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Abstract. In this paper, r-roughly k-contractive mappings T' : M — M (which
satisfy d(T'z,Ty) < kd(z,y) + r for all 2,y € M and some k € (0,1), 7 > 0)
are considered. If M is not assumed to be convex, T is only guaranteed to admit
7y-invariant points £* (which fulfill d(z*,T'z*) < ) with ¥ > 7/(1 — k). For M as a
compact convex subset, T" possesses y-invariant points for all ¥ > r. If M is a closed
and convex subset of some normed space (R™,|| - ||), then, for all € > 0, there exist
7Y-invariant points with v = nr/(n+1) +&. If the normed space (R”, || - ||) is strictly
convex, then 7" admits -invariant points with v = nr/(n + 1). In particular, if |- ||
is the Euclidean norm, then there are -y-invariant points with v = (n/2(n + 1))/2r,

1. Introduction

As represented in the wonderful book [14], fixed-point theorems belong to the
fundamental results of non-linear functional analysis, which have many impor-
tant applications. One of them is Banach’s fixed-point theorem [1] which deals
with so-called contractive mappings, i.e., mappings T : M — M on some metric
space (M, d) satisfying the contraction condition

d(Tz,Ty) < kd(z,y) for all z,y € M, for a fixed k < 1. (1.1)

Due to the theorem mentioned, if M is non-empty and complete, then such a k-
contractive mapping admits a unique fixed point 2* € M, i.e., a point satisfying

Tx* = x*,
and the sequence (z;) defined by the iteration

Tit1 :T.TI»L', i=0,1,2,...
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(with an arbitrary start point zo € M) converges to this fixed point.
What happens if the right-hand side of the inequality in (1.1) is modified by
some positive constant r? That means, T' fulfills the condition

d(Tz,Ty) < kd(z,y) +r for all z,y € M and some fixed k € [0,1), 7 > 0,
(1.2)
which is said to be an r-roughly k-contractive mapping. Such mappings may
arise in quite natural ways. For instance, given a k-contractive mapping T

which cannot be determined exactly, one has to do with an approximation 7.
For

r:= 2maxd(Tz, Tz),
zeM
(1.1) implies
d(Tz,Ty) < d(Tz,Tz) + d(Tz,Ty) +d(Ty, Ty) < kd(z,y) +r

for all z,y € M, i.e., T is r-roughly k-contractive.

Obviously, r-roughly k-contractive mappings cannot always possess fixed
points, even under the same condition for the subset M as in Banach’s fixed-
point theorem. But they admit some so-called -fized or y-invariant points, i.e.,
such points z* satisfying

d(z*,Tx") < v (1.3)

for some v > 0. In this paper, we determine the best possible roughness degree
~ of this rough invariant, depending on k and r.

Section 2 deals with roughly contractive mappings whose domains are not
necessarily convex. Theorem 2.1 says that such mappings possess 7y-invariant
points with v > r/(1 — k), and these points can be determined or approximated
by the well-known iteration scheme (2.1). Example 2.1 shows that, in general,
we cannot expect to obtain y-invariant points with v < r/(1 — k). Even if
these points exist, the iteration is not suitable for seeking them, as illustrated
by Example 2.2.

In Sec. 3, roughly contractive mappings on convex domains are considered.
For a general normed linear space, Theorem 3.2 says that an r-roughly k-
contractive mapping T : M — M on some compact convex subset M admits
4-invariant points if 4 > r. In finite dimensional normed spaces, we obtain a
better result. If M is a closed and convex subset (not necessarily bounded) of
some normed space (R, || -||) then, for all € > 0, there exist y-invariant points
with 4 = nr/(n + 1) + ¢. If the normed space (R", || - ||) is strictly convex, then
T admits y-invariant points with 7 = nr/(n + 1). In particular, if || - || is the
Euclidean norm, then there are y-invariant points with v = (n/2(n + 1))V/2r
(Theorem 3.11).

2. Roughly Contractive Mappings on Non Convex Domains

In this section we investigate r-roughly k-contractive mappings T': M — M on
some metric space (M, d) where the completeness and the convexity of M are
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not generally required. As usual, we also use the iteration

€M, ziy1=Tz;, 1=0,1,2,... (2.1)
The main result of this section is
Theorem 2.1. Let T : M — M be an r-roughly k-contractive mapping on some

metric space (M,d) for r > 0 and k € (0,1). Suppose zg € M and
T
= Tzy) — —— .
a d(.’Eo, .’1:0) 1—% >0

(a) Ify>r/(1—k) and

izlogk<('y— 1ik>a‘l>, (2.2)

then x; provided by (2.1) is a y-invariant point under T.

(b) If * € M is a cluster point of the sequence (z;), then it is a y-invariant
point under T with v =r/(1 — k).

(c) For every v > 0, the set I, of all y-invariant points (of T') is bounded. If
v >r/(1—k), then I, is invariant under T, i.e., TI, C I,.

Proof. (a) Applying (1.2) and (2.1) successively we obtain

d(T:Ei_l,T.’l:i) k)d(T.’L‘i_z,T.’L‘i_l) +r

K2d(Tzi3,Txzi_o) + (1 +k)r

IA IA A IA

k'd(zg, Tzo) + (1+ k4 -+ k" )r
1-k
1-k

k'd(xg, Tzo) + T,

which implies

d(zi, Tz;) < k' (d(mo,Txo) - li—k> + ﬁ = Kla+ 1—2E (2.3)

Sincea > 0,y >r/(1—k)and 0 < k < 1, (2.2)-(2.3) yield

d(:l,',',T.'Bi) < ((")’— 1ik)a—1)a+ lik =1,

i.e., z; is y-invariant under 7.

(b) For an arbitrary 4 > 1, we have

WG T SN A EDET T2
<d(z*,z;)+ kd(zi—1,2*)+ 7
<d(z*,x;) + k(d(zi-1,Tzio1) + d(Tziz1,2*)) + 7
<d(z*,z)(1+ k) +kd(zi-1,Tzi—1) + 7
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It follows from (2.3) that

limsupd(z;_1,Tzi-1) < Les
i—00 1-k

Since z* is a cluster point of the sequence (z;), considering a subsequence which
converges to z* leads to

r r
* Y B = = LI
d(x,Tz)_kl_ +r 1%’

i.e., z* is y-invariant under T with v =r/(1 — k).
(c) For every v > 0 and for all z,y € I,, it follows from
d(z,y) < d(z,Tz) + d(Tz, Ty) + d(y, Ty) < 2y + kd(z,y) + 7

that
2y+r

1-k’

d(z,y) <

i.e., I, is bounded.
If z € I, then

d(Tz,T?z) < kd(z,Tz)+r < ky+r.
This inequality implies by 0 < k < 1 and y > /(1 — k) that

d(Tz, T?x) < ky+ (1-k)y =7,
ie., Tz € I, too. Hence, TI, C I, for v > r/(1 — k). =

Corollary 2.2. If M is a compact metric space or if it is a closed subset of
some finite dimensional metric space, then each r-roughly k-contractive mapping
T: M — M admits at least one y-invariant point with v =r/(1 — k).

Proof. If M is compact, then each sequence (z;) defined by (2.1) has at least one
cluster point. Therefore, due to Theorem 2.1(b), this cluster point is 4-invariant
under T with y =r/(1 — k).

Assume now that M is a closed subset of some finite dimensional metric
space. Take an arbitrary zg € M. For v := d(z9,Tzo), zo is obviously
~o-invariant. Thus, if 79 < /(1 — k), then z¢ is y-invariant under T with
v =r1/(1=k). If v9 > r/(1—k), then Theorem 2.1(c) ensures that all z;, i € N,
are 7p-invariant, too, and hence, they are contained in the bounded subset I,
of the finite dimensional space considered. Therefore, this sequence has at least
one cluster point, which belongs to M, because M is closed. The rest follows
directly from Theorem 2.1(b). =

Theorem 2.1 only ensures the existence of y-invariant points of r-roughly

k-contractive mappings with v > 7/(1 — k). In general, v = r/(1 — k) is already
the smallest possible roughness degree, as the following example illustrates.

FEzample 2.1. Let r > 0, k € (0,1),
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-r r
M, = (—OO, m), Mg = <m,+00), and M := My U M,. (24)

Define

2—kz, ifze M,
Tz::{r/ K (2.5)

-r/2 —kz, fze M.

This mapping T is r-roughly k-contractive. In fact, if {z,y} C M; or {z,y} C
My, then
Tz —Ty|=|—kx+ky|=k|z ~ y|.

Ifz € M) and y € M, or if £ € M, and y € My, we have
r —r
|Tz — Ty| < }5 - 7‘ +kz —kyl=r+k|z—y|
Formulae (2.4)—(2.5) imply that if £ € M, then

T A T
Setan £
o>~k a—m " aa=m

i.e., Tx € My, and if z € My, then

—-r T T
Te< 5 —ka—m =~ 30-m°

i.e.,, Tz € M;. Hence, T maps M C R into M. Moreover, it also follows that

: . r A O 1 el
{:z;—Tz|>1nfM2—supM1—2(1_k) 0—F) 1% for all z € M.

That means, this r-roughly k-contractive mapping T cannot have any y-invariant
points with v < r/(1—k). Consequently, in general, there is no better roughness
degree vy as given in Theorem 2.1(a).

As just considered, T admits no y-invariant points with v = r/(1 — k). This
means no conflict with (b) in Theorem 2.1. In fact, since

r
limsup |z; — zi41| <
i——voopl i z+1,_1_k
(due to (2.3)) and
. r
inf My —sup M, = TR T

the fact
either z; € My, Tiy1 € My or z; € My, ;41 € M,

implies that the only cluster points of each sequence (z;) defined by (2.1) are
£r/(2(1 — k)), which do not belong to M.
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Let us extend T to T defined on the closure M of M,ie., Tz = Tz for all
x € M. In order for T to be r-roughly k-contractive on M, it must hold true

T =

=N r r =
T — '-—— lim |(T———-Tx
2(1-k) 201-k) IT(—T'TY 2(1-k)
<k +7r= "
1—-k 1—-k°

Hence, 7/(2(1 — k)) is y-invariant under T for v = r/(1 — k). This result
corresponds with (b) in Theorem 2.1, because 7/(2(1 — k)) is a cluster point (in

‘M) of each sequence (z;). It is also an illustration for Corollary 2.2 since M is
a closed subset of R.

Remark 2.1. Theorem 2.1 shows that the iteration (2.1) can be used to de-
termine or approximate -y-invariant points of 7-roughly k-contractive mappings
for ¥ > r/(1 — k). But, in general, this scheme is no more suitable for finding
v-invariant points with v < r/(1—k) even if they exist, as the following example
shows.

Ezample 2.2. Let us consider the following extension of T' defined in (2.5)

- {r/2-—km, if z € M, (2.6)

Tx := _ =
—r/2 —kz, ifxe€ M,
where y g
M, :=(—00,0] and M := (0,400).

Similarly as above, it can be shown that T is an r-roughly k-contractive mapping
from R into R. Moreover, the difference |z —T'z| admits on the interval [—r/2(1—

k), r/2(1 = k)] all values of [r/2, /(1 — k)]. That means, for all y > r/2, the
set I, of y-invariant points of T is non-empty.

We now focus our consideration within the subsets

M = (5(_1_1_15)’ 0) and Mj = <0, 2—(17'_—]6)-) !
It is easy to verify that
g€ M =Tre M, and z€ My =Tz € M.
Therefore, M| C My, M}, C M;, and (2.6) yield

. {r/2—(1+k)z, if z € Mj,
Tz —z = . -
—r/2—(1+k)z, ifze M,

and
eapiinks {~r(1+k/2)+k(1+k)x, if z € MY,
Tz —Tx = ) -
r(1+k/2)+k(1+k)z, ifze M.
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Thus, if z € M}, then z > —r/(2(1 — k)) and 1 — k2 > 0 imply

|T?z — Tx| — l’f’m— o} =(1—kHz+ T(L;_i)
S k2)2(1__r — r(12+k) o
Similarly, if z € Mj, then z < 7/(2(1 — k)) implies
[T?z — Tz| — |Tz —z| = @ - 1=Kz
s W—(l—kz)mr_—k) =0

In any case, for each z € M’ := M] U M}, we have
|T(Tz) — Tz| > |Tx — z|.

Consequently, by starting at any point zo € M, the sequence (z;) defined by
;41 = T; remains in M’, but after each iteration step, the distance |Txi - ;|
becomes greater. Therefore, if v < 7/(1 — k) and |zg — Txzo| > 7, then the
sequence (z;) cannot approach the set I, of y-invariant points but moves further
away from this set, although I, is non-empty for 4 > r/2. This is what Remark
2.1 says.

An interesting fact appearing in this example is that, for an arbitrary start-
ing point 2o € R, the sequence (z;) has exactly two cluster points %-r/(2(1—k)),
and they are vy-invariant points with v =r/(1 — k).

As mentioned in the introduction of this paper, because of errors, many
k-contractive mappings only appear during practical computing as r-roughly
k-contractive ones. Therefore, by using the iteration (2.1), in general, one
cannot approximate the proper fixed point but only some 4-invariant points
with v > r/(1 — k).

Example 2.1 shows that, in general, we cannot expect each r-roughly k-
contractive mapping 7' : M — M to admit y-invariant points with v < r/(1—k).
For k near 1, this bound is rather large, e.g. /(1 — k) = 100r if £ = 0.99. The
situation changes essentially if M is assumed to be convex, as we will see in the
next section.

3. Roughly Contractive Mappings on Convex Domains

Throughout this section we assume M is convex, and show under some assump-
tions that r-roughly k-contractive mappings of M into M admit ~y-invariant
points with + near 7.

For dim M = oo, we use the following result of Klee [9].

Theorem 3.1. [9] Suppose M is a compact convez subset of a normed linear
space, T is an T-continuous mapping of M into M, and v > 7 > 0. Then some
point of M is y-invariant under T.
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Recall that T : M — M is called 7-continuous provided each = of M admits
a neighborhood U, such that the diameter of the set TU, is at most 7 (see [9]).
Let T : M — M be an r-roughly k-contractive mapping, ¥ an arbitrary
fixed number satisfying # > 7, and z € M. Choose U, as the (open) ball
B(z, (¥ —r)/2k) (with center z and radius (7 —r)/2k). Then, due to definition,
we have
el iny =il iy

r
' — 2" < ||z’ — || + ||z — 2"|| < 2 e vz',z" € U,

and consequently,
=— T
Tz —Tz"|| < k|’ —z"|| +r < k—k—— +r=7, V' 2" €U,

which yields diamTU, < 7. Hence, T is 7-continuous for all 7 > r. Therefore,
Theorem 3.1 implies

Theorem 3.2. Suppose M is a compact convez subset of a normed linear space,
T is an r-roughly k-contractive mapping of M into M, and v > r > 0. Then
some point of M is y-invariant under T.

For dim M < o0, Cromme and Diener [4] obtained the following result.

Theorem 3.3. [4] Assume M is a compact and convez subset of some normed
space (R, || - ||). Let T : M — M be any mapping and

8(T) := sup limsup sup |Ty — T'z|l. (3.1)
zeM o0—0 y,zeB(z,0)\{z}

Then for all € > O there ezists a point * € M such that
lz* — Tz*|| < §'(T) +e. (3.2)

Cromme and Diener [4, p. 261] remarked that, in (3.2), §'(T") can be replaced
by (n/(n+1))8(T). But they omitted the proof. Since it is not obvious, we like
to show it now. To do it, we need an assertion based on Kakutani's fixed-point
theorem [8], which was used in [4] for proving Theorem 3.3, namely

Proposition 3.4. [4] Let M be a compact and convexr subset of R™ which
contains more than one point. Let T : M — M be any mapping. We define a
set-valued map Hr on M by

Hr(z):={y € M : 3 sequence z; — x, x; # & such that Tz; — y}.  (3.3)

Then there exists a point x* € M with z* € convHp(x*).

Before stating the next tool, let us mention the definition of the diameter
D(S) and the radius R(S) of the circumscribed ball of a bounded subset S in
some normed space (R™, || - ||):

D(S) := sup |lz —yll, R(S):= inf sup|z -yl (3.4)
TeR™ yeg

z,Yy€
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Since g(z) := sup,cg ||z — || is a convex function on R" (as the supremum
of a family of convex functions), it is continuous. Moreover, if S is bounded
and « := g(z) for some arbitrary fixed z € R, then the level set £,(g) of g is
compact. Therefore, there exist points ¢ € R™ satisfying

sup |lc — yl| = g(c) = inf g(z) = inf sup|lz -yl =R(S),  (3.5)
yes zeRn z€R® yeg

which are called centers of the circumscribed ball of a bounded subset S. In

general, there may be several centers, even outside of clconvS. For instance, if
S = {(0,-1),(0,1)} C R? and || - || is the maximum norm, then R(S) =1 and

suplle—y =1 forall ce{(¢0)cR: ¢ <1},
yes

under which only ¢ = (0,0) € clconvS. But if (R, || - ||) is strictly convex (i.e.,
if the closed ball B(0,1) = {x € R™ : |z|] < 1} is strictly convex), then this
center is unique and belongs to clconvS.

Proposition 3.5. Let S be a bounded subset of some normed space (R, || - ||)
and z € convS \ S. Then there exists s € S such that
n
—s|| £ ——= D(S). 2
2 = sll < = D(S) (36)

Proof. By Carathéodory’s theorem [3], there is a k-dimensional simplex
Sk .= conv{zi,Z2,...,Tk4+1}

with k < n, {z1,22,...,Zk+1} C 5, and z € S*. Consider the function

k+1

=Y " llz — .
i=1

Obviously,
k+1
Z lz; — =il < k (Jnex lz; — zi|| < kD(S) for j =1,2,....k+ L

Since f(.) is convex and z € convS, we have

(k+1) min |z—z] < f(2) £ max f(z;) < kD(S),

1<i<k+1 1<5<k+1
which implies
n
i - D < D(S
min 2= ol < 7= D(S) < —=D(S),

i.e., (3.6) holds for s € S satisfying ||z — s|| =minj<i<k+1 |2 — ]| n
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We are now in a position to improve the assertion of Theorem 3.3.

Theorem 3.6. Assume M is a compact and conver subsel of some normed
space (R™, | - |I). Let T : M — M be any mapping with the measure of disconti-
nuity 8§ (T') < oo defined in (3.1). Then for all e > 0 there exists a point z* € M
such that

n
*_ * < ! 1 .
|z* — Tz ||_—n+16(T)+6 (3.7)

Proof. Consider the set-valued map Hr defined by (3.3). Due to Proposition
3.4, there exists a point s* € M with s* € convHr(s*). Formula (3.1) implies
D(Hr(s*)) < §(T). Therefore, by Proposition 3.5, there is an s € Hr(s") such
that il
ol €« —=6(T). .

ls* = sl < ——= &'(T) (3.8)
Due to definition (3.3), for any & > 0, there exists an z* € M with [|z* — s*|| <
€/2 and ||Tz* — s|| < /2. Consequently,

n
Iz = Ta*|| < f|lz* — s*[| +[|s" = sll +[ls = T2"[| S == &(T) +&,  (3.9)

i.e,, (3.7) holds true. .
For Euclidean spaces we obtain a better result, namely,

Theorem 3.7. Assume M is a compact and convez subset of the Euclidean
space R*. Let T : M — M be any mapping with the measure of discontinuity
8'(T) < 0o. Then for all € > 0 there exists a point z* € M such that

n
Tl < —  §(T) + €.
l=* =T < 2(n+1) (T) +e

In order to prove this theorem, we use the following relation found by Jung

[7].

Proposition 3.8. [7] For any bounded closed subset S of the Euclidean space
R", the following inequality holds between the diameter D(S) of S and the radius
R(S) of the circumscribed ball:

n

R(S) < /55y D) (3.10)

The inequality (3.10) becomes an equality if S is a regular simpler.

Note that (3.10) is also known as Young’s inequality {6, p. 414]. This leads
to the following assertion which is similar to Proposition 3.5.

Proposition 3.9. Let S be a bounded subset of some normed space (R, || - ||)
and z € conuS \ S. Then there ezists s € S such that ||z — s|| < R(S). In
particular, if || -| is the Euclidean norm, then
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Iz —s|| < \/Q(n—”ﬂ) D(8). (3.11)
Proof. We prove by induction that if £ < n and
k41 E+1
2= Mm; forz; €8, X >0,1<i<k+1,and Y N=1, (312
i=1 i=1
then
lsriréiilﬂ |z — z:i|| € R({z1,z2,...,Tks1}). (3413)

It is obvious for & = 1. Assume that this assertion is true for 1 < k£ < [ < n.
We now consider the case k =1+ 1.

Let ¢ be a minimizer of the convex function g(z) := sup;<;<;4; [lz — z;| on
the linear hull L := span {z1,z2,...,Z141}, i-e., E

glc)= sup |lc—z|=inf sup |lz— il = R{z1,2s,...,2151}). (3.14)
1<i<i+1 z€L 1<i<i+1

Then the ray from c¢ through 2z cuts the boundary of conv{z;,zs,..., 7141} at
a point 2/, i.e., z lies in the segment [c, 2’| and

z' € conv{x;, ,%y,..., %y} for some {z; ,2i,,...,2,} C {z1,23,..., 201 }.
By induction assumption, there is some s € {z;, ,zi,,...,;, } C S such that
|2/ — sl < R({=i,, Ziyy. oo 23, }) < R({Z1, 22, ..., Z141}).
Therefore, (3.14) and z € [, 2] imply
Jnin 2=l < 12 = sl < max{lle sl 12 ~ s}
< R{{z1, %2, -, T141}),

i.e., (3.13) holds for k =1+ 1, too. Hence, (3.12) implies (3.13) for all k < n.
If 2 € convS\S, then, by Carathéodory’s theorem [3], z can be represented as
in (3.12), which yields (3.13). Consequently, for s € {z1,za,...,zr+1} satisfying

o= sll =, min_llo~ail,
we have
Iz — sl < R({z1,22,.. ., Zk+1}) < R(S).
In particular, if |- || is the Euclidean norm, then (3.10) implies (3.11). n

Proof of Theorem 8.7. We only have to do the same as in the proof of Theorem
3.6. The main change is that Proposition 3.9 is used instead of Proposition 3.5,
and in (3.8)—(3.9), the factor n/(n + 1) must be replaced by (n/2(n +1))/2.
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Remark 3.1. Bohnenblust (1938) found an analogy to Jung’s inequality in Min-
kowski geometry. Due to [2], for any bounded closed subset S of some normed
space (R", || -]}), the following inequality holds between the diameter D(S) of S
and the radius R(S) of the circumscribed ball:

n
n+1

R(S) < D(S). (3.15)
(Leichtweiss [10] showed that n/(n+1) is the best factor by showing cases where
the equality holds true.) This inequality and the first part of Proposition 3.9
imply immediately Proposition 3.5. Nevertheless, we prefer to choose a direct
proof for Proposition 3.5 as it has been done.

Remark 3.2.1f T : M — M is an r-roughly k-contractive mapping on a compact
and convex subset M of some normed space (R", {|-||) (for » > 0 and &k € (0, 1)),
then (1.2) and (3.1) imply that §'(T") < r. Therefore, Theorems 3.6 and 3.7 yield
that, for all € > 0, there exists a point £* € M such that

lz* — Tz*| < T+ €.

n+1

In particular, if | - || is the Euclidean norm, then

T
*_T * < - X
e T

Next, we like to show that it remains true if M is not necessarily bounded.
Moreover, the term ¢ in these inequalities can be eliminated. For this elimina-
tion, we need the following.

Proposition 3.10. Suppose that z1, T3,...,z; belong to some strictly convex
normed space (R™,||-||) (n > 1), and z € conv{zy,z2,...,2x}. Then
i —z;|| = .
Anin, |z — zi|l > R({z1,22,...,2k}) (3.16)
implies
|z — zil| = R{z1,22,...,z}) Vi=1,2,...,k. (3.17)

Proof. Let us prove by induction. It is clear that the above implication is true
for k = 2. Assume that the assertion is true for 2 < k < 1. We have to prove it
fork=1+1.

Let (3.16) hold true for some set {z1,z2,...,Zi4+1} (K =1+1), and let ¢ be
the center of its circumscribed ball (see the remark after the definition (3.4) for
the existence of this center). Next, we show that the case z # ¢ is impossible.
For this purpose, we use the following property of a strictly convex normed
space which can be verified easily:

w € (v,y) = lw -zl <max{|lv -z}, |y — z|}, (3.18)

where v, w, z, and y are any points of this space, and (v,y) denotes the open
segment connected v and y.
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Assume the contrary that z # c¢. There are only two cases:

z € int(conv{zy, z2,...,Z141}) (3.19)
and
z € conv{z;, , sy, ...,z; } for some {z; ,xi,,...,z,} C {z1,22,..., 2131}
(3.20)
If (3.19) holds, denote by 2z’ the cutting point between the ray from c through
z and the boundary of conv{z;,zs,...,z141}, i€,
2" € conv{z;,,%i,,..., 2} for some {z; ,zs,,...,2;,} C {T1,20,...,T141}

and z lies in the open segment (c, 2’). Then (3.4), (3.16), and (3.18) imply
”zl = zz” > ”Z - ml” 2 R({.’L‘l,:ﬂz, s.00 ’$l+1}) 2 R({mh 1 Ligyen. ’mil})

for all ¢ € {¢1,42,...,%}, which conflicts with the assumption that (3.16) yields
(3.17) for k < L.
If (3.20) is true, then it follows from

lz — :L‘,“ > R({$1;$2,-- -,ml+1}) 2 R({xil »Ligy oo -a:zix}) Vie {i17i2,--- ,il},
and the induction assumption that
2 — z:ll = R({zs,, %is, - - > 20, }) = R({z1, 22, .. -, Tug1}) 2 e — 2]

for all ¢ € {41,%2,...,%}. Consequently, (3.18) implies

1(z+c) -z

_max ” <R({mi1’$i2""vmit}),
i€ {102t} || 2

which conflicts with (3.4).
Hence, only z = c is possible. For this case, (3.4) and (3.16) imply (3.17).
]

Remark 8.8. The assumption of strict convexity in Proposition 3.10 can be
neglected if k£ = 2. For k > 3, this assumption is really needed, as the following
example shows. Let | - || be the maximum norm, and {(0,0), (0,2), (2,0)} ¢ R2.
Then

={(1,1) - (2,0)] =1

and each z = (¢,1), 0 < t < 1, satisfies
(% 1) = (0,0)[| = |I(¢,1) ~ (0,2)]| = 1, but [|(z,1) — (2,0)| =2~ > 1,

i.e., (3.16) is true, but (3.17) does not hold.
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One of the main results of this paper is

Theorem 3.11. Let T : M — M be an r-roughly k-contractive mapping on a

closed and convez subset M of some normed space (R", [ - ||} (for r > 0 and
k€ (0,1)). Then, for all e > 0, there exists a point x* € M such that
* * n
— < : .
o -T2 < gt (3.21)

If the normed space (R", | - ||) is strictly convez, then (3.21) even holds true for
e = 0. In particular, if | -| ts the Euclidean norm, then there exists a point
z* € M such that

m

l* = Tz*|| < \/

Proof. Let g be an arbitrary point of M. Denote by B the closed ball with
center zg and radius 7 := (r + ||zo — Tzol|)/(1 — k). For z € B, (1.2) implies

Tz — zol| = llzo — Txol| < [Tz — Tzol| < kl|lz — 2ol + 7.

Therefore,

Tz — zo|| < kllz — 20|l + 7+ [lz0 — Txoll < k7 + (1 — k)7 =7,

i.e., Tz € B. Hence, T' maps the compact and convex subset M N B into itself.
Therefore, due to Remark 3.2, for all € > 0, there exists a point z* € M such
that (3.21) holds.

Assume now that the normed space (R, || - ||) is strictly convex. Applying
Proposition 3.4 for T as a mapping from M N B into itself, we obtain the
existence of s € M N B satisfying s € convHr(s), which of course yields

s € convS with §:= Hr(s) U {Ts}.

Assume s € convS \ S (the case s € S is obvious). It is easy to see that there
are 1, g, ..., € Hr(s) such that

s € conv{T's,z1,Z9,...,Tk}.
Proposition 3.10 yields that at least one of the following cases must appear:
(@) ||s = Ts|l < R({Ts,z1,Z2,...,Tk}),
(b) |Is — z:|| < R({Ts,x1,%2,...,2x}) for some i € {1,2,...,k}.
In the case (b), (3.3) implies for
p:=R({Ts,z1,z2,...,2x}) — ||s — || >0
that there exists § € M with ||s — §|| < p/2 and ||z; — T'3|| < p/2. Consequently,

13— T3)| <15 = sl + lls = zill + o = T38| < R({T's, 21,22, -, Tk }).



Invariant Property of Roughly Contractive Mappings 289

Hence, we can always say that there is some z* € M such that
lz* = Tz*|| < R{T's, 1, z9,...,24}). (3.23)

Since
D({TS,.’L‘l,.'Ez,...,mk}) <r (3.24)

follows from the definition of r-roughly k-contractive mappings in (1.2) and the
definition of Hr(.) in (3.3), (3.23) and Bohnenblust’s inequality (3.15) yield
that (3.21) even holds true for ¢ = 0.

If || -|| is the Euclidean norm, then (3.23)—(3.24) and Jung’s inequality (3.10)
imply (3.22). a

For n = 1, Theorem 3.11 yields that each r-roughly k-contractive mapping
T : M — M on some closed interval M C R admits at least one y-invariant
point with v = r/2. For instance, since the mapping 7' : R — R defined by (2.6)
is r-roughly k-contractive, R is closed and convex. T herefore, it must possess a
vy-invariant point with v = r/2. In fact,

T0-0=
i.e., 0 is a y-invariant point of T' with v = 7/2.

4. Concluding Remarks

As pointed out in Sec. 2, the iteration (2.1) can be used for seeking ~v-invariant
points of r-roughly k-contractive mappings if v > r/(1—k). For smaller ~, this
scheme is no longer suitable. One can modify some methods described in [12]
for finding ~y-invariant points with v > r, as discussed in [5]. For r-roughly k-
contractive mappings on some bounded and closed interval of R!, an algorithm
is given in [11] and [13] for determining +-invariant points with v > r/2.
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