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Abstract. In this paper, r-roughly k-contractive mappings T : M ---+ M (which
sat is fy  d(Tr ,Ty)  < kd(n, i l  +  r  for  a l l  r ,A € M and some f r  e (0,1) ,  r  > 0)
are considered. If M is not assumed to be convex, 7 is only guaranteed to admit
7-invariant points r* (which fulf i l l  d(r*,Tx*) 17) with 1> rl0 - k). For M as a
compact convex subset, ? possesses 7-invariant points for all 7 > r. If M is a closed
and convex subset of some normed space (lRt,l l  '  l l), then, for all e ) 0, there exist
7-invariant points with 1: nrl(n+ 1) +6. If the normed space (1R",l l . l l) ir strictlv
convex , thenTadmi t sT - i nva r i an tpo in t sw i th . y :n r l ( n *1 ) .  I npa r t i cu la r , i f  l l  l l
is the Euclidean norm, then there are 7-invariant points with 7 : (nl2(n+7))1/2 r.

1. Introduction

As represented in the wonderful book [14], fixed-point theorems belong to the
fundamental results of non-linear functional analysis, which have many impor-
tant applications. one of them is Banach's fixed-point theorem [1] which deals
with so-called contractive mappings, i.e., mappingsT M --+ M on some metric
space (M, d) satisfying the contraction condition

d(Tr ,Ty)  1kd(n,y)  for  a l l  r ,y  € M, for  a f ixed k <7. ( 1 . 1 )

Due to the theorem mentioned, if M is non-empty and complete, then such a k-
contractive mapping admits a unique fixed point n* € M, i.e., a point satisfying

TiL* : r' ,

and the sequence (c1) defined by the iteration

: x i 1 1  : T t i ,  i  : 0 r 1 r 2 r . . .
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(with an arbitrary start point ro € M) converges to this fixed point'

What happens if the right-hand side of the inequality in (1.1) is modified by

some positive constant r? That means) 7 fulfills the condition

d(Tr ,Ty)  1 le d(n,a)  +r  for  a l lx , ,y  € M and some f ixed /c  e [0,1) ,  r  > 0,
( 1 . 2 )

which is said to be an r-roughly k-contractiue mapp'ing. Such mappings may

arise in quite natural ways. For instance, given a k-contractive mapping T

which cannot be determined exactly one has to do with an approximation 7.

For

r : :2yy';d(Tx,Tr),

lLr l  rmplres

d,(Tr,ff i  < d.(Tn,Tr) + d,(Tn,Ty)'r d,(Ty,f i l  < kd"(r,y) -r r

for all n,y € M, i.e., T is r-roughly k-contractive.
Obviously, r-roughly k-contractive mappings cannot always possess fixed

points, even under the same condition for the subset M as in Banach's fixed-

point theorem, But they admit some sG-called yfired, ot l-inuariant points, i.e.,

such points r* satisfying
d ( r .  , T r - )  1 1 (1 .3)

for some ,y > 0. In this paper, we determine the best possible roughness degree

7 of this rough inuariont, depending on k and r.

Section 2 deals with roughly contractive mappings whose domains are not

necessarily convex. Theorem 2.1 says that such mappings possess 7-invariant
points with 7 2rlG - k), and these points can be determined or approximated

by the well-known iteration scheme (2.1). Example 2.1 shows that, in general,

we cannot expect to obtain 7-invariant points with'y < rlQ - k). Even if

these points exist, the iteration is not suitable for seeking them, as illustrated

by Example 2.2.
In Sec. 3, roughly contractive mappings on convex domains are considered.

For a general normed linear space, Theorem 3.2 says that an r-roughly k-

contractive mapping T : M '- M on some compact convex subset M admits

"y-invariant points if f > r. In finite dimensional normed spaces, we obtain a

better result. If M is a closed and convex subset (not necessarily bounded) of

some normed space (R",l l ' l l) then, for all e ) 0, there exist 7-invariant points

wi th 7 :nr l (n+ 1)+e.  I f  the normed space (1R", l l  ' l l )  i .  s t r ic t ly  convex,  then

? admits 7-invariant points with 7 : nrl(n + 1). In particular, if l l  ' l l  is the

Euclidean norm, then there are 7-invariant points with 'y : (nl2(n + l))rl2 r

(Theorem 3.11) .

2. Roughly Contractive Mappings on Non Convex Domains

In this section we investigate r-roughly k-contractive mappings T : M - M on

some metric space (M, d) where the completeness and the convexity of M are
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not generally required. As usual, we also use the iteration

r g  €  M ,  r i 1 1  :  T r 4 ,  i  : 0 , 7 1 2 , . . .  .  ( 2 . 1 )

The main result of this section is

Theorem 2.L. Let T : M --+ M be an r -roughly k-contractiue mapp'ing on sorne
metric space (M, d) for r > 0 and ,k e (0, I). Suppose ns € M and,

a: :  d . (no,Tro)  -  
f t ,  O.

@) tf "y > rl\ - k) and

i  )  rogs ((,  -  -+) o- ')  ,  e.2)- ' " \ \  r - k /  /

then ri prouided by (2.1) is a 1-inuariant point under T.
(b) ,I/ n* e M is a cluster poi,nt of the sequence (ri), then it is a 1-inuariant

point under T with "y : r lG - k).
(c) For euerA.y ) 0, the set 1., of alll-'inuariant points (of T) i,s bounded. If

1 > rlG - lc), then I, is inuariant under T, i.e., TI, c Ir.

Proof. (a) Applying (1.2) and (2,1) successively we obtain

d(T  r i  -  1 ,T  r r )  S  k  d (Tr i -  2 ,T  r , ,  -  r )  + ,

<  lezd(Tr i -s ,Tr t -z )  +  (1+ ,b) r

1  kN d , (ns ,Trs )  I  (1  +  k  +  . . .  *  f i - t ) r

:  lc 'd(no,Txs) I f i r ,

which implies

d,(r i , r ra)  < un (a6o,rno) -  
#)  + h:  

k ia t  *  
(2.3)

Since a > 0, 7 > r l ! -  k) and 0 < k < 7, (2.2)-(2.3) yield

d,(r ; , rn i )  = (  ( r -  -+) o- ' )  o t  - ! - :  t ,'  
\ \  r - K /  /  L - K

i.e., 16 is "y-invariant under ?,

(b) For an arbitrary i 2 1, we have

d ( r r  ,T r * )  <  d ( * "  , r r )  I  d , (T r i - 1 ,T r * )

I  d ( r * , r r )  *  k d ( r a _ 1 , r * )  +  r

1  d ( r * , n r )  *  k ( d ( n i - 1 , T n ; t )  *  d ( T n 6 - 1 , 2 * ) )  +  r

1  d ( r *  , 21 ) (1  +  k )  +  k  d ( * r - t ,Tx i -1 )  |  r .
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It follows from (2.3) that

l imsupd (z ; -  t ,Tn* t )  <  
1_  k

Since z* is a cluster point ofthe sequence (21), considering a subsequence which
converges to z* Ieads to

d,(r*,Tr*) S n - :- 
+ r :  ; !-,l - k  r - k '

i.e., n* is 7-invariant under ? with 'y : r lQ - k).

(c) For every ? ) 0 and for all z, y € 11 , it follows from

d(* ,y)  < d(r ,Tr)  - t  d , (Tn,Ts)  t  d(y,Ty)  < 21 *  kd(r ,y)  + r

that

d ( r . u \ . 2 1 * '  .q \ w t v t  _  
7 _ k ,

i .e., I, is bounded.
I f r € l r , t h e n

d,(Tr,T2 n) < te d,(r,Tr) j r 1 k 1 | r.

This inequality implies by 0 <,k < 1 and l2rl\ - k) that

d (T r ,T2 r )  <  k t  *  ( l  -  k )1  : 1 ,

i.e., Tr € 1r, too. Hence, TI^t C I, for 1> rlQ - k). I

Corollary 2.2. If M 'is a compact rnetric space or if it i,s a closed subset of
some finite d'irnensional metric space, then each r-roughly k-contractiue mapping
T : M ---+ M ad,mits at least one 1-inuariant point with 1 : rl\ - k).

Proof. If M is compact, then each sequence (r;) defined by (2.1) has at Ieast one
cluster point. Therefore, due to Theorem 2.1(b), this cluster point is 7-invariant
u n d e r ? w i t h 7 : r l 0 - k ) .

Assume now that M is a closed subset of some finite dimensional metric
space. Take an arbitrary rs e. M. For 7s :: d(no,Tns), ns is obviously

7e-invariant. Thus, if lo < rl\ - k), then rs is 7-invariant under ? with
'y : rlG - k). If 'yo > rlG - k), then Theorem 2.1(c) ensures that all 11, i € N,
are 7g-invariant, too, and hence, they are contained in the bounded subset 1ro
of the finite dimensional space considered. Therefore, this sequence has at least
one cluster point, which belongs to M, because M is closed. The rest follows
directly from Theorem 2.1(b). I

Theorem 2.1 only ensures the existence of 7-invariant points of r-roughly
k-contractive mappings with 7 > rlG - k). In general, l: rl(7 - k) is already
the smallest possible roughness degree, as the following example illustrates.

Example 2.1. Let r > 0, k e (0, 1),
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M 1  : :  ( -  * ,  
f f i ) ,  

M z  i :  ( * - . . 4 , * * ) ,  a n d '  M  : :  M t t )  M 2 .  ( 2 . 4 )

Define

(  r 1 2 - k r ,  i f  r e  M 1 ,
t iE i :  

\  - r l2 -  kr,  i f  r  € M2.
(2.5)

This mapping ? is r-roughly k-contractive. In fact, if fu,g) C M1 or {*,y} c
M2, then

lTr  -  Ty l  :  |  -  k r  +  ka l  :  k l "  -  y l .

I f  n € M t  a n d y €  M 2 , o r i f  x e M 2  a n d y e  M l , w e h a v e

l r r  -  rY l  =  l ;  
-  

;1 .  lkn -  kYl  :  r  *  k l '  -  Y l '

Formulae (2.4)-(2.5) imply that if n e M1, then

r , - r r
t  *  '  ,  

-  t c  
o 1  -  n )  

:  
N  J '

i.e., Tr € M2, and if n € M2, then

7 * a - - !  - k = = : - : -  ' '  ' , .
2  

' "  
2 ( 1  -  k )  2 ( r  -  k ) '

i.e., Tr € Mt, Hence, ? maps M C IR into M, Moreover, it also follows that

l r -T r l ) i n fMz-supMl  : f f i - 2 f l r ) :  f o r  a t I reM.

That means, this r-roughly k-contractive mapping 7 cannot have any 7-invariant
points with 7 ! rl$-k). Consequently, in general, there is no better roughness
degree 7 as given in Theorem 2.7(a).

As just considered, ? admits no 7-invariant points with 7 : rl(7 - k). This
means no conflict with (b) in Theorem 2.L In fact, since

Iimsup lro - rn*l < -+
I _ K

(due to (2.3)) and

in f  M2-supM1 -  
r-  

t - k '
the fact

either ra € M1, n411 € M2 or r; e M2, nial € M1

implies that the only cluster points of each sequence (r1) defined by (2.1) are
+rl(2(1- k)), which do not belong to M.
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Let us extend T toT defined on the closure M of M,i.e.,Tr:72 for all
r € M. In order for 7 to be r-roughly k-contractive on M, it must hold true

|  -  r  I  l =  r  = ll , T  _  l :  l i

l- zG - nl - ,F:nl : "r'H l' 4t - n1- '"1

< k h * ' :  { 1 '
Hence, rlQQ - k)) is 7-invariant under ? for 7 

- rlQ - k)' This result

corresponds with (b) in Theorem 2.1, because rl(2(1- k)) is a cluster point (in

M) of each sequence (r;). It is also an illustration for Corollary 2.2 since M is

a closed subset of lR.

Remark 2.1. Theorem 2.1 shows that the iteration (2.1) can be used to de-

termine or approximate 7-invariant points of r-roughly k-contractive mappings

for 7 ) rl\- k). But, in general, this scheme is no more suitable for finding

7-invariant points with 7 < r l0- k) even if they exist, as the following example

shows.

Exarnple 2.2. Let us consider the following extension of 7 defined in (2.5)

(2.6)

wnere
f r \ : :  ( -* ,0]  and fr12;:  (0,+m).

Similarly as above, it can be shown fhatf is an r-roughly k-contractive mapping

from lR into IR.. Moreover, the difierenceln-ftladmits on the interval l-rl2(I-
k), rl2(1- k)l all values of lr12, rl0 - k)1. That means, for all 1 2 rf 2, the

set 1., of 7-invariant points of ? is non-empty'

We now focus our consideration within the subsets

M'r:: (--L, s) and' twi ' :  (0, t=)'  
\ 2 ( l - / c ) '  /  

-  
\  z \ I - K ) /

It is easy to verify that

r € Mi + f* e tW!, and n e Mi + f" e tWi.

Therefore, tWi c Ut, frti. fu2, and (2.6) yield

A  ( r l 2  k x ,  i f r e M l ,
r r : : l  - r f  - k r ,  i f  r e f u z ,

A  ( r l 2 - ( 7 + k ) r ,  i f r e l ; [ ] ,
t r  - n :  

\  _ ' r l 2 _  ( l + k ) r ,  i f  n  e  M ; ,

: ,  =  (  - r (7+k l2 )+k ( r+k ) r ,  i f ne  i t ' r ,
T " n  - ' " :  

\  r ( t  + k 1 2 )  + k ( r + k ) r ,  i t r  e  M i .

and
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Thus, i f  n e Mi,  then r > -r lQQ- k))  and L -  k2 >0 imply

lf' * - irl - lir - rl : (t - k2)r * 4+!)

> (1 -  k ' ) - - : ! -+  " (1=* 
k)  :0 .

2 ( r - k ) '  2

Similarly, if r e fif[, then r < rlQQ - k)) implies

lf'* - ixl - lin - nl : 4+9 - Q - k2)x

.  r ( I + k )  . r r  r,  -  
- ( r -  k " ) 2 0 _ n ) : 0 .

In any case, for each z e frf' :: Ui U ttt;, we have

I tQr l  - f r l> l fx -  r l .

Conseqrrently, by startir,rg at any point rs e fr[', t\e sequence (ri) defined by
ri+7 : ?r1 remains in M', but after each iteration step, the distance lTu-r|
becomes greater, Therefore, if .y < rl\ - /c) and lrs -fixsl ) 7, then the
sequence (r1) cannot approach the set 1., of7-invariant points but moves further
away from this set, although.I" is non-empty for .y > rl2.This is what Remark
2.1 says.

An interesting fact appearing in this example is that, for an arbitrary start-
ing point ir6 € IR, the sequence (za) has exactly two cluster points *r IQQ- k)),
and they are 7-invariant points with 7 : r/(l - k).

As mentioned in the introduction of this paper, because of errors, many
k-contractive mappings only appear during practical computing as r-roughly
k-contractive ones. Therefore, by using the iteration (2.1), in general, one
cannot approximate the proper fixed point but only some 7-invariant points
w i t h T 2 r l Q - k ) .

Example 2.1 shows that, in general, we cannot expect each r-roughly k-
contractive mapping T : M ---+ M to admit 7-invariant points with 7 < rlQ-k).
For k near 1, this bound is rather large, e.g. rl\ -k) : 100 r if k :0.99. The
situation changes essentially if M is assumed to be convex, as we will see in the
next section.

3. Roughly Contractive Mappings on Convex Domains

Throughout this section we assume M is convex, and show under some assump-
tions that r-roughly k-contractive mappings of M into M admit .y-invariant
points with 7 near r.

For dim M : @t we use the following result of Klee [9].

Theorem 3.1. [9] Suppose M is a compact conuer subset of a normed linear
space, T is an F-continuous mapping of M into M, and 1 ) t ) 0. Then sorne
point of M ,is 1-'inuariant und,er T.
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Recall that ? : M + M is called F-continuous provided each r of M admits
a neighborhood. (J, such that the diameter of the set TU, is at most r (see [9]).

Let T : M ---+ M be an r-roughly k-contractive mapping, r an arbitrary
fixed number satisfying F ) r, and r € M. Choose [/" as the (open) ball

B(n,(r -r)l2k) (with center r and radius (r -r)l2k). Then, due to definit ion,
we have

l l r ' - * " l l  S  l l " ' - , r l l  +  l l * - , " l l . r+ :7 ,  Yr ' , r "  e (J , ,

and consequently,

llT*' - Tr"ll < t ll*' - n"ll + r . rT + r : F, vr',r" € (J,,

which yields diamTtJ, ( F. Hence, ? is F-continuous for all f > r. Therefore,

Theorem 3.1 implies

Theorem 3.2. Suppose M is a compact conaer subset of a normed linear space,

T'is anr-roughly k-contract' iue mapping of M into M, and ? > r > 0. Then

some point of M is 1-inuariant under T.

For dim M <-cx , Cromme and Diener [4] obtained the following result.

Theorem 3.3. [4] Assume M is a compact and conuer subset of some normed

spoce ( lR." , l l  . l l ) .  LetT:  M--  M be any mapping and

(3 .1)

(3.2)

Cromme and Diener [4, p. 261] remarked that, in (3.2), 6'(") can be replaced

by (nl@+ 1))6'("). But they omitted the proof. Since it is not obvious, we Iike
to show it now. To do it, we need an assertion based on Kakutani's fixed-point

theorem [8], which was used in [4] for proving Theorem 3'3, namely

Proposition 3.4. l\ Let M be a compact and conuen subset of R" which

contains more than one point. Let T t M '- M be any mapping. We define a

set-ualued, map H7 on M bg

Hr(n) ,: {y e M :1 sequertrc€, ni --+ r, rt. * r such thatTri --+ g}' (3.3)

Then there enists a point r* e M with r* e conuHT(r*).

Before stating the next tool, Iet us mention the definition of the diameter

D(S) and the radius,R(5) of the circumscribed ball of a bounded subset ,S in

some normed space (R", l l  .  l l ) '

6' (T) :: 
"t"n 

tty*tyo 
r,". "ill, r,,, 

llr v - T zll'

Then for all e ) 0 there en'ists a point r' e M such that

l l r *  -Tr* l l  S 6 ' (")+e.

D(S) :: sup llr - sll, rR(^9) :: I-qt- sup ll" - all.
x , Y e S  r e K ' Y € . S

(3.4)
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Since 9(c) :: supu65 ll" - Vll is a convex function on IRn (as the supremum
of a family of convex functions), it is continuous. Moreover, if S is bounded
and a :: g(z) for some arbitrary fixed z € lR", then the level set Lo(g) of g is
compact. Therefore, there exist points c € IRn satisfying

;:B ll" 
- all: sk) : 

"inRl 
e(r) : 

"i&l ;:B ll'- sll : n(^e), (3.5)

which are called. centers of the circumscribed ball of a bounded subset ,S. In
general, there may be several centers, even outside of clconv,9. For instance, if
^9 : {(0,-1), (0, t)} c R2 and ll . l l  is the maximum norm, then .rt(^9) : 1 3tr6

sup l lc  -  y l l :1  for  a l l  
"  

€  { (€ ,0)  e  R2 ,  l4 l  <  1} ,
u e s

underwh ichon lyc : (0 ,0 )e  c lconv ,9 .  But i f  (R" , l l  ' l j )  i ss t r i c t l yconvex( i .e . ,
if the closed ball B(0, 1) : {z € IR" : ll"ll < 1} is strictly convex), then this
center is unique and belongs to clconvS.

Proposition 3.5. Let S be a bounded subset of some normed space (1R", ll . l l)
and z € conuS\S. Then there exists s € S such that

ll, - "ll < ft1o1t1. (3.6)

Proof.By Carath6odory's theorem [3], there is a k-dimensional simplex

,5h  : :  conv {  f r t , f r z , .  . .  , nn+ t }

w i t h  k  3n ,  { r t , n2 , . . . , r x+ t }  C  ^9 ,  and  z  e  Sk .  Cons ide r  t he  f unc t i on

& + 1
51 

"I  l r )  i :  L IW 
-  r i l l .

Obviously,

t r + I
\ s -

f @i) : Lll"i 
- rtll < k. lnp,* .ll"i - r,ll < k D(S)

. _ 1  1 < i < k + 1  "

Since /(.) is convex and, z € conv,9, we have

(k+ 1),.R'f*, l l ,  -  rnl l  < f  (")  s,=Tl i l* ,  f  @i) <kD(s),

which implies

m i n  l l z - n , l l  < - j - D ( s ) <  
' , D ( S \ .

l < i < f r + t  " - k + l  ' - n * l  ' - "

i.e., (3.6) holds for s € 5 satisfying l lz - sll : minl<1ap-p1 ll, - "i l | .
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We are now in a position to improve the assertion of Theorem 3.3.

Theorem 3.6. Assurne M is a compact and conuen subset of some normed

space (1R", ll . ll). t et T : M --+ M be any mapping with the rneasure of d'isconti'-
nui tg 6 ' (T)  < a def inedin(3.7) .  Thenfor  a l le  )  0  there enists  apoint r*  e M
such that

llt:. -Tr.ll S -+ 6'(r) + e.
n +  L

(3.7)

Proof. Consider the set-valued map -Ilr defined by (3.3). Due to Proposition
3.4, there exists a point s* € M with s* € convffu(s*). Formula (3'1) implies
D(H7(s-)) < 6'(T).Therefore, by Proposition 3.5, there is an s € Hr(t* ) such
that

l l"- - 
"l l <;fi l '1r1.

B(s) < ffiroo,

(3.8)

M with l l".  - 
"- l l  SDue to definition (3.3), for any € > 0, there exists an r* €

e12 and llTr. - sll < e12. Consequently,

l l r *  -Tr*  l l  S l l " -  -s . l l+  l l " -  - " l l  +  l l r -  T" ' l l<  6 ' (T)+€,  (3 .9)

i .e . ,  (3.7)  holds t rue.  r

For Euclidean spaces we obtain a better result, namely,

Theorem 3.7. Assume M 'is a compact and conuer subset of the Euclidean
space Rn . Let T ; M ---+ M be any mapping wi'th the nxeasure of discontinuity

6'(f) < q. Then for all e ) 0 there 
"!tt 

o poi"t r* e M such that

l l r*  -Tr*l l  S , l#, . . , l 'Q) e,-  
U  z l n +  I )

In order to prove this theorem, we use the following relation found by Jung

t7l.

Proposition 3.8. l7l For any bound,ed closed subset S of the Euclidean space
R" , the following inequalitg hold's between the d'iameter D(S) of S and the rad'ius
R(S) of the circumscri,bed' ball:

(3.10)

The inequalitg (3.10) becomes an equality if S i's a regular simplex'

Note that (3.10) is also known as Young's inequality [6, p. 414]' This leads

to the following assertion which is similar to Proposition 3.5.

Proposition 3.9. Let S be a bounded subset of some normed spoce (lR" , l l  '  l l)
a n d z  €  c o n u S \ , S .  T h e n t h e r e e t i s t s s  €  S  s u c h t h a t l l z  - s l l  <  R ( S ) '  I n
particular, i/ ll . ll is the Euclidean norm, then
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l l ,  -  
" l l  S

Proof. We prove by induction that if ,k ( n and

/ c + 1  k + l

z  : D ) , i n i  f o r  r i  €  S , ) i  ) 0 ,  1  < i  < , k + 1 ,  a n d  I ) ,  :  1 ,
i = \  i = 7

then

mi1r  l l "  -  , t l l  <  .B( { " r  ,12 , .  .  . ,  r r+ r  } ) .1 < i < k + 1
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( 3 . 1 1 )

(3 .12)

(3 .13)

It is obvious for k : 1. Assume that this assertion is true for 1 ( k 1 I 1 n.
We now consider the case k : I * L

Let c be a minimizer of the convex function g(r) :: supr<t<,+r l lr - 16 l l on
the  l i nea r  hu l l  t r  : :  span  { r r , *2 , . . . , 21 , . 1 } ,  i . e . ,

g(c) : sup l l" - ,ol l  :  i4 sup l l" - * i l | :  ,R({zr ,n2,. .  . ,  zla1}). (3.14)
1 < i < r + 1  r e L  L < i < l + l

Then the ray f rom c through z cuts the boundary ofconv{r1, r2, . . . , r1a1}  at
a point z' , i.e., z lies in the segment lc, z'l and

z '  e  c o n v { n i r , f r i z r . . , , r i t }  f o r  s o m e  { n i , t , i . r . . . r f r i t }  C  { " t  , f i 2 t . . . , n t + t } .

By induct ion assumpt ion,  there is  some s € { rar t r iz , . . . ln i r }  C ^9 such that

l l " '  -  t l l  <  R ( { r u , , n i z , .  .  .  , r t , ) )  <  f t ( { r t  , n 2 , .  .  . ,  r r + r  } ) .

Therefore, (3.14) and z e[c,z'] imply

r<T]l*r l l" - *nll < l l '  - 5ll < max{llc - sll '  l lz' - sl l}

<  R ( { " r  , f r 2 t . .  . ,  r l + r  } ) ,

i .e . ,  (3.13)  holds for  k :11-1,  too.  Hence,  (3.12)  impl ies (3.13)  for  a l l  k  1n.
If z € conv.9\,S, then, by Carath6odory's theorem l3l, z can be represented as

in (3.12), which yields (3,13). Consequently, for s € {"r, n2t. . . tr611} satisfying

l l ,  - 
" l l  

: ,#l '*, l l ' -  *ol l ,

we have

l l ,  -  
" l l  

<  R ( { r r , t 2 , .  .  . ,  r r+ r  } )  <  ,R (S) .

In particular, if ll .ll is the Euclidean norm, then (3.10) implies (3.11). I

Proof of Theorem 3.7. We only have to do the same as in the proof of Theorem
3.6. The main change is that Proposition 3.9 is used instead of Proposition 3.5,
and in (3.8)-(3.9), the factor nl(n+ 1) must be replaced by (nl2(n+ 1))1/2.r

21"i7 ofsl
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Remark 3. -1. Bohnenblust (1938) found an analogy to Jung's inequality in Min-
kowski geometry. Due to l2], for any bounded closed subset S of some normed
space (1R",l l. l l), the following inequality holds between the diameter D(^9) of ^9
and the radius ,R(S) of the circumscribed ball:

a(fl < fto1s1 (3.15)

(Leichtweiss 110] showed that nl(n*I) is the best factor by showing cases where
the equality holds true.) This inequality and the first part of Proposition 3.9
imply immediately Proposition 3.5. Nevertheless, we prefer to choose a direct
proof for Proposition 3.5 as it has been done.

Remarlc 3.2.If T : M - M is an r-roughly k-contractive mapping on a compact
and convex subset M of some normed space (1R", ll ' l l) (for r > 0 and k e (0, 1)),
then (1,2) and (3.1) imply that 6'(T) < r. Therefore, Theorems 3.6 and 3.7 yield
that, for all e ) 0, there exists a point r* € M such that

l lx* -Tr* l l  < - l-  r + 1 ' * t '

In particular, if ll . ll is the Euclidean norm, then

l l r - - ? z - l l  <  r I e .

Next, we like to show that it remains true if M is not necessarily bounded.
Moreover, the term e in these inequalities can be eliminated, For this elimina-
tion, we need the following,

Proposition 3.10. Suppose that 11, 12,...,np belong to some strictly conuefr
normed space (1R" , l l  .  l l )  ( "  )  l ) ,  and  z  €  conu{ r1 ,nz ' . ' . ,ny } .  Then

implies

,?P* l l '  
-  'ul l  > R({"t,  12, '  .  '  ,nk})

l l "  -  
" , l l :  

R ( { c r , n 2 , . ' . , 2 6 } )  v i  :  r , 2 , . . . , k .

(3 .16)

(3.17)

Proof . Let us prove by induction. It is clear that the above implication is true
for k : 2. Assume that the assertion is true for 2 ( k S l. We have to prove it
f o r k : l + 1 .

Let  (3.16)  hold t rue for  some set  {21 , r2t . .  . , l l ,+r }  (k  :  I  + 1) ,  and let  c  be
the center of its circumscribed ball (see the remark after the definition (3.4) for
the existence of this center). Next, we show that the case z I c is impossible.
For this purpose, we use the following property of a strictly convex normed
space which can be verified easily:

w e (u,a) + l lw - rl l  < max{llo - 
"l l , l la 

- rl l i , (3.18)

where u, rD, nj and y are any points of this space, and ('u,y) denotes the open
segment connected u and y.
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Assume the contrary that z f c, There are only two cases:
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z  €  i n t ( conv { r t , r z , .  .  . ,  z l+ r  } ) (3 .1e)

anq

z  €  c o n v { r a r ,  t i z  r .  .  . ,  r i , }  f o r  s o m e  { r r r ,  f r i z ,  .  . , ,  f i i r l 1  C  { * t ,  1 2 , .  .  . ,  r t + t } .

(3.20)
If (3.19) holds, denoteby z' the cutting point between the ray from c through

z  and the  boundary  o f  conv{ r1  , f r2 , . .  . ,  r111} ,  i .e . ,

z '  €  c o n v  { n a r ,  f r i z ,  .  .  . ,  r i r }  f o r  s o m e  { n t ,  r t r ,  .  .  . ,  f r i t }  C  { " r ,  f r 2 ,  .  .  . ,  r r + t }

and z  l ies  in  the  open segment  ( " , " ' ) .Then (3 .4 ) ,  (3 .16) ,  and (3 .18)  imp ly

l l " ' - r o l l  >  l l ,  - n i l l >  R ( { r t , n z t . . . , r r + r } )  >  f t ( { " r ,  t t i . z , . . . , n i r } )

for  a l l  i ,  e  { i1 , i2 , . . . ,21} ,  which conf l ic ts  wi th the assumpt ion that  (3.16)  y ie lds
( 3 . 1 7 ) f o r k < 1 .

If (3.20) is true, then it follows from

l l " - r o l l  ) J ? ( { r r , 1 2 , . . . , 2 r + r } )  > R ( { r n , , t i z , . . . , n i , } ) V i e { i , 1 , i 2 , . . . , , i t } ,

and the induction assumption that

l l t  -  r o l l  :  J ? ( { " r ,  , r i 2 , . . . , n l , } ) :  f i ( { z r , t 2 t . . . , r r + r } )  2  l l " - " l l l

for all i  e {i1,i2,. . ., z1}. Consequently, (3.18) implies

m a x  .  l l * f r  +  c )  -  ' o l l  .  n 1 1 r n  r t n i z , . . . , t r , I ) ,i e { i t , i 2 , . . . , i r }  l l z '  l l

which conflicts with (3.4).
Hence, only z: c is possible. For this case, (3.4) and (3.16) imply (3.17).

I

Remark 3.3. The assumption of strict convexity in Proposition 3.10 can be
neglected if k :2. For k ) 3, this assumption is really needed, as the following
example shows.  Let  l l  .  l l  be the maximum norm, and { (0,0) ,  (0,2) , (2,0)}  c  R2.
Then

R( i (O ,0 ) , (0 ,2 ) , (2 ,0 ) ) )  :  l l ( 1 ,1 ) -  (0 ,0 ) l l  :  l l ( 1 ,1 )  -  (0 ,2 ) l l
:  l l ( 1 , 1 )  _  ( 2 , 0 ) l l  :  1

and each z:  ( t ,1) ,  0  < t  < 1,  sat is f ies

l l ( r , 1 )  -  ( 0 , 0 ) l l  :  l l ( r , 1 ) -  ( 0 , 2 ) l l  : 1 ,  b u t  l l ( r , 1 ) -  ( 2 , 0 ) l l  : 2 - t >  7 ,

i.e., (3.16) is true, but (3.17) does not hold.
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One of the main results of this paper is

Theorern 3.L1. Let T : M -- M be an r-roughly lc-contract'iue mapping on a
closed and conuex subset M of some normed spoce (IR",l l ' l l) (f", r ) 0 and
,k e (0, 1,)). Then, for all e > 0, there edsts a po'int n* e M such that

(3 .21)

If the normed space (R",ll .ll) is strictly conl)en, then (3.27) euen holds true for
e : 0. In particular, xf ll 'll is the Euclidean nonn, then there exists a po'int
r *  € M  s u c h t h a t

l l x "  -Tr * l l  1 (3.22)

Proof. Let cs be an arbitrary point of M. Denote by B the^closed ball with
center zs and radius F:: (r + ll"o - T'rol)lG - /c). For r e B, (1.2) implies

l lT"-  zol l  -  l l ro -Trol l  < l l " "  - rxol l<kl l*  - rs l l+r .

Therefore,

llr* - rsll < klln - 
"o ll + r * 1116 - rroll < kr + (1 - k)r : r,

i .e.,Tn € B. Hence, ?maps the compact and convex subset MAB into itself.
Therefore, due to Remark 3.2, for all e > 0, there exists a point r* € M such
that (3.21) holds.

Assume now that the normed space (lR",l l  ' l l) l t strictly convex. Applying
Proposition 3.4 for T as a mapping from M O B into itself, we obtain the
existence of. s e M fl B satisfying s € convIfu(s), which of course yields

s € conv,S with ,S :: Hr(s) U {"s}.

Assume s € conv,S \ ,S (the case s € ,S is obvious). It is easy to see that there
at l  f r1 ,12, . . . , f rk  e H7@) such that

s  €  conv {Ts ,  r t t f r 2 r .  . . ,  r x } .

Proposition 3.10 yields that at Ieast one of the following cases must appear:
(u )  l l "  -  

" " l l  
<  R ( {?s ,  n7 ,x2 , . . . , " r } ) ,

(U )  l l "  - " c l l  <  R ( {Ts , r7 ,n2 , . . . , r o } )  f o r  some i  e  {1 ,2 , . . . , k } .
In the case (b), (3.3) implies for

p  : :  R ( { T s , n r t n 2 t .  .  .  , n k } )  -  l l "  -  
" o  l l  

>  0

that there exists 5 € M with l l " -Sl l  < pf2 and l lz l -"511 < pl2.Consequent ly,

l l5 -  
"s l l  

< l l5 -  s l l  + l ls  -  
"u l l  + l lq -  rs l l  < R({?s,  n7,n2,. . . , " r } ) .

lln* - Tr* ll < ;!1, + r.
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Hence, we can always say that there is some u+ € M such that

Since

l l n *  - T n *  l l  S  r ? ( { " s ,  r r t r z t . , . , o k } ) .

D( {Ts ,  r r t  f r2 t .  .  . , : xk } )  <  r

f o - o :

(3.23)

(3.24)
follows from the definition of r-roughly k-contractive mappings in (1.2) and the
definition of H7(.) in (3,8), (3.23) and Bohnenblust's inequality'(r.is) yieta
that (3.21) even holds true for e :0.

If l l ' l l is the Euclidean norm, then (3.23)-(3.24) and Jung's inequality (3.10)
imply (3.22).  I

i -o : i ,
i.e., 0 is a 7-invariant point of f with .y : r12.

4. Concluding Remarks
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