{c€Z|hz(n—i)=0, ¥n<e, Vi< k}. (1.13)

By (1.8) and (1.9) we have coregt(F) > —oo if and only if k < §(F).
The constraints on the functions k% which are given in (1.5), (1.6), (1.8), (1.9),
(1.10) and (1.12) merely concern the vanishing or non-vanishing of these func-
tions in certain ranges. But there are also constraints on the rate of growth of
these functions. Let us only mention two such constraints.

If dim(F) = d, then h%(n + 1) < max{0, h%(n) — d} for all

nez (1.14)

R¥(n-1)< maJ'({O, h%(n) — 6(F)} for all n € Z. (1.15)
The principal aim of this paper is to establish bounds on the cohomological
Hilbert functions h% for i = 0,--- which depend only on the “diagonal values”

h;- (=7) (4 =0,---) of these functions. Obviously these bounds should be such
that they are in accordance with the above constraints. It turns out that such
bounds naturally split up into two types:

I:  Bounds of Castelnuovo type which, for each i > 0, bound the values hi(n) in
the range n > —i in terms of the diagonal values (h}(-—j))}.x at and above
level 1.

II: Bounds of Severi type which, for each i < §(F), bound the values ki (n) in
the range n < —i in terms of the diagonal values (hf'r(—j))j <; ot and below
level 1.

As for the bounds of Castelnuovo type we shall define bounding functions.
B,y Nt x 2y — N
(0<i<d)
-szi)ﬂ) NG+ B
such that (cf. Corollary 4.7):
For each pair (X, F) € C with dim(F) < d:
(a) h(n) < BY, ) (W (=), ,hE(=d);n), Va3 —i;
(b) h(n) =0, ¥n>CEL,) (Ks(=0),--- , hE(=d)); (1.16)
(c) reg;_,(F) < Q&)_,_l)(h‘}-(—i),... yhs(—d)) + 1.
Clearly, in view of statement (1.16)(b) the constraint (1.6) is reflected by our
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bounds Moreover, the above bounding functions are defined such that
-—(d+l)(0 ,00n) =0 for all n > —i and Q(:!)H)(O ,0) = —i, so that
the const,ramt (1.10) is respected. Finally, according to our deﬁmtlons we shall
have B, +1)(h n) := max{h — d(n + d),0}, and this is in accordance with the
constraint mentioned under (1.14).

Actually,we shall deduce the above bounds from a class of sharper bounds,

which in addition depend on the global subdepth 6(F) of the coherent sheaf
F (cf. Corollary 4.6).

Concerning the bounds of Severi type, we shall define bounding functions
Bg;)) N6+l X Zs_i — No
(0<i<))

Cll) Nt — 2>

such that (cf. Corollary 5.3).
For each pair (X,F) € C with | < §(F) :
(a) hi(n) < B(,) (h%(0),... e (=i);n), Vn < —i;
(b) hip(n) =0, ¥n < GG (RS 0),... , B (-1)); (1.17)
(c) coreg'(F) = C) (HF(0), .. , (=) +1.

Here, statement (1.17)(b) reflects the constraint given in (1.8), whereas the
bounding functions are defined such that we have accordance with the con-
straints (1.12) and (1.15).

So, conceptually the bounds mentioned under (1.16) present a quantitative ver-
sion of the vanishing theorem of Castelnuovo Serre (as formulated in (1.6)) which
is in accordance with Mumford’s observation (1.10) and the constraint (1.14).
Smilarly, the bounds mentioned under (1.17) present a quantitative version of
the vanishing theorem of Severi-Enriques-Zariski-Serre (cf. (1.8)) which is in ac-
cordance with the constraints (1.12) and (1.15).

As our bounds hold for arbitrary pairs (X, F) € C, we call them a priori bounds.
As the bounds depend only on the “diagonal values” hfr(— 7), we sometimes refer
to them as diagonal bounds.

Our b‘oundmg fux.lctlons Q§d)+l), .Q&)_H), Bé,'), C((z)v are defined recursively.
Sometimes one might prefer to dispose on explicite bounds - even if they are
weaker. As an example of this latter type of bounds we shall establish the
following estimates (cf. Remark 6, Remark 10):

For each pair (X,F) € C with dim(F) < d
d
d—1 3 d-i
regia() < @Y (7)) (118
j=i

For each pair (X,F) € C with i <§(F)
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coreg’ (F) > (22( )h‘}(—])) (1.19)

We also shall see, that the diagonal values hf",-(— 7), which occur in our bounding
results (1.16) and (1.17), form a minimal bounding system: If we allow that one
of the diagonal values h’%(—j) becomes arbitrary large, whereas the other ones
are bounded, reg;_ 1(.7-') and coreg'(F) need not be bounded (cf. Remark 5,
Construction and Remark 5.4).

The aim of this paper is two-fold:

- To extend the existing results on a priori bounds for cohomological Hilbert
" functions which were established over algebraically closed ground fields
(cf. [5,7,9]) to the case of arbitrary artinian gound rings.

- To give a self-contained introduction to the subject of a-priori bounds for
cohomological Hilbert functions addressed to a reader familiar with basic
knowledge of local cohomology as presented in [14].

Clearly, in view of the second aspect, our paper partly will have expository char-
acter. Moreover, we attack our task from the algebraic point of view: We namely
first establish bounding results for the cohomological Hilbert functions of finitely
generated graded modules over noetherian positively graded homogeneous rings
R =Ry ®R, @ with artinian ground ring Ry (cf. Theorem 4.2, Corollaries
4.3-4.5, Theorem 5.2). Then we use the Serre-Grothendieck correspondence to
translate these results from the language of local cohomology to the language of
sheaf cohomology.

In Sec. 2 of the present paper we list a few facts on cohomological Hilbert func-
tions of finitely generated graded modules over-pusitively graded noetherian rings
with artinian base ring. Our basic reference here is [14].

The main technical tool we shall use, relies on the method of linear systems of
hyperplane sections which was used to deduce our earlier bounding results over
algebraically closed ground fields (see [5,7,8,9,13]). To make use of this idea
we need some preparatory results which allow to adapt the method of linear
hyperplane sections to the case of arbitrary artinian ground rings. These results
shall be presented in Sec. 3. In view of the expository aspect of our paper we
allowed ourselves to give a complete prove of the lifting result Proposition 3.2.
Some of the ideas presented in this section were already used in {4].

In Sec. 4 we deduce our bounds of Castelnuovo type, as mentioned under (1.16).
These results extend and complete what already was done in [14] where the
bounds of (1.16) where deduced in the special case i = 1 by means of the
“Lemma of Mumford and Le Potier”. If i > 1, this latter lemma is not available,
but a substitute for it (which gives sharper bounds and applies for all ¢ > 0) is
our adapted version of the method of linear systems of hyperplane sections.

In Sec. 5 we give the bounds of Severi type as mentioned under (1.17). Here,
using multiple Segre products of prOJectxve lines and the Kiinneth formulas,
we show that the diagonal values h%(0), hj(-1),...,h%(~4) form a minimal
bounding system for the coregulanty coreg' (), even on rather special subclasses
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of C. It should be noted, that this minimality result is closely related to the
problem of an "axiomatic characterization” of cohomological patterns

P(F) = {(i,n) € Ng x Z | h%-(n) # 0}

of pairs (X, F) € C. Let us also mention in this context the non-rigidity theorem
of Evans-Griffiths [21, (4.13)] (in which the occuring isomorphisms need not be
graded).

One appearent disadvantage of our bounds of Severi type is the fact that they
apply only if 2 < 6(F). On way to get satisfactory bounding results (in the
range n < —1) for ¢ > §(F) is to estimate the so called cohomological deficiency
functions. For a pair (X, F) € C and for i € Ny, the i-th cohomological deficiency
function of (X with respect to) F is defined by

Ak r =A% = k¥ —pf, (1.20)

where p’ is the i-th cohomological Hilbert polynomial of F, i.e. the unique
polynomial in R[t] such that

plr(n) = k% (n), ¥n <0.

These deficiency functions where investigated by the second author in [36]. We
shall present bounds on these functions and apply them in the context of the
present paper in a later investigation [12].

Obviously bounding cohomology or Castelnuovo-regularity for special pairs (X, F)
has a long tradition in algebraic geometry which goes back far beyond the time
in which cohomology was available. The starting point was the study of linear
systems on projective varieties. Here, for the “Castelnuovo root” of the subject
the interest is focussed to pairs (X,F) € C for which X = P" is a projective
space over an (algebraically closed) field K and F = J C Op- is a coherent
sheaf of ideals (cf. [16, 26,34, 41,45]). The study of the cohomological behavior
of such pairs became the driving force of many investigations and is of basic
importance for the theory of Hilbert schemes (cf. [22,25,27,32,37,38]) and for
computational algebraic geometry (cf. (2, 3]). The algebraic aspect of the theory
(cf. [17, 42]) initiated a considerable number of investigations on graded rings
and their cohomological invariants (cf. [30, 46, 47]).

Another point of interest is the study of pairs (X,F) € C, where X C P’ is
a smooth or normal variety and 7 = L is an invertible sheaf. This “Severi
root” of the subject had its pre-cohomological origin in the study of canonical
linear systems and their generalizations (cf. [20, 44, 48]) and lead to fundamental
vanishing results for cohomology groups (cf. [33, 40]).

Finally, let us also mention the “vector bundle root” of the whole subject,
whose interest focusses on pairs (P",€) € C, for which £ is locally free over
Pr (cf. [5,13,19,28]). Here, the interplay between topological and cohomologi-
cal properties of bundles is one of the main points of interest.

Clearly, along each of the above three main lines one finds bounding and vanish-
ing results for cohomology which are formulated in terms of invariants suitable
to the special class of pairs (X, F) € C under consideration. Obviously, it is not
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surprising that these specific bounding and vanishing results are sharper than
our a priori bounds. On the other hand, it turns out that our basic method —
the use of linear systems of hyperplane sections - can be successfully applied for
certain fairly specific bounding results (cf. [1, 6,8, 10, 11]).

2. Preliminaries on Cohomological Hilbert Functions

Let R = @, R» be a noetherian, positively graded homogeneous ring such
that Ry is an artinian ring. Set R, = @.50 R, the “irrelevant ideal” of R.
Let M = @, .5 M, be a finitely generated, graded R-module. Let i € N and
let Hjh (M) denote the i-th local cohomology module of M with respect to R,.
Moreover let D, () := injlim, Homg(R?,e) be the R, -transform functor. For
i € Ng let R'Dp, (o) denote the i-th right derived functor of Dg, (o). It is well-
known that the R-modules Hy, (M) and R'Dp, (M) carry a natural grading
for all ¢ € Ny (see [14, (12.3.3), (12.2.10), (12.4.5)]). Moreover, for all n € Z the
n-th homogeneous parts Hp, (M), and R'Dg, (M), of these graded modules
are finitely generated Ry-modules and thus of finite length (see [14, (15.1.5),
(17.1.4)]). Therefore, it makes sense to introduce the functions (cf. [14, (16.1.1),
(17.1.4))]):

M :Z— Ngand dy :Z — Ny, (i € Np) (2.1)

which are defined by
kg (n) = L, (Hg, (M)a) (22)
dy(n) := lg, (R' Dr,, (M),) (2.3)

where Ig, (V) is used to denote the length of the Ry-module N. In view of the
natural exact graded sequence

o—oH?h(M)——»M—>DR+(M)——>H§+(M)—»0

and the natural graded isomorphisms R Dp, (M) H ' (M) for all i € N (see
(14, (12.4.2), (12.4.5)]), we now get for all n € Z

diy (n) = Iry (Mn) — hs (n) + Bl (n), (2.4)

dyr(n) = higl(n), (¥i>0). (2.5)
Observe that, for each i € Ny we have (cf. [14, (15.1.5)])
_hiy(n) =0 for all n>0. (2.6)
As a consequence of this we get by (2.4) and (2.5)
d3s (n) = lp,(My), diy(n) =0 (Yn >0, Vi > 0). (2.7)

It is well-known that hj},(n) is represented by a polynomial for n < 0.
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To be precise: for each 7 € Ny there is a unique polynomial p}, € Q[x] of degree
< 1 such that

Ry (n) = phy(n) for alln <0 (2.8)

(see [14, 17.1.9]). We call p}, the i-th cohomological Hilbert-polynomial of M.

Two concepts which are needed for our purpose are the notions of end and
beginning of a graded R-module T' = @pez Ty:

(a) end(T) := sup{t€Z|T, #0};
(b) beg(T) :=inf{t€Z|T; #0}.

For k € Ny, we define the regularity of M at and above level k (see [14, (15.2.9)])
respectively the coregularity of M at and below level k by

(8) regh(M)  i=sup {end (H, (M) +i};

(2.9)

(2.10)
(b) coreg*(M) = gxg{ beg (R'Dp, (M)) +i— 1}

In the definitions (2.9) and (2.10) the occuring suprema and infima are supposed
to be formed in the ordered set {—oc0} UZU {oc0} with the additional convention
that sup ¢ = —oo and inf ¢ = oo.

It is important for us to notice that (see [14, (15.2.9)])
regt(M) < 0o for all k € Ny. (2.11)

In view of the definition of coregularity it is natural to ask whether —oc0 <
coreg®(M). The answer to this question is more subtle than the corresponding
statement for regularities (2.11). Namely, we first have to introduce another
invariant — the minimum R, -adjusted depth of M - which is defined by

MM) = Ag, (M)
= inf_{depth(M,,) + height((p + Ry )/p) | p € Spec(R) \ Var(R+)}, (2.12)

where the infimum is formed as above under the usual conventions that depth
(0) = oo and height (R/R) = oo. Observe that in the definition of A(M) we may
take the infinum over graded primes p ¢ Var(R,) (see [14, (13.1.17)]). Now, by
Grothendieck’s finiteness theorem we have (see [14, (9.5.2)]):

AM) = inf{z' €Ny | H;h (M) is not finitely generated}, (2.13)

where the right-hand side infimum is understood as above. In view of (2.6) we
thus get

AM)=inf{i € Ng |Vn € Z:3m < n: i, (m) #0}. (2.14)
As lp,(M,) and RS, (n) vanish for all n < 0, (2.4) and (2.5) therefore imply
MM)=inf{i e N|Vn€Z:3m < n:dy'(m)#0}. (2.15)

As a consequence of this we obtain
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—00 < coregf (M) & k < A\(M) — 1. (2.16)

sater, various types of reduction arguments shall be performed so that we need
o know how the above invariants behave if R and M are subject to certain
hanges. The first of these changes is taking classes modulo R, -torsion.

0, let T'p, (M) C M denote the R, -torsion submodule of M.
“hen Hg+ (M/Tr, (M)) = 0 and moreover there are natural isomorphisms of

raded R-modules Hy, (M) = Hy (M/Tg, (M)) for all i € N and Dg, (M)
dr, (M/Tr, (M)) (see [14, (2.1.7), (2.2.8)]). So, we get in view of (2.5).
(a) hgum on(m) =0 (VneZ)
(®) Kyyra, ay(n) = hig(n) (V¥n € Z, Vi € N, 2.17)
(c) d’}wrh on(n) =diy(n) (Yn€Z, VieN).
\s a consequence of this we have
(a) reg* (M/Ta, (M) = regt (M) (vk € N);
(b) coreg® (M/Tg, (M)) = coregt (M) (Vk € Np); (2.18)
() A(M/Ta, (M) = (M)

t also will be important for us to know how the above invariants change if we
eplace M by M/hM, where h € Ry is an M-regular element. In this situation
ve have an exact sequence of graded R- modules

0— M(=1)-5M — M/AM — 0.

Chus, in cohomology we obtain, for each n € Z, the following exact sequences
f Rp-modules

h

0 — Hj (M)s-y — HR (M)a — Hj (M/hM),
—  Hp, (M) ... —  HiZY(M/hM),
—  Hy, (M)ay -5 Hy (M)n — Hj, (M/hM),
— H;;tl(M)n-J .
ind

0 — R°Dg, (M)a-i —» TRODgp, (M), — RODg, (M/hM),

—_— RIDR+ (M)n—l — Ri_lDR+ (M/hM)n
—  RDg,(M)a-i - RDg, (M), — TRDg, (M/hM),
— R¥™IDg, (M)aoy = R¥Dp, (M) .. (2.20)

Jor all i € Ny and all n € Z we thus get the estimates

(a) hjy(n) < Riy(n —1) + Ry 0 (n);

(b) har/nme () < By (n) + Ritl(n - 1); (2.21)
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and
(a) diy(n) < djy(n—1)+dyy ()
(b) diynae(n) < diy(n) +dyf' (n = 1); ; (2.22)
(c) dif'(n) < dyf’ (n+1) +djy ppp(n +1).

For any k € Ny we may conclude from (2.21)(b), respectively from (2.22)(b),
that

(a) regt (M/hM) < regk (M);
- (b) coreg® (M/hM) > coregh*!(M).
Observing (2.16) we now may conclude from (2.23)(b)

MM/hM) > A(M) - 1. (2.24)

Another important step in the present paper is the reduction to the case where
our artinian base ring Ry is local. To pave the way for this reduction, we assume
that Rp is not necessarily local and we denote the different maximal ideals of Ry
by mgl),... ,mg'). Moreover, for each j € {1,...,r} let R’} denote the posi-
tively graded homogeneous ring R ®g, (Rg)m'(),-) = ®n>0(Rn )m.();) with artinian

(2.23)

local base ring (Ro)m'();). Finally, let M'(9) denote the finitely generated and
graded R'Y)-module M ®g, (Ro)m‘(’n = eneZ(Mn)m'()j). Using these notations
we have (see [14, (16.2.5)]):

(a) }u(n) = E;=1 hjwu) (n);
(b) dj(n) = E;=1 dt}wm (n);
From these equalities we obtain immediately for all k£ € Ny
(a) regt (M) = max{reg"(M'P)|j=1,...,r};
(b) coreg®(M) = min{coreg"(M')) |j=1,...,r}.
In view of (2.16) the last equality furnishes
AM) =min{\(M'D)) |j=1,...,r}. (2.27)

There is still another important step of reduction which will be performed later.
It concerns the situation in which our artinian base ring Ry is local with maximal
ideal mg. We suppose given an artinian local flat extension ring Rj of Ry with
maximal ideal mj = mgRy. In this case R’ := Ry Qg, R = ®nen, (Ry ®r, Rn)
is a positively graded homogeneous noetherian ring with base ring Rj and such
that R}, = (R+)R'. Moreover M’ := R'®r M = Ry®p, M = @nez(Ro®r, Mp)
is a finitely generated graded R'-module. Now, by (14, (15.2.2) (iv), (vi)]. We
get isomorphisms of Rg-modules

(a) H;z; (M")n = Ry ®g, H;'h (M)n , (VneZ, VieNp);
(b) RiDg: (M')a = Ry ®g, R*Dr, (M)n, (Yn€Z, VieNo).

(Vi € Ny, Vn € Z). (2.25)

(2.26)

(2.28)
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As Ry is flat over Ry with unique maximal ideal mo Ry we have | R, (Rg®p, N) =
'Ry () for each Ryp-module N. Therefore the isomorphisms (2.28) together with
(2.5) imply the equalities

(@) ki (n) =hiy(n) (YneZ, vieNy);

: . - (2.29)
(b) djyi(n) =di,(n) (VneZ, Vie Np).
As a consequence of this we get for each k € Ny:
(a) reg*(M’) = reg*(M),
(b) coreg®(M’) = coregh (M), (2.80)
and hence finally by (2.16)
A(M') = A(M). (2.31)

Concerning the Krull dimension dim(M) of M we should keep in mind the
relations '

(8) M #0=dim(M)=max{i e Ny |IneZ: Ry (n) #0};

(b) dim(M) <0 & VneZ:d (n) =0
(see [14, (6.1.12), (17.1.10)] and (2.4)). We convene that dim(0) = —co and
notice for later use

, _( dim(M), if dim(M) 0

(o) O (W) = { —00, if dim(M) =0;

(b) h € Ry, M-regular = dim(M/hM) = dim(M) - 1; (2.33)

(¢) dim(M) = max{dim(M'®)) [j=1,... N o

(d) dim(M) = dim(M");

where in statements (c) and (d) we respectively have used the notation intro-
duced in (2.25) and (2.28).

There is a last and somehow more specific step of reduction which has to be
performed later. To prepare it, we need to introduce some more notation and
notions. Let j € Nyg. We consider the following finite set of graded primes

(2.32)

AssBl(M) := {p € Assp(M) | dim(R/p) < i} (2.34)
Moreover we introduce the graded ideal
W =dla) = N o (2.35)
peAssi!(M)

which equals R if and only if Ass%](M ) = ¢. Then, we introduce the so called
j-reduction of M as the graded R-module

MUY .= M/T g (M). (2.36)
As Assgl(M) = Var(alll(M)) N Assp (M) = Assp (Tausi (M), we get

Assp(MU) = Assp (M) \ Assi!(ar), (2.37)
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(see [14, (2.1.2)]). Moreover we see that dim(I'y; (M)) < j. So by (2.32)(a)
we see that Hy"!(Taui(M)) =0 for all i > j. If we apply cohomology to the
graded short exact sequence 0 — [y (M) - M — MUl - 0 and keep in mind
(2.5) and (2.32)(b), we thus get

dygi5)(n) =diyy(n) forall i>j andall neZ. (2.38)
Next we give a few remarks concerning the relation between local cohomology
and sheaf cohomology. We keep all the previous notations and consider the
scheme

X := Proj(R). (2.39)

_ For any 7 € Ny and any coherent sheaf of Ox-modules F, we consider the i-th
cohomological Hilbert function of F

Kx 5 = h% :Z — Ny, (2.40)
which is defined by
hix (n) = Ig, (H‘ (X,F ®0, Ox (n))), (2.41)

where H'(X,G) is used to denote the i-th Serre cohomology module of X with
coefficients in the sheaf of Ox-modules G. For k € Ny we define the regqularity
of F above level k by

regy (F) :=inf{r € Z | hx(n—1i) =0, VYn2>r Vi>k}. (2.42)
Observe that regy(F) is the so called Castelnuovo-Mumford regularity introduced
in [39]. The coregularity of F at and below level k is defined as

coregh (F) := sup{c € Z | hr(n—1)=0, Vn<e Vi< k}. (2.43)

If M is a finitely generated graded R-module, let M denote the coherent sheaf
of Ox-modules induced by M. In these notations, the Serre-Grothendieck cor-
respondence yields (see [14, (20.4.4)]).

hiz(n) =dy(n) (VieNo, Vnez). (2.44)
As an easy consequence we get the equalities

(a) regy(M) = regt*?(M), for all k € Ny;

- (2.45)
(b) coreg®(M) = coreg*(M), for all k € Ny.
For a coherent sheaf F of Ox-modules we also consider the invariant
6(F) := min{depth (F;) | z € X, z closed} (2.46)
which we call the subdepth of F. As Ry is artinian, we have
§(M) = A\M) -1 (2.47)

for each finitely generated graded R-module M (see [14, (20.4.18), (20.4.19)]).
Finally, let us keep in mind that
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= dim(M) -1, if dim(M) >0,

dim(M) = A
im(M) { —00, if dim(M) < 0; (2.48)

where the dimension dim(F) of a coherent sheaf of Ox-modules is defined as
the dimension of the support of F.

3. A Lifting Result for Algebraic Field Extensions to Local Rings and
Linear Systems of Homomorphisms

Lemma 3.1. Let (B,nB) be a discrete valuation ring (DVR). Let L be an
algebraic extension field of B/nB. Then there is an integral flat extension ring
B' of B, which is a DVR with mazimal ideal 7B’ = (w1 B)B' and such that there
is an isomorphism of B-algebras L = B’ /nB'.

Proof. Let F be the algebraic closure of Quot(B). Let R be the set of all pairs
(C, ec) for which C C F is an integral extension ring of B such that (C,7C) is a
DVR, and ¢¢ : C — L is a homomorphism of B-algebras. Let g : B — L be
the natural map. Since (B,ep) € R, we have R # @. For (C,ec),(D,ep) € R
we write (C,ec) < (D,ep) if C € D and if e¢ = €p |¢, where “” is used to
denote restriction.

Clearly the relation “<” defines a partial oder on R. Let (C;, €¢, )iez be a chain
in R with respect to “<” and let C = |J,.; C;. Then C is integral over B and
nC is the unique maximal ideal of C. By [35, (21D)), C; is faithfully flat over
C; whenever (Cj,¢c,) < (Cj,€c;), (3,7 € I). This shows that 7"CNE; = 7"C;
for all n € N and for all 4 € Z. We thus must have [, .y 7"C = 0. Therefore
(C,mC) is a DVR.

For each e € C, there is some i € 7 such that e € C;. Moreover if j € T is
a second index with e € C;, we have €c, (e) = €c; (e). So we can define a map
€c : C — L by setting ec(e) := ec, (e) if ¢ € T is such that e € C;. It is easy to
see that the map ec is a homomorphism of B-algebras. So we have (C,¢c) € R.
It is clear from the definition of ec that (Cj,ec,) < (C,ec) for all i € Z. This
shows by Zorn’s lemma that R has a maximal member, say (B', g/ ).

Our next step is to show that €5 : B’ — L is surjective. Assuming the
opposite, we find an element y € L\ep/ (B’). Observe that ep (B') is a subfield
of L. Let the polynomial f = x" +b,_1x""! +-.. 4 by € B'[x] be such that
X" +€pr(bp-1)x""1 + - €p (bo) € g (B') [x] is the minimal polynomial of y
over e/ (B'). Then f is of degree n > 1 and irreducible in B’[x]. Now let u € F
be such that f(u) =0. We have u ¢ B'.

Let B = B'[u] and let ¢ : B'[x] — B" be the homomorphism of B’-algebras
which sends x to u. Then B” is a finite integral extension of B’. As B’ is
normal, there is a canonical isomorphism B'[x] / (f) & B'[u] = B" (see [18,
(4.13)] or [14, (8.1.7)]). As nB’'[x]+ (f) is a prime ideal in B”[x] we thus obtain
mB" € Spec(B"). As B” is integral over B’, this shows that 7B” must be
the unique maximal ideal of B". This means that (B”,7B") is a DVR. Let
¥ : B'[x] — L be the B'-homomorphism which sends 3" a; x* to 3 ez (a; )y
As ¥(f) = 0, there exists a homomorphism of B’-algebras eg» : B” — L such
that the following diagram, in which « denotes the inclusion map, is commutative
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B' =2 L
Ll /"(, TGBM
B [x] ‘(:5' B"

It is not difficult to check that (B',ep) < (B",epr). As B’ g B", this contra-

dicts the supposed maximality of (B’,ep:). So B’ 8, L is surjective. As L is a
field, we get an isomorphism of B-algebras B'/nB' = L. ™

Proposition 3.2. Let (A,m) be a local, noetherian, complete ring and let L
be an algebraic ertension field of A/m. Then, there is a local, noetherian, flat

- extension ring (A',m’) of A such that m' = mA’' and such that there is an

isomorphism of A-algebras L = A’ /m'.

Proof. We have to consider two cases.

Case 1: A contains a field. Let aj,...,a, be a system of generators for m. By
Cohen’s structure theorem, A contains a field K such that K 2 A/m and there
is a surjective homomorphism of K-algebras from the formal power series ring
K [[x;, e ,x,.]] onto A sending x; to a;, for ¢ = 1,...,r. Hence we can write
A=K [x,... ,Xr]] /a for some ideal a of K [xi,... %]

Let R=K [[xl,... ,x,.]] and R =L [[xl,...,x,]] . Then R' is a flat extension
ring of R (see [35, 21.D]). Let A’ = R'/aR’. Then obviously A’ is a local,
noetherian, flat extension ring of A with maximal ideal m’ = (x, ... ,Xp) Al =
mA’ and A'/m’ & L. _
Case 2: A does not contain a field. Let a1, ...,a, be a system of generators for
m. By Cohen’s structure theorem , there is a DVR, say (B, mB), such that there
exists a surjective homomorphism from the power series ring B [[xl,... ,x,]]
onto A. Thus we may write A = B [[xl, oo ,xr]] /a, with an appropriate-ideal
aof B [[xl,... ,x,]] . Applying Lemma 3.1 we can find an integral extension
DVR (C,7C) of B such that C/rC = L. Set S = B[[x,... ,%r]] and §' =
C [[*1,... ,%-]] . Then by [35, 21.D), §' is flat over S by. Let A' = S'/aS’. We

now may conclude as previously in the case 1. .

Proposition 3.3. Let (Ry, mg) be an artinian local ring and let L be an algebraic
extension field of Ro/mg. Then, there is a flat artinian local integral extension
ring (R}, my) of Ro such that my = moRy and such that there is an isomorphism
of Ro-algebras Ry/mg = L.

Proof. By Proposition 3.2, there is a local, noetherian flat extension ring (Rp, mg)
of Ry with m) = mgR{ and such that there is an isomorphism of Ry-algebras
R)/m} = L. As Rq is artinian, there is some n € N with mg = 0. It follows
that (mj)® = m§ Ry = 0, and so Ry is artinian. It remains to show that Ry is
integral over Ro. So, let y € Ry. As Ry/mgRg = L is an algebraic extension field
of Ry/mg, we find a polynomial x™ + Am-1X""! 4+ ...+ ag = f € Ro[x] with
f(y) € moRg. It follows that f(y)" € mf R = 0. This is an integral equation for
y over Ry. |
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From Proposition 3.3 we obtain

Corollary 3.4. Let (Ry,mg) be an artinian local n'ng'. Then there is a flat
artinian local integral extension ring (Rg,my) of Ry such that my = mogR' and
such that Ry /my is an algebraically closed field.

Remark 1. Let R = ®,en, Ry be a noetherian positively graded homogeneous
ring such that (Rg,mg) is local and artinian. Let M = ®nezM, be a finitely
generated graded R- module. Moreover let (Rg,mp) be as in Corollary 3.4 and
consider the noetherian positively graded homogeneous ring R' := Ry ®p, R =
®neN, (R ®r, Rs) and the finitely generated and graded R'-module M’ = R’ ®r
M = ®nez(Rg ®r, Mn). Then, by (2.29), (2.30) and (2.31) we have

w(n) = hiy(n), dis(n) = diy(n);  (VneZ, VieN)
reg"(M’') = reg*(M), coreg"(M') = coreg*(M),  (Vk € Np);
AM') = A(M) .

So, if studying cohomological Hilbert functions, we may replace R and M re-
spectively by R’ and M" and hence assume that Ry /my is algebraically closed.

Later, we shall use Corollary 3.4 to extend some results on the growth of
cohomological Hilbert functions of graded modules over graded algebras over an
algebraically closed field K to the case, where K is replaced by an arbitrary
artinian ring Ry. The main ingredient of the corresponding arguments is the
notion of linear system of homomorphisms of modules over a local ring:

Let (Rg,mg) be a local ring and let P and Q be Ro-modules. We write

Ry /mg =: k. By a linear system of homomorphisms from P to Q we mean a set
L CHompg, (P, Q) such that the set

L:={i®r, k|l € L} C Homy (P ®g, k,Q®g, k) =: H

does not contain 0 and such that T U {0} is a k-vector subspace of H. The
dimension dim(L) of the linear system L is defined to be dimg (LU {0}) —- 1.

Now, let r € Ny, let ly,...,I, € Hompg,(P,Q) and let & C R;*! be a set
which is mapped onto k"*!\{0} under the natural map R{*! — k™! given
r

by (ag,...,a,) = (ag + mg, ..., @, + mg). If the set L := {Z aili|(ag,...,a,) €

i=0
U} CHompg, (P, Q) does not meet Homp, (P,myQ) C Hompg, (P, Q), it obviously
is a linear system of dimension r. We then call L the linear system induced
by lp,...,1, and U. These induced linear systems play an important role in our
investigations. So we will study them in this section. As one basic ingredient
we need the following Lemma which is found in [5, (3.1), (3.2)] and which treats
the special case where Ry is an algebraically closed field.

Lemma 3.5. Let k be an algebraically closed field and V, W nonzero k-vector
spaces of finite dimension. Let ly,...,l, € Hom, (v, w).
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(a) If the homomorphism Y _, a:l; : V — W is injective for all (ay,...,a,) €
k"+1\{0} then dim(W) > dim(V) + n.

(b) If the homomorphism Y ;_ a;l; : V. — W is surjective for all (ag, ...,a,) €
k**+1 \{0} then dim(V) > dim(W) + n. ]

We also will use the following lemma, whose proof is easy.

Lemma 3.6. Leta be an ideal of a ring A and b : P — @ an injective
homomorphism of A-modules. Then h™'(0:g a) =0:p a.

Proposition 3.7. Let (Ro,mg) be an artinian local ring for which k = Ry /my is
an algebraically closed field. Let P,Q be nonzero finitely generated Ry-modules.
Let lg,...,l. be Ro-homomorphisms from P to Q). Assume that there is a set U C
Ry such that U is mapped onto k"*!\{0} under the canonical map Ry*' —
k™+1 given by (ag,...,ar) — (ag + Mg, ..., +mg) and such that Y ;_, ail; :
P — Q is injective for all (ap,...,cr) € U. Then

lro (@) 2 lry (P) +7-5(Q) ,
where s(Q) := min{n € Ny | m§ - Q = 0}.

Proof. We make induction on s(Q). If s(Q) =1, then meQ = 0. As 3_[_p il :
P — Q is injective, it follows that mgP = 0. Thus, P,Q are k-vector spaces in a
natural way. Now by our hypothesis, Iy, ..., I, are k-linear maps and Z::o a;l;
P — Q@ is injective, for all (@,...,@r) := (ag + mg,...,ar + my) € k"*1\{0}.
Therefore, this case is proven by statement (a) of Lemma 3.5.

Now assume that s := 8(Q) > 1 and that the proposition is true for all finitely
generated target modules Q' with s(Q') < s(Q) = s. Clearly 0 :p mj~! # 0
and 0 :g m3~! # Q. Note that s(0 :q my~!) = s — 1, as otherwise we had
$(0:q my~!) < s—2, hence (0 :q m$~!) C (0:¢ m5~2) and thus the contradiction
that (0 :q m3~!) = Q. If we apply the induction hypothesis to the injective
homomorphisms

Y aili lo:pmz=1: (0:p mg™1) — (0:g m§™1)
i=0
for all (ap,...,ar) € U, we obtain

lRu(O Q ma—l) > lRo(O ‘p ma—l) + r(s - 1).

On the other hand, by Lemma 3.6, any injective homomorphism g : P — Q
induces an injective homomorphism g* : P/(0:p m§~!) — Q/(0:q m§™!). As
s(Q/(0:@ m§™1)) = 1, this implies by induction that

IR, (Q/(0:q mg™")) 2 lr, (P/(0:p mg™")) + 1 (%)
Combining (*) and (**), we get
lRu(Q) = an(P)+T'S' [ ]

Corollary 3.8. Let Ry, P,Q,l,...,1. be as in Proposition 3.7 but such that P
and Q are not necessarily # 0. Then :
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lRo (P) < max {lRu (Q) - 0} . ]
Next, let us give a “dual version” of Proposition 3.7.

Proposition 3.9. Let Ry, P,Q, lo, ,Ir and s(Q) be as in Proposition 3.7.
Assume that there is a setid C R{,+ such that U fs mapped onto k"*1\{0} under
the natural map Ro'“ — k™*1; given by (ag, ..., ar) — (ap + mg, ... ,ar +mp)
and such that 3;_o ail; : P — Q is surjective for all (ay,...,a,) € U. Then

IRy (P) 2 lp, (@) + 7 5(Q).

Proof. We make induction on s := s(Q).

If s = 1, then myQ = 0. Thus, each homomorphism ; : P — Q (¢ = 0,...,7)
induces a homomorphism [ P/mgP — Q. For each (ap,...,a,) € U the
surjective map, Y i_oaili : P — Q induces a surjective map 3 ._oaili
P/mgP — Q. As P/mgP and Q are k-vector spaces in natural way, we thus
can apply statement (b) of Lemma 3.5 to complete the case s(Q) = 1.

Let s > 1 and assume that our statement is true for every target module Q' with
s(Q') < s. Note that s(mgQ) = s — 1. From the surjective homomorphisms

2
> aili fmep : mgP — moQ

i=0
for all (a,... ,a,) € U we get by induction

lry(moP) 2 lp,(meQ) + 7 (s —1). (%)

On the other hand, for all (ap,...,a,) € U the homomorphism E oa.
P/mgP — Q/mpQ which is induced by the surjective map 3[_oa;li : P —
Q is again surjective. If we apply statement (b) of Lemma 3.5 to the k-vector
spaces P/mgP and @Q/mpQ we obtain

lp, (P/mgP) > g, (Q/moQ) + . (%)

The induction is now completed by combining () and (*x). a

Corollary 3.10. Let P, Q, Ro, ly, ..., be as in Proposition 3.9 but such that
P and Q are not necessarily # 0. Then

IRy (@) < max {lg, (P) = 1,0}, ]

To apply the previous results to local cohomology, we need the following
result, which will ensure us, that there are appropriate induced linear systems of
homomorphisms between consecutive graded parts of local cohomology modules.

Proposition 3.11. Let R = @,., Rn be a positively graded, homogeneous
noetherian ring, such that (Ro,mo)- is local artinian and with infinite residue
field k = Ry/mg. Let M = @,z Mn be a finitely generated, graded R-module.
Let 7 € Ny be such that r < dim(R/p) for allp € Assp(M).
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Then, there are linear forms ly,...,l, € Ry such that 3. _, o4l; € Ry is an M-
regular element for each (r + 1)-tuple (ao, ..., ) € Ryt with the property that
a; € mg for some j € {0,...,r}.

Proof. Let {p1,...,pn} = Assr(M). As Ry is artinian we have p; N Ry = mg
so that R/p; is a homogeneous k-algebra of dimension > 7 for all i € {1,...,n}.
Therefore, the linear forms of the graded ring R/p; constitute a k-vector space
of dimension > r and hence H; := p; N R;/mgR; C Ry/myR; is a k-vector
subspace of codimension > r+1, foralli € {1,...,n}. As k is infinite, we thus
find a k-vector space L C R; /mgR; of dimension 7+ 1 such that INH; =0 for
all i€ {1,..,n}.

Now, let ly,...,l. € R; such that their images Toy.sly € Ry/mgR, form a k-
basis of L and let (ag,...,0r) € R*! be such that a; ¢ mg for some j €
{0,...,r}. If we denote by &; the image of a; in k (i =0, ... ,7), it follows that
the element E;O @l; € L does not vanish and thus avoids the subspace H, =
p; N Ry/moRy C Ry/mgR, for all i € {1,...,n}. But this implies il €
p1 U+ Up, and hence proves our claim. n

Corollary 3.12. Let R = @, ¢ Ra be a positively graded, homogeneous noethe-
rian ring, such that (Ro,mg) is local artinian and with infinite residue field
k = Ro/mg. Let M = @, ez Mn be a finitely generated, graded R-module and
let r € Ng. Assume that Tp, (M) = 0 and that r < A(M), where the invariant
MM) is defined as in (2.12). Then, the same conclusion as in Proposition 3.11
holds.

Proof. Let p €Ass (M). As ', (M) =0, we have p ¢ Var(R; ), so that
dim(R/p) = depth(M;) + ht((p + Ry)/p) 2 AMM) > 1.
Now, we may conclude by Proposition 3.11. =

4. A Priori Bounds of Castelnuovo Type

In the present section, we shall establish the bounds which were already men-
tioned under (1.16) in the introduction. We do this in a module theoretic way
and then translate to sheaf cohomology.

We begin with constructing the occuring bounding functions

=(1.d)

Cly Ny — 2

B(i) :Ng_i X ZZ—i = No and

for all 4,1,d € Ny with 0 < i < d. We do this by induction on d — i starting with
d —i =1 hence with i =d — 1. We set

_B_g;)l) :No X Z»_a+1 — No,
(ea-1;n) — max{es_1 — (d — 1)(n+d - 1),0} (4.1)
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and

Ci) i No = Zy_as, ea1 o —d+1+ [[d ‘11]] (42)

where [[a]] :==min{t€Z|t>a} forall a €R.

Now, assume that d —i > 1 and that B(’ ) 15 and C'(J ) hs) are already defined for
all j,h,s €Ny with0<j<sa,nds—] <d-1. Weset

I=max{l,1} and k=max{i, min{l,d-1}}.
For each (d — i)-tuple e = (e;,... ,€4-1) € Ng“ we set
=(ei +€i41,-.. ,€d-2+€a-1) € Ng'i'l,
e= max{—-i,Qg)_Ld_l)(g’) -1}

Then we put
i e+ _ir1<men B (¢5m) if—i<n<c
B lan)=q o emeria) (4.3)
’ ma.x{_(l'd)(g; c) — k(n —c),0} ifn>ec
and
--(z d) (e;c)
Cliyter = R4 (4.4)

Remark 2. (A) It is immediate from the above definitions that Qg?d) (sn) =0
for all n > Qg:‘)d;(g), that _Big?d) (e,n) > 0 for all n with —i < n < QE?d) (e) and
that B ___é;")d)(g; —1i) = ¢;. In particular we have _B_g‘)d)(_Q; n) =0 for all n > —i and
G4y (0) = —i where 0= (0,... ,0) € N§™*.

(B) Let ¢ = (&iy...€4-1),8 = (@iy... ,84-1) € Ng". We write e > a if ej > a;
for all j € {i,...,d — 1}. Now, by induction on d — i, we easily see

Ife 2 g, then BY,(ein) 2 B (@in) (¥n 2 —i) and CPy (¢) > €y (@) -
(C) Now, let i,h,l,d € Ny with 0 < i < d and h < I. Then, by induction on
d — i we easily can prove the inequalities

B, (en) < BY) , (en) (Yn>—i) and C,(e) <C (0.

It also follows easily by induction on d—i that these inequalities become equalities
if h <1 < 4. This means in particular that for all [ € Ny we have
B, (ein) < By (en) (vn> i)

and )
Cu 0(e) <C d)(e) with equalities if { <1.



360 M. Brodmann, C. Matteotti, and Nguyen Duc Minh
(D) It is important for us, to notice the following inequalities
B{)y(en) 2 Bii ) (en—1) forall' n2
(1) (+1)
Q(z‘d) (2) Z Q(;,d+1)(§) =

We prove these inequalities by induction on d — 3. Tfd—i=1 hence i =
d — 1, both inequalities follow easily from (4.1) and (4.2). So, let d — i >

1, thus i < d—-1. By inductior?, By = max{—i,Qg)_l‘ d_l)(g') -1} >+
1 where ¢ := max{—(i + 1),ngi)d)(g’) —1}. By induction we also have
BW (e'sm) 2 pli+D (e';m — 1) for all m > —i. But now, it follows from

=(1-1,d-1) S _(T-I,d)’ .
(4.3) that Qg;')d)(g; n) 2 _Qz;;yl)(g;n —1) for all n > —i and that QE;?d)(g; c) =

_Qg;l)l)(g; ). In view of (4.4) this completes our proof.

(E) Next, let 0 <4 < d— 1. In this situation we have the inequalities

1 i+1 . 3 i
BiEY (en) 2 B (fim) (9 n2 —i-1), CGR) (@ 20N

where i= (e,-+1,... ,ed_l) € Ng—i_l.

We prove these inequalities again by induction on d — 4. If d —i = 2 hence

i = d ~ 2 we see by (4.3) that B{j ;1) (ein) > ey for all n with ~d+1<n <
d-1 d=

¢ = max{-d + I,QET_I')d)(g’) ~ 1} and that QE,‘di)l)(_e_; n) > max{es_; — (d —

1)(n—c),0} for all n > c. By (4.1) we thus see that gi;{;i’,,(g; n) > gg;{;;)( fin)

for all n > —(d — 1). By part (A) of the present remark is follows immediately,

that Q_g;{;i)l)(g) > _ng’d_)l)(f_). Ifd—1 <2, thus i < d — 2, we get by induction

i+1 i+1 : i+1
that _B;gtl?d)(gl;m) > ngl?d_l)(f‘m) for allm > —i — 1 and Qgtl?d_l)(ﬁl) >

ng:)d_n(i’) where f':= (€41 +€ir2,... ,€a-2 + €4_1) € Ng=#=2. From this,
the requested inequalities follow easily by (4.3) and (4.4).

(F) Let 0 < i < d — 1. Then if we combine the estimates given in part (D) and
(E) of the present remark, we obtain the inequalities

Bl (eir-- vea-15 1) 2 By (€1 seain=1) (¥ 2 i)
Qg')d) (€iy.wrr€a-1) > Qg:;;)(ei-}la--wed—l) + 1.

(G) Finally, we also shall need the following estimate

BY), (e+ain) 2 B, (e5n) + By, (ain),. Ve,a € Ng™*, Wn > —i.

This statement is again shown by induction on d —i. If d —¢ = 1 hence i =
d — 1, we may easily conclude by (4.1). So, let d —i > 1. By induction we

(3) ! (¥) X (4) .
then have _Bi(;_l,d_l)(g' +d';m) > _B_(T_l,d_l)(g’,m) + B(;_l‘d_l)(g’,m) for all
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m 2 —i. By part (A) of the present remark we also have QE?_I d_l)(_e;' +a') >

Qg)_l a-1)(€)s Qg)_l i-1)(@)- As €' +a' = (e+a) wemay conclude by (4.3).

Now, we are ready to prove the central result of the present section.

Proposition 4.1. Leti,l,e € Ny with0 < i < e. Then, for each positively
graded noetherian homogeneous ring R = ®n>0R, with artinian local base ring
(Ro,mo) and for each finitely generated graded R-module M with | < A(M) and
dim(M) < e we have the following estimates:

(8) di(n) < B, (d"M(—i), ey i (—(e - 1));n), Vn > —i;
(b) diy(m) =0, Vn 2 Ol (diy (=i), ..., d57" (~(e ~ 1));
() reg"*! (M) < O,y (e (i), 57 (~(e = 1)) +i.

Proof. By Corollary 3.4 and by Sec. 3 Remark 1 we may restrict ourselves to
prove the stated estimates in the case where Rg/my is algebraically closed. We
now prove claim a) by induction on e —4. So, let e —7 = 1 hence i = e — 1.
By (2.37) we have dim(R/p) > e — 1 for all p € Assg(MI-11), So by (3.12)
there are linear forms hg,...,h._; € R; such that hy = :;01 athy € Ry is
Mle=1_regular for all o = (g, ,0e-1) € R§\ (mg x ... x mg) =: 4. For any
@ € U, (2.33)(b) shows that dim(M!e=11/hy Mle=1) < ¢ — 1. So, by (2.32)(a)
we have h3ste=1i h, pste-11 = 0 and hence dfwjf_ 1 /n, pmie-1) = 0 for all @ € U, (see
(2.5) and keep in mind that e > 1). If we apply the exact sequence (2.20) with
h=hy and i=e—1 we conclude from Corollary 3.10 that

d;;‘f_,,(n) < ma.x{d;;,f_”(n -1)—(e- 1),0}
for all n € Z. By (2.38) we thus get

il (n) < max{djgl(n— ) =lE~ 1),0} ,Vnez.

In particular, if n > —(e — 1), a repeated application of this estimate gives
dg}‘l)(n) < ma.x{dg;_”(—(e -1))-(e-)(n+e- 1),0}

= B(;,) (i (=(e = 1)),
This proves claim (a) if i = e - 1.

So,let e~i > 1hence 0 < i < e~1 Wesetl = max{l,1} and k =
max{i, min{l,e — 1}}.

Assume first that | < 4, so that k = . Then, by (2.37) and by Proposition 3.11
there are linear forms hy, ..., hx € R; such that hy := ELO arhy € Ry is M.
regular for all @ = (ay,...,ax) € RE*? \ (mg % ... x mp) =: V. By (2.37) and by
(2.33)(b) we have dim(M™] /hy MIF1) < e — 1 for all a € V. We thus may apply
induction to M /ha M), If we use the estimates Remark 2(C) we therefore
get
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dhm/h, mwi(n) < -Big?e-n (d’h!*l/hg_w*l (=), s de}\;lzl/h_,_MlH (—(e—2));n)
= Qﬁ}’ 1 ey (@nrwjng pmr (=9, -  dyrienng arwr (= (€ = 2))im)
for all n > —i and all @ € V. Note that from (2.22)(b) and (2.38) we get
i gyt (=) < dygon (=m) + iy (—m — 1)
=dfy (—m) + dit (=(m+1)) forall m>k=1.
Uszng the monotony property Remark 2(B) of the function le) TH thus
ge

d'ﬂlkl/hg_mkl(m)ﬁﬂg)lc 1)( (=) + i (= (i + 1),

a7 (~(e~ ))+d;;‘<—(e—1>>;m) = B(m) (%)

for all m > —i and all a@ € V. By Remark 2(A) we thus conclude in particular

that
diM(k]/he_Mlkl(n) =0 ’Vn = d?—l,c—l) (dtM(_z) aur dlb}-l (_(7' o 1))"“ (**)
wdir 2 (—(e~2)) +dir ' (=(e - 1)))=

for all @ € V.

Using the estimates (2.22)(a) for M (%] with hg instead of h and keeping in mind
(2.38) we see that di, (m) < dj;(m —1) +d; Mkl puet () for all m € Z and all

a € V. So, the estimate (*) gives us
d’}'w(m)sdil(m"l)'*'ﬁ(m),VmZ—‘i-l-l. (% * %)
Let ¢ = max{—i,¢ — 1}. Then the estimate (* * ) yields

diy(n) <diy(=i)+ Y. B(m) :=D(n), if -i<n<c. (o)

—i+1<m<n
Now, let n > c. By (**) we then get d, M1y, i (n) =0 for all @ € V. So, if

we apply the sequence (2.20) to M (%} with hy instead of h, we get a surjective
homomorphism

k
o= ath :R'Dg, (M¥) | —R'Dg, (MM),, VaeV.
t=0

So, by Corollary 3.10 we get di,(n) < max{djw,,,(n —1) — k,0}. In view of
(2.38) we therefore obtain

dig(n) € max{dy(n-1) - k,0}, Vn>c. (o)
A repeated application of this estimate gives

d'M(n) < ma.x{Q(c) = k(n - C)’O}’ n>c. (. ® .)
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In view of (4.3) the estimates (o) and (e e ) prove statement (a) in the case
<

So, let I > 4. In this case we have k = min{d — 1,I} and { =1 By (2.17)(c),

(2.18)(c) and (2.33)(a) we may replace M by M/T'g, (M) and hence assume
that T'r, (M) = 0. As k < A(M) we conclude by Corollary 3.12 that there are

elements hg,...,hy € R; such that hy = Ef:o athy € Ry is M-regular for all

a=(ag,..,) € RE¥1\ (mg x - - x mg) = V. By (2.24) and by (2.33)(b) we
now get

MM/lgM)>1-1=1~1 and dim(M/hyM)<e—1

forallg € V. Asi < e—1 we thus may apply the hypothesis of induction to
M/ha M and obtain

Dingsu M) S BG 1 (@ (i) iR (~(e = 2))im)
for all n > ~i and all @ € V. Now, (2.22)(b) gives the inequalities

At hg i (=m) < dfg (=m) + &t (—(m + 1)), Ym > 4.

Using again the monotony property Remark 2(B) of the function _Big)_ Le-1) ™e
get in the notation introduced in (*) that
dygjng a1 (m) < B(m), ¥m > —i, Vo € V. (')
By Remark 2(A) and US;lg the notation of () we thus get
Ay r () =0, ¥n > ¢, Va e V. (++)

Now, (2.22)(a) and (+') give again the previous estimate (* * %) and hence the
estimate (o).

Next, let n > ¢ = max{—i,c — 1}. Then, (*+') shows that d')u/h.,M(") = 0 for
all @ € V. So, by (2.20) we get a surjective homomorphism +

k
he =Y oyhy : R'Dg, (M)a-1 — R'Dg, (M),, VacV.

t=0
So, Corollary 2.10 furnishes again the estimate (ee) and hence the estimate
(e @ e). Now, statement (a) follows by (4.3).

30, claim (a) is proved completely. Now, claim (b) is obvious by Remark 2(A).
“inally, by statement (b) and in view of (2.5), we have for all jef{i..,e=1}
' (n) =0, ¥n > CP (d (=), ..., d57 (~(e ~ 1)).

\ repeated application of the second estimate given in Remark 2(F) furnishes
he inequalities

X0 (e (=), 57 (~(e=1)) € € (e (=3), .57 (~(e=1)) ) i
orall je{i,..,e~1}.
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Altogether we thus see that end(H};’;I(M))_ < QE:)C) (&g (=) oo g (=(e —

1))) +i—j—1for all j > i. In view of (2.10)(a), this gives statement (c). m
Now, we obtain the main theorem of this section. ,

Theorem 4.2. Leti,l,e € Ny with 0 < i < e. Then, for each positively graded
noetherian homogeneous ring R = ®,>o R, with artinian base ring Ry and for
each finitely generated graded R-module M with | < A(M) and dim(M) < e we
have the following estimates.

(a) dis(n) < B, (d;,(-i), 8~ 1));n), Vn > —i;
(b) dig(n) =0, vn>C{, (d'}w(—i), g (= 1)));
(0) reg*!(M) < Ch)y (diy (i), 5 (~(e = 1) ) +i.

Proof. Let m{", ... ,m{") be the different maximal ideals of Ro. For each j €

{1,...,r} let R'Y) denote the positively graded noetherian homogeneous ring
(Ro) mg) ®pr, R with local artinian base ring (Rﬂ)mg” and let M’() be the

finitely generated R'U)-module (R{])mtnj) ®ry M. By (2.25) we have dj,(n) =
Y iz iy (n) for all i € No and all n € Z. By (2.27) we also have AM(M'G)) >
A(M) > Lforall j € {1,...,7}. By (2.33)(c) we obtain dim(M'¥) < dim(M) <e
for all j € {1,...,7}. So, by Proposition 4.1 and by a repeated application of the
estimate in Remark 2(G) we get for all n > —i

dy(n) =S dipin () < Y BY, (d;,,(,., (=4), s 5k (—(e - 1));n)
j=1 j=1

< B (X dhpn (i) s o by (~(e = D)im)
j=1 j=1
- le’e) (d‘}u(—i),... ydirt(~(e— 1));n)-

This proves statement (a). Statement (b) now follows immediately by Remark
2(A). Finally, by (2.26), Proposition 4.1(c) and Remark 2(B) we get

regt1 (M) = r;lis.l:c{reg”l(M'(j))}
r i ) N e— g
s I?:IX{QE')C) (d'M’U) (_7')1 )dM’}J') (—(e = 1))) S 7‘}
£ (d;,(-i), R ] 1))) +i.
This proves statement (c). -
The statement of Theorem 4.2 will also furnish bounds on the cohomological

Hilbert functions if nothing is known about the value of A(M). To formulate the
corresponding result, we introduce a few notations.
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So, let i,d € N with i < d. For e := (e;,...,e4-1) € N3~ we set
__(d)(e n):= .__(,)d)( in), Yn > —i; (4.5)
(1)
_ C ’)(e) = _(, d) (e). (4.6)
So, we get the new bounding functions

BY) i N{"ixZs >Ny and CO):N& -2, .

By Remark 2(C) we get, for each I € Ng for each n > —i and each ¢ € N§~*
- (2) BY) (&) = By (ein) ,
(b) C¥(e) = €5y (o),

with equality if | < 1.

(4.7)

Using the above notation, we now have the following result.

Corollary 4.3. Let i,e € N with i < e. Then, for each positively graded,
noetherian, homogeneous ring R = ®n>oR, with artinian base ring Ry and
for each finitely generated graded R-module M with dim(M) < e we have the
following estimates

(8) diy(n) < BE (diy(=9), ., di7* (=(e = D)in), V> ~i;

(b) di,(n)=0, Vn 2 C\ (d;,(-i), ol (= (e ~ 1)));

(c) reg™! (M) < C (diy (=), .. 57 (~(e - D)) +i

Proof. Clear from Theorem 4.2 and the inqualities (4.7). "

In view of (2.5) it seems natural to seek for formulations of Theorem 4.2 and
Corollary 4.3 which depend entirely on the functions n hfw (n) as defined in
(2.2). To do so, we introduce some notations. So, let 7,1,d € Ny with 1 < j < d.
For each (d — j + 1)- tuple e = (ej,...,€4) € Ng‘jﬂ we set

F9) .
Buy(en) =BY (gn+1), vn > —j (4.8)
—( )
Ciiay(e) =C{ 2 (e) - 1. (4.9)

This defines new bounding functions
:((:)d) Nd 3+l X ZZ—j == No and di.)d) 3 Ng—j+l — ZZ-j o
Using this notation, we get the following equivalent formulation of Theorem 4.2.

Corollary 4.4. Let j,l,d € Ny with 1 < j < d. Then for each positively graded
noetherian homogeneous ring R = ®,>oR, with artinian base ring Ry and for
each finitely generated graded R-module M with | < A\(M) and dim(M) < d
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() Wi (n) < Bk (W (=d), o, By (~d)im) forall n > —j;

—(4) .
(b) ki (n) =0, Vn 2T (hm—a»---,hﬁ,(—d));
(c) reg’ (M) <_(z d)(h'}t{(—'J) hys (—d)) +
Proof. As A(M(-1)) = AM(M) > [l and dlm(M( 1)) = dim(M) < d we may
apply Theorem 4.2 to M(—1) withi = j—1. As hE (n) = di Y (n) = d’;w(l pn+
1) for all k > j and all n € Z, our claims follow easily from the corresponding
estimates of Theorem 4.2. ; -

In order to give a corresponding formulation of Corollary 4.3 we suppose

given j,d € N with 1 < j < d and introduce the bounding functions Q(d)

Ng i+l xZs_; — Ngand C :(.(fi)) Nd'”l — Z>_; by setting for each ¢ € Nd

= —H{4) ;
B\ (en) =Bl en+1) =B 19(&n), o2 -j )

o)) 1)
Tie) =%V (e) = 1=CfjL14)(e), (4.11)
where B(’) Y and QE’) 1) are defined according to (4.5) and (4.6). Then an
equivalent formulation of Corollary 4.3 is:

Corollary 4.5. Let j,d € N with 1 < j < d. Then, for each positively graded
noetherian homogeneous ring R = @n>0Ro with artinian base ring Ro and for
each finitely generated graded R-module M with dim(M) <d

(8) hye(n) <._(d)(h (=3)s e s Ry (=d)im), ¥n 2 —j;

(b) R (n) =0, ¥n = T (W (=), by (=));
() regi (M) < T (Rl (=3)s - By (=) + 5.

Proof. We conclude in the same way as Corollary 4.4 was deduced from Theorem
4.2.
=

Remark 3. (A) The bounding functions B _(, .1) -Q<(;)d) (cf. (4.1)-(4.4)), di)) C(

(ct. (4.5), (4.6)), By, T (cf. (48), (4.9)) and By, T (cf. (4.10), (4.11))
are independent of the choice of the graded ring R and the graded R-module
M. Therefore, we call the bounds given in Theorem 4.2, Corollaries 4.3, 4.4
and 4.5 a priori bounds on the cohomological Hilbert functions di,, respec-
tively h , and on the regularity reg’(M). As all these estimates are given
in terms of the ”values d’M(-i),...,ddL}m(M)_](—(dim(M) — 1)) in the diago-
nal at and above level i”, respectively in terms of the “cohomological lengths
Ry (=3), d"’“(M)( dim(M)) in the diagonal at and above level j”, we say
that our bounds are of diagonal type.
In 1893 G. Castelnuovo proved a geometric result which can be expressed in
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terms of local cohomology as follows (see [16]). Let a C C [xp, X1, X2, X3} be
the (graded) vanishing ideal of a smooth curve X C P} of degree d. Then reg?
(a) € d—1, with equality if X is rational. This is appearently the first regularity
bound and hence the first vanishing result for cohomological Hilbert functions
in the range n > 0. As the estimates given in Theorem 4.2, Corollaries 4.3,
4.4 and 4.5 bound the cohomological Hilbert functions n — di;(n) respectively
n — k) (n) in the range n > 0, we call them “Castelnuovo bounds”. So, in this
respect, we follow the same “policy of giving names” as found in (39, 42].

(B) Let j,d € N with 1 < j < d. Let R = @,50R, be a positively graded
homogeneous noetherian ring with artinian base ring Ry. Then Corollary 4.4(a),
the definition (4.8) and the last statement of Remark 2(A) yield that R (n) =0
for all k > j and all n > —k whenever k) (—j) = - = h9=M)(—dim(M)) =0
for a finitely generated graded R-module M. This is an algebraic version - which
is also shown in [14, (15.2.5)] - of a vanishing result on sheaf cohomology found
in [39], namely the vanishing constraint (1.10). So Corollaries 4.4 and 4.5 may
be viewed as extensions on the mentioned vanishing result.

It is easy to verify that the bounding functions B : N¢~! x Z5_ — Ng and

C'9) : N3-! — Ny of 14, (16.2.1)] coincide respectively with the functions Ei;

and Zﬁ; + 2, where _E((ig and Q:; are defined according to (4.10) and (4.11).

So, if we apply Corollary 4.5 with j = 2 (and assume moreover that Ry is in
addition local), we get back the bounding result (14, (16.2.4)]. So, Corollary
4.5 extends this latter bounding result to arbitrary values j € {2,...,d} and
Corollary 4.4 gives a refinement of this extension which becomes interesting for
j€{2,..,\(M) -1}

In geometric terms and in the notation introduced in (2.41), (2.42) and
(2.46), the main results of the present section may be formulated as follows:

Corollary 4.6. Leti,l,d € Ny with0 < i < d. Then, for each artinian ring Ro,
for each projective Ry- scheme X and for each coherent sheaf of Ox -modules
F with | < 6(F) and dim(F) < d we have the estimates

(2) hi(n) < B,y (Be(=i), . hE(=d)in), V2 -5
(b) he(n) =0, Vn2Clupy (Rr(=i),, i (=d));
(©) regi-1(F) S CYypny (Br(=1), ., hE(~d)) +i.

Proof. Write X = Proj (R), where R = @n30Rn is a positively graded, noethe-
rian, homogeneous ring and write 7 = M, where M is a finitely generated

graded R-module. Then, the given estimates follow immediately from Theorem
4.2 by the equalities (2.44), (2.47), (2.48) and (2.45)(a). n

Corollary 4.7 Let i,d € N with i < d. Then, for each artinian ring Ro, for
each projective Ry -scheme X and for each coherent sheaf of Ox -modules F
with dim(F) < d, we have the estimates
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(8) h(n) < B,y (Re(=1), ..., ke (=d)in), Vn > —i;
(b) hi(n)=0, ¥n>C,, (hr(=5), ..., k& (~d));
(c) regi-1(F) < Clyry (Wr (=), hE(=d)) +i.

Proof. Follows from Corollary 4.3 in the same way as Corollary 4.6 follows from
Theorem 4.2. =

Remark 4. (A) For projective schemes over an algebraically closed field K, the
estimates given in Corollaries 4.6 and 4.7 correspond to the bounds found in {7,
(6.11), (7.9)] if in these latter the “reduced linear subdimension” lsdim(®(F)
and the “reduced subdepth” §(°)(F) are both replaced by §(F). In the present
paper, we did not use linear subdimensions, as these are not invariant under the
changes of base rings we had to perform, and thus only make sense if By = K is
an algebraically closed field.

(B) In view of the last statement of Remark 2(A), the bounds of Corollary 4.7
satisfy the requirement (1.10) mentioned in the introduction.

Definition 4.8 (14, (16.4.1)]. (A) Let C be a category and let D be a class of
objects of C. By a numerical invariant for objects in D or a numerical invariant
on D we mean an assignement p : D — Z U {£o0} such that p(U) = p(V)
whenever U, V € D are isomorphic in C. We say that numerical invariant p is
finite, if p(U) € Z for all U € D.

(B) Let p1, ... , s, p be numerical invariants on a class D of objects in the category
C. We say, that p1,..., ps form an upper (resp. lower) bounding system for p on
D if the invariants p1, ..., s are finite and if there is a function B : Z° — Z
such that

p(U) £ B(P'l (U),... v/‘s(U)) (resp. p(U) 2 B(/‘l () = 1#3(U)))

forall UeD .

(C) We say that the invariants p,..., ¢, form a minimal upper (resp. lower)
bounding system for the invariant p on D if they form an upper (resp. lower)
bounding system for p on D and if no s — 1 of the numerical invariants p;, ..., s
form an upper (resp. lower) bounding system for p on D.

Remark 5. (A) Corollary 4.5 tells us in partlcular that - in the sense of Definition
4.8(B) - the numerical invariants h’_)( s o (. y(—d) form an upper bounding
system for the numerical invariant reg’ on the class of all finitely generated
graded R-modules of dimension not exceeding d, (j € {2, ...,d}). It is important
to notice that this is not true for j € {0,1} (see [14, (16.4. 4)] By [14, (16.4.3)]
the invariants h(. (=37), . (,)( d) form an minimal upper bounding system
for the invariant reg’ on the class of all finitely generated graded R-modules
if j = 2. A straightforward modification of {14 (16.4.3)] shows that the same
statement holds for any j € {2,...,d}. Finally note that the bounding function
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c@ . Ng'l — Np is given by a polynomial of degree 2¢-2 (see [14 (16.3.3),
(16.3.4)]), so that the same holds for the bounding function C((B =C —2,
(B) Let i,d € N with i < d. Let X be a projective scheme over an artinian ring
Ry. By Corollary 4.7, the invariants h3(—4), ..., h§(—d) form an upper bounding
system for the invariant reg;_; on the class D of all coherent Ox-modules of
dimention < d. By what is said in part (A) it follows by (2.45)(a), (2.44) and
(2.5) that this upper bounding system in minimal.

Remark 6. (A) In many cases one might wish to replace the bounds given in
Theorem 4.2, Corollaries 4.3-4.7 by possibly weaker but simpler bounds. This
may be achieved if one replaces the bounding functions _Big,)d) and Q(,)d)
"bigger” functions which are easier to describe. In order to propose a way of
doing this, we want to establish the inequalities

d-1

max{B l”(eM|n> ~i} < ;(22:(d7i71)qu“-;

i=i )=

d—-

, G WY, y#

j=i

—

We do this by induction on d — 2. The case d B z =1 is obvious by (4.1) and

(4.2). So, let d —i > 1 and let P((dg( i J =% ("'J *11) e;. Then, using the
Pascal formulas for binomial coefficients a.nd in the notatxon introduced at the
beginning of this section we have P((d_l)(g’ Dk ( d) (g). So, by induction we
have

—~i-2
-38)1.1 1)( im) <3 ( P((.;;( )) forall m>-i+1;
2d—|—2

Ciran@) < <2P&§<e»

First, using (4.3) and observing that '
& ((,3 (e)
and

c< max{ 2P((¢3(e))2d'~i-2 -4 1}

we get, for each n > —i,

o a i~2 2d—i-2
Byem) < e+ ((2P0@)" 7 ~1) 2(2P0(@)
1 (‘) gd—i-1
< 5(213(,1) (e)
~i-2
But now, using (4.4) and observing that ¢ < (2P(';( ))2d — i we get

24—-‘—!

i-2 . 1 gd-i-1 i r
. d)(e) £ (QP((.;; ) T §(2P((3(_)) & (2P( () —i.
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Altogether, this proves our claim.

(B) As a consequence of the above inequalities, we get particularly simple esti-
mates, namely:

For each positively graded noetherian ring R = ®,>0R, with artinian base ring
Ry and for each finitely generated graded R-module M of dimension d > 1, we
conclude from Corollary 4.5(c) and (4.11) that

d g "
reg' (M) < (2) ‘?:z_ W, (=) (1<i<ad).
=i M T

Similarly, in the notations and under the hypotheses of Corollary 4.7 we get
d

reg;; (F) < (23 <?:f)h§r(—1))2‘_i (1<i<d).

- 2
J=t

5. A Priori Bounds of Severi Type

In this section, we shall establish the bounds which were already mentioned under
(1.17) in the introduction. Again , we first establish the corresponding results for
local cohomology modules and later translate these into sheaf theoretic terms.

We first construct the occuring bounding functions

B§) : Ni*' xZg—i » Ny and Cfy) NG = Zgs

for all 4,1 € Ng with ¢ < I by induction on i as follows. First of all, set

Bé,o)) : Ng X Z<o — N, (e0,n) — max {e + In,0}, (5.1)
e
08+ No — Ze, e0— ~[[2]] 62)

where [[a]] :=min{t €Z |t >a} foralla €R.

Assume that 7 € N and that B((,’Cg and C((g are already defined for all j,k € Ng
with j < k and j < i. Let [ € N with ¢ <.

For each (i + 1)-tuple e = (eg, ..., €;) € Nit! we set

¢ :=(eg+e1,..,ei-1+€)ENy and c:= min{—z’,C((f_'ll))(g’)}.

Then we set

5 (eim) &+ D nrticme—i Bg:ll))(g_';m) ifc<n< —i
en) = :
max {B((l'))(g; ¢)+l{n-c),0} iffinrle

. (5.3)

L (1) .
cie)=c- H B“—’E‘ﬁ ﬂ : (54)
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Remark 7. (A) It is immediate from the above definitions that B((,')) (esn) =0

foralln < C((,’)) (e), that B((,')) (e;n) > 0 for all n with C((,')) (e) < n < —i and that
B((,')) (¢;—1) = ;. Let 0 = (0,...,0) € Nj*!. It then is obvious from the above

definitions that B((,')) (Q; n) =0 forall n<—i and C((;)) 0)=—i.
(B) Let ¢ = (eo, ..., &i),a = (aq,...,a;) € N'*1. We write again e > a if e > a;
for all j € {0,...,i}. By induction on i, we easily see that

e>a= (B(en) > B{(ain), vn < i) A (C(e) < C¥)(a)) -

(C) Let 4, h,l € Ny with i < h < I. Then, our previous definitions give

B (ein) < BG)(en) (Yn<—i) and Cfl(e) 2 Cl)(e) .

(D) Now, assume that 0 < i < {. In this situation we always have
C((;)_l) (601 aei—]) 2> C((;)) (60) — 761') S

This may be seen from the above definitions as follows: If C'((;)'l) (e - €i-1) =

-1+ 1,‘we conclude that C((,i))(eo,...,e,-) < —i If c((li)—x)(eo’___’ei_l) 2 =f
then part (B) and (C) of the present remark give —; > C((I‘}’”(eg,...,e,-*l) >

C((;::)) (en,...,e‘-..l) > C((f_—ll))(g’) = c. By part (A) we thus have B((:__ll)) (ese+

1) #0, so by (5.3) we see that B((:)) (eic) # 0 and (5.4) gives C) (e, ..., €i-1) <

; ()
c—1 S C((;)-l)(eo,... ,e,-_]) -1.

(E) Finally using induction on i and observing that the assignement e — ¢’ is
linear, we can show similarly as in Sec. 4 Remark 2(G) that

B((f)) (e+ain) > Bf)(e;n) + B{)(ain), VeaeNit, vn< i

Now, we are ready to prove the main result of this section.

Proposition 5.1. Let i,l € Ny with i < l. Then for each positively graded
noetherian homogeneous ring R = ©D,.50 Bn with artinian local base ring (Rp, mg)
and for each finitely generated graded R-module M with | < A\(M) we have the
following estimates

(2) diy(n) < BY (@ (0), .., diy (i); n),Vn < —i;

(b)  dis(n) =0, ¥n < C{) (3 (0), .., diy (—3));

(c) coreg'(M) > C'((,')) (d3(0), ..., dig (—2)) + .
Proof. We proceed by induction on i. By Corollary 3.4 and by Sec. 3 Remark

1 we may assume that k := Rg/mg is an algebraically closed field. Then, by
(2.17) and (2.18), we may assume that ['r, (M) = 0. By Corollary 3.12, we
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can find hy,...,h; € Ry such that hy := E£=o azhy is M-regular for each a =

(ag,...cq) € Ry \(mg x --- x mg) := U. If we apply the exact sequence (2.20)
with h = hy and by Corollary 3.8 we get that

&y (n) < max{d};(n+1) - 1,0}, VneZ
In particular, if n < 0, a repeated application of this estimate gives

3 (n) < max{d; (0) — I(=n),0} = BY) (d}; (0); m).

Moreover, by Remark 7(A), we have d,(n) = 0 for all n < C(O) (d%(0)). Thus,
the case 7 = 0 is proven.

So, let 7 > 0. Since, by (2.24),
MM/he M) 2 AM)-1>1-1>i-1,
we can apply the hypothesis of induction to M/h, M and get

dizh e () < BED (Brynar O+ dighy pe(=i+ 1in), V< =i+ 1
and

dighyom (M) =0,V < o8- }))(d"M/h (@), i M(—z+1))

Note that from (2.22)(b) we get
iy /n, u(—m) S djg(-m) +dyt' (-m - 1), VmeZ.

Using the monotony property Remark 7(B) of the functions Bé,’ 11)) and C((,' 11)) ,
we see that

izt (m) < BEZY (d8¢(0) + by (1), e, i (=i + 1) + iy (=) m) "
= B(m), Ym<—-i+1

and
digh p(n) =0, ¥n < 7)) (g (0)+dh (1), .., di " (=it 1)+ iy (=) =: ¢
) (+)
Using the estimate (2.22)(c) we also see that
dyy(m) S dygjy p(m+1) +djy(m+1), VmeZ. (% % %)

Set ¢ = min{—i,¢'}. Then, for all n with ¢ < n < —i, the estimates (x) and
(¢ * %) yield
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du() < D0 digih p(m) +diy (i)

n+l<m<—i

< Z F(m)+d’jw(—i) =: D(n).

n+l<m<—i

Let n < c—1. By (x*) we get d};/lh. 1 (n) = 0. We thus obtain from the sequence
(2.20) an injective map -

I
) iy DT
ha =) athy : R:Dg, (M)n = RiDp, (M)n41, Ve € U.
: t=0
So, Corollary 3.8 gives us dj, (n) < max{di,(n+ 1) — 1,0} foralln<c-1. A
repeated use of this finally shows that
djy (n) < max {D(c) - I(c ~ n); 0} .

Hence,

diy (—3) + zn+15m5—i§(m) :=D(n) for c<n< —i
max {D(c) — I(c — n), 0} for n<e.

dye(n) < {

Therefore di, (n) < B((,')) (dﬁl (0), ..., diy (—3); n) for all n < —i. This proves state-
ment (a). Now it is clear from Remark 7(A) that

dig (n) = 0,¥n < C3) (4 (0), ..., diy ().
This proves statement (b).
Now, statement (b) furnishes
diy(n) =0, Vn < CP) (&,(0), ... &y (7)) for j=0,1,... i.
A repeated use of Remark 7(D) thus gives

di(n) =0 forall n< CN A (0), ..., doy (~3)) +i~5 for j= 0,1,..,i,
so that 4 _
beg (R Dg, (M)) +j =1 > C{) (d3(0), ..., di (~i)) + i

for j =0,...,i. This proves statement (c). "
Now we prove the announced main theorem.

Theorem 5.2. Let i,l € Ny with i < l, let R = Dn>oR. be a positively graded
noetherian homogeneous ring with artinian base ring Ry. Let M be a finitely
generated graded R-module with | < A\(M). Then:

(2) diy(n) < BG (d9(0), ..., diy (—i)in), Vn< —i
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(b) di (n)=0, Vn<C((,')( 9(0), .y diyg (—5));
(c) coreg! (M) 2 C(y) (3 (0), .., iy (— z>)+z

Proof. Let m( ) 3y (") be the different maximal ideals of Ry. For each j €
{1,...,7} let R’(? ) denote the positively graded homogeneous ring (Ro) o ®R,

R with artinian local base ring (R")mf,” and let M) be the ﬁmtely gener-
ated graded R'U)-module (Ro)m,‘,” ®R, M. Then, by (2.25) we have dj,(n) =
> i=1 gy (n) for all 4 € Ng and all n € Z. Moreover, by (2.27) we know that

MM'G)) > M(M) for j =1,...,7. So, using Proposition 5.1(a) and Remark 7(E)
‘we get foralln < —1

m(n) = Zd‘M,“,(n) < Z B(z)( M) ( s Gy (—1); )

= Bél)) (E M'(J)(O Zd'M’(J) )

Jj=1

= Bg,)) (d3(0), ..., diy (—z); n) .

This proves statement (a). Now, statement (b) is clear by Remark 7(A).
Finally, by (2.26), Remark 7(B) and Proposition 5.1(c) we obtain

coreg' (M) = rjriql{coreg" (M'(j))}

2 I:,I}_r_l{l{c((;)) (A (0); v, Doy (1)) + i}
> C) (@(0), .., iy (—1)) +1.

This proves statement (c). -

Remark 8. (A) The bounding functions B((, and C() are independent of the
choice of R and M; so we call the bounds given in Theorem 5.2 “a priori bounds”
for the Hilbert functions d), and the invariants coreg?(M). As the estimates
given in Theorem 5.2 bound the functions d}, and the invariant coreg'M in
terms of the values d5(0),...,d%,(—i) “in the diagonal at and below level i”, we
say that our bounds are of diagonal type.

In 1942, Severi proved a geometric result which can be expressed in terms of
local cohomology as follows (see [44]). Let R be the homogeneous coordinate
ring of a smooth projective surface X C P and let Q2 be the * canonical module
of R. (cf. [15]). Then d}(n) = dh(n) = 0 for all n <« 0. This is appearently
the first vanishing result for a cohomological Hilbert functions in the range < 0.
As the estimates given in Theorem 5.2 also bound the cohomological Hilbert
functions n + di,(n) in the range n < 0, we call them bounds of Severi type.
We thus follow the same “policy of giving names” as in [9)].
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(B) Let 7 € Ny and let R = @®n>0R. be a positively graded, homogeneous
noetherian ring with artinian base ring Rp. If M is a finitely generated graded
R-module with i < A(M) — 1, then Theorem 5.2 and the second half of Remark
7(A) show that d3,(0) = -+ = dj,(—i) = 0 implies that d};(n) = 0 for all
j €1 and all n < —j. This implication may indeed easily be proved directly by
induction on 7, and Theorem 5 might be considered as an extension of it.

(C) Theorem 5.2 tells us in particular that the numerical invariants df,(0), ...,
df,) (%) form a lower bounding system for the numerical invariant coreg’ on
the class of all finitely generated graded R-modules M with i < A(M) - 1. In
Construction and Remark 5.4 below we shall see, that there are choices of R
such that d((’.)(O), ,df.)(—i) is a minimal lower bounding system for coreg’ on
the class of all finitely generated graded R-modules M with i < A(M) — 1.

In geometric terms, and using the notation introduced in (2.41), (2.43) and
(2.46) the main result of the present section may be formulated as follows.

Corollary 5.3. Let i,l € Ny with i < l. Then for each artinian ring Ry, for
each projective Ry-scheme X and for each coherent sheaf of Ox -modules F with
1 < 8(F), we have the following estimates:

(8) hir(n) < BY) (B4(0), .., hir(=i)im), ¥n < ~4;

() Hie(n) =0, Vr < C§)(KE(0), .., ks (~1));
(c) coreg’ (F) > C) (A% (0), .., hix(~1)) +i.
Proof. Immediate from Theorem 5.2 by the equalities (2.44), (2.45)(b), (2.47).m

Remark 9. For projective schemes over an algebraically closed field K, the
estimates given in Corollary 5.3(a,b) essentially correspond to the bounds given
in [9, (4.10)], if in these latter again the “linear subdimension”, is replaced by
the “subdepth” §(F).

We now will show that the invariants d‘(’,)(O),... ,d’é.)(—i) form a minimal

lower bounding system for the invariant coreg’ on the class of all finitely gen-
erated R-modules M with ¢ < A(M). We shall do this in the context of sheaf
cohomology and perform a construction, which shall give us a more specific
insight.

Construction and Remark 5.4. (A) Let K be an algebraically closed field.
Let d € N. We write Y for the Segre-product (P} )** = PL x --- x Py of d
copies of the projective line P}. For all k € {1,...,d}, let p; : Y — P} be the
projection onto the k-th factor. Then, the tensor product

d
Oy (1) == ) pi Op, (1)

k=1

is a very ample sheaf defined on Y by the (multiple) Segre-embedding Y 4 ]Pf: -1
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given by

((?: ), s (P 1 D)) o

1) (2 d 1) (2 d-1
(C‘() )C‘() )C(()) . C(() )C‘(] ).Cs )ng) Vs Cgl)C?)... ng)),

(cf. [29, II (5.11), p. 125] for d = 2).

Now, we fix a d-tuple r = (71, ...,74) € Z% with r; <7 < ... < r4 and consider
the invertible sheaf of Oy -modules

d
Le = ® Piov}( (rx).
k=1

We write D := {1,...,d}. For all n € Z we have £ (n) 2 ®j_, piOp. (ri +n).
So, for each j € {0,...,d} and for each n € Z the Kiinneth formulas {23, III §6]
give

., (n) = > Mmemho,, (rm +n) iep\m kS, (11 +n),
MCD; #M=j = r
where #M denotes the cardinality of M.
As h,‘,}( (rm +n) = max{0, —rm —n — 1} and hg}( (r1 +n) = max{0,r; + n + 1}
we thus get

M, (n+n+1), if-r <n
C(‘) e { otherwise
i (-rm —n—1), forn< —rg—2
LU (n) = { 0, otherwise

and, for 0 < j < d:

j (R)= { 1-[Zn=1 (=Tm —n— I)H?=j+l(rl +n+1), f-rjp<n<-r;-2
£l -

otherwise.

In particular, we may conclude that
hi(;)(n) =0 (Vn€Z)erjy12rj+2 (0<j<ad)
and that with the convention ro = —oco we have coreg’ (£{¥)) = min{-rj4; +
j—1]|j<i:rj<rjs1—1}foralie{0,..,d—1}.
(B) Now, fix k € {0,...,d — 1}. For t € N, we consider the invertible sheaf of
Oy -modules
Kk ¢ = C(—-k,... 1, t+k+1, t4+k42,... t4+d)

If we apply the formulas of part (A) withrp, = ~k+p—1for1 <p <k and
rp =t+m for k+1 < p < d we obtain
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po 9 aﬁi_{l'll_ W(=k+l+n),  (t+i+1+n), ifk<n

Ka 0, otherwise

)= { =i b =m=m)Lip (t~m—n-1), Hfn<~t-d-2
x“ 0, otherwise
iy { sk=m-n)IL,  (t+1l+1+n), f—t-k-1<n< -1,
’C“ otherwise
if k#0 and

B, (1) =0, (Vj € {1,..,d—1)\{k}, Vne Z).

In particular, we obtain

b, (=3) =0 forall j€{0,..,d}\{k},
coreg'(Krt) = —t—2 forall i€ {k,..,d-1}.

(C) Now, let £ € {0,,...,d — 1} and i € {k,...,d — 1}. Then, the last two
statements of part (B) show that the invariants

By (0)s e BES (= (e = 1)), BESH (= (k + 1), ..., By (=d) (¥)

do not form a lower bounding system for the invariant coreg’, even on the class
of all invertible sheaves of Oy -modules.

Next, let 7 : Y — P4 a finite surjective morphism induced by d + 1 global
sections of Oy (1). Then, for each t € N the direct image 7, K¢ =: & is a
locally free sheaf of rank d! over P?. As hﬁk" (n) = hfck_, (n) for all n € Z (see
(29, III, (4.1), p.222]), we thus see that the invariants (*) do not form a lower

bounding system for the invariant coreg’ on the class of all vector bundles of
rank < d! over P4 .

(D) Now, let R be the homogeneous coordinate ring of Y in Pf: =1 or the poly-
nomial ring K[xg, ...,Xq] and let C; be the class of all finitely generated graded
R-modules with i < A(M) -1, wherei € {0,...,d—1} is fixed. If M is a finitely
generated graded R-module such that the mduced sheaf M is # 0 and locally
free (on Y resp. on P4), then A\(M)—1 = §(M) = d > i shows that M belongs to
the class C;. Now, by Remark 6(C), the observations of part (C) and the equal-
ities (2.44) and (2.45)(b), we see that the invariants df,,(0), .. ,df,) (1) form a
minimal lower bounding system for the invariant coreg’ on the class ;.

Finally, by the base change arguments and the equalities (2.29)(b), (2.30)(b)
and (2.31) it follows easily that the above statement is true whenever R =
Ry[xq, ... ,X4] is a polynomial ring over an arbitrary artinian ring Rp.

Remark 10. (A) As in the case of bounds of Castelnuovo type it might be useful
to replace the bounds given in Theorem 5.2 and Corollary 5.3 by weaker but
simpler bounds (cf. Sec. 4 Remark 6). To do so, one may use the following
inequalities



378 M. Brodmann, C. Matteotti, and Nguyen Duc Minh
i . 1 i . 9
max{Bf;))(g,n) |n< —z} < 5(2 g (;)ej) /
1 'L 2.‘
._(2 Z(])e]) —i,

=0

e

v

which can be shown by induction on i as follows: The case 1 = 0 is obvious
by (5.1) and (5.2). So, let i > 0 and let Q)(e) = ¥, (:)e;. Then, in
the notation introduced at the beginning of this section we obtain QU=1)(¢/) =
Q% (e). So, by induction

B~ 1)(e’; m)

1 ! im1
(1-1) 5(2Q(') (Q))2 forall m<—-i+1;
Cin ()

CiE) 2 ~(2@9(@)" T —i+1.

As &; < QW (e) and ¢ > min{—3, —-(2Q® (g))Zi-l —i+1} , (5.3) shows that,
for each n < —i,

8)) (e;n)

IA

v

IA

e+ ((2e9)" - 1)%(2@“’(«:))
1

(ee9@)*")" = 2(09@)"

IA

But now, by (5.4)

g i -1 . 1 i 2!' i 2!’
ce) > ~(2eV©)" " —i+1-5(29@)" 2 -2 ()" -
Altogether, this proves the stated inequalities.

In the notations and under the hypothesis of Theorem 5.2 we conclude from
Theorem 5.2(c) that

coreg (M) > — Z ( )djw(—_y) (0<i< A(M)-1).

Using the notations and under the hypothesis of Corollary 5.3 we obtain the
estimate

coreg'(F) 2 —(2 ) (;) Re(=3)"  (0<i<6(F).
j=0
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