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Abstract. In this paper we show the existence of an infinite hierarchv of Petri net
Ianguages on the number of transitions and places of their recognizing nets.

1. Preliminaries

As is well known, the Petri net is a mathematical model of parallel and dis-
tributed computing systems. In the last ten years, the theory of Petri nets and
its applications have been investigated extensively by many authors (see, for
example, [8-11]).

Let N be a Petri net with m transitions and n places, and ,b : min{m,n}.
For any integer n ) 7 we denote by L(n) the class of all Petri net Ianguages
acceptable by a Petri net,A/ with k ( n.

Our aim in this paper is to prove that there exists an increasing infinite
sequence of integers n,,

I (  n 1  1 n 2  1  ' . .  1 n t  l  n t + t  <  ' . .  ,

such that
L (n1 )  c  L (n2 )  c  . . .  c  L (na )  c  L (n ;a1 )  c  . . .  .

The proof of the result is based on a complexity characteristic of Petri net
languages, obtained earlier by the first author [6],

Analogous hierarchies for some other classes of languages were earlier con-
sidered by several authors, for instance, by Cole for languages recognizable by
iterative arrays of finite automata [1], by P. D. Dieu and P. T. An for languages
recognizable by probabilistic automata and those with time-variant-structure

[3 ,4 ] .
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Definitions of Petri nets and Petri net Ianguages are recalled in this section.

In Sec. 2 a complexity characteristic of Ianguages is considered. Using this char-

acteristic a necessary condition for the Petri net languages is given. However, as

it will be shown, this condition is not sufficient. In Sec. 3, we show the existence

of an infinite hierarchy of Petri net languages on the number of transitions and
places of their recognizing nets. For any finite alphabet X, we denote by E*,

( resp .  D " ,D<" )  t hese to f  a l lwo rds ( resp .  o f  a l l t hewordso f  l eng th r ,o f  a l l t he

words of length at most r ) on the alphabet X, A denotes the empty word. For

any word ar € D*, l(c,,,) denotes the length of ar. Every subset L C D* is called a

language over the alphabet X. Let N be the set of all non-negative integers and

ry'+ - N\{0}.

A (labeled,) Petri net "A/ is given by a list:

N :  ( P , T , I , O , o , p o , M f ) ,
where
P : {pt,...,pn} is a finite set of placesl
T :  { t t , . . . , t * }  is  a f in i te  set  of  t ransi t ions,  P iT :  A;
I : P x T -- N is the input function;
O : T x P -, N is the output function;
o : T ---+ D is the labeling function, where D is a finite output alphabet;
po : P ---+ N is the ini,tial mark'ing;
Mt : {t"f,,..., F1"} is a finite set of. f inal markings.

We can extend the labeling function o for the words in ?* as follows:

i f  t :  t f i 2 . . .  t , , ,  t hen  o ( t )  :  o ( t 1 )o ( t2 ) . . . o ( t " ) .

A marki,ng pr, (global configuration) of the Petri net ,A/ is a function p, : P ---+ N

from the set of places P into N. The marking pr, can also be represented as an

n-vector  F: j r t , , . . ,Fn)  where p;  :  t - r (p i )  and rz:  lP l .  A t ransi t ion t  o f  ,A/  is

said to be firable at the mark'ing pt if.

Y p e P : p ( p ) > I ( p , t ) .

If I is firable at p, then when t fires, the Petri net ,A/ will go into a new marking
p/ given by

Vp e P, p' (p) : p(p) - I(p,t) + O(t,P).

We write then 6(p, t) : lt' and call 6 the state changing function of the net N.
A fi.ring sequence of N can be defined as a sequence of transitions such that

the firing of each of its prefixes will lead ,A/ into a marking at which the next

transition is firable. The set of all firing sequences of ,A/ is denoted by FN .

The function 6 can be extended for firing sequences by induction as follows:

(  6At , I t )  :  t " ,

I a(r, tt) : o161r,t),ti),
where teT*, t i  €T,  and p is  amark ing at  which t t i  isa f i r ing sequence.

We call language acceptable by a (labeled) Petri net,A/ the set:

L (N ) :  { r  e  x *  l 1 t  eT .  :  ( r :  o ( t ) )  A ( t  €  fN )  A  (6 (po ,  t )  e  M1) } ,
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The set of all (labeled) Petri net languages is denoted by l.

2. On a Criterion for Petri Net Languages

In this section we recall a necessary condition for Petri net Ianguages introduced
in [7] (Theorem 2.1) and show that the condition is not sufficient (Theorem 2.3).
This condition is based on a complexity characteristic for languages defined as
follows:

With every language L g D* we associate an equivalence relation otr Isr, de-
noted by Eqr(mod.L), and an equivalence relation on E", denoted by E,(modtr),
which are defined, respectively, as follows:

Yr1,r2e Est ,  r7E<rf r2(modI)  <+Vo € D* i  n1u € L <-+ r2u € L;

Yn1,r2 €E',x1Erx2(mod.L) ++ Vo; € E* : n1u € L <-+ r2u € L.

Then we def ine 
G1Q):RankE3,(mod.L) ,

Hr(r) : RankE" (modl).

They are used as complexity characteristics of the language .L. It is easy to see
that, for any r € -l/,

I 1  H7 ( r )  <  G7( r )  (  Exp ( r ) ,

where Exp(r) denotes some exponential function of r.
Let us take some examples.

Exarnple 1. Let D : {o,b} and L1 : {a^b"lff i,n e l/+}. Consider the subsets

W 1 : { a ^ l I < m < r } ;

W 2 : { a ^ b k l m * k < r i  k t f } '

W s :  { u  e D s ' l u  e w l u w 2 } .
Obvious ly ,  t s '  -  WtUWz U l l z3  and WaiWi :A  ,  i#  j .

It is easy to prove that any two words in every W6, i :1,2,3, are equivalent.
However, any two words in different sets Wi are not equivalent by the relation
,Eq" (mod.L1), Therefore, G y, (r) : 3.

Erample 2. Let lXl : k 2 2 and L2: {rrRlr € t*}, where zE is the inverse
image of z.

It is easy to show that if 11 ,12 e Dr , rt # rz, then r1E,r2(modtr2), thereby
H r , , ( r ) :  I t r l :  k r .

E r a m p l e S . L e t  l t l  : k > 2 , " 4 X a n d  L s : { r c n l r e  D - } .
It can be verified that if fr1rn2 € E!', *, f 12, then rlEarr2(modtr3).

Therefore, Gr,,(r) : lEsr | : k(k' - l) I @ - I).

2r1
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The following result has been established in [7].

Theorem 2.L. Let L be accepted bE a Petri' net with rn' trans'itions and n places

and le : min{rn, n). There etists a polynornial Py of degree k such that, for any
integer r ) L,

Hr'( ')  < h,( ') ,
Gr.(r) < Px(r).

Using Theorem2.l, we can show a series of rather simple languages not being
acceptable by any Petri net.

Example l. Let lDl : k ) 2 and c f X, Consider the languages L2 : {trR lt e
X*), tre : {rcr lr e D*}, where rn is the inverse image of z.

We have proved in Examples 2 and 3 that  Htr ( r ) :  k"  and Gtr( r ) :
k(k' - 1) l@ - 1). Bv Theorem 2.7 we have L2 (. L and' Lz # L.

Now we shall show that the necessary condition in Theorem 2.1 is not suffi-
cient. For this we need some notions in the theory of codes (see [14]) .

A  l anguage  L  9D*  i s  a  code  oue r  E  i f  f o r  a l l  n ,m)  1  and  z1  t . . . nn , r1 , . . . ,
n'^ e L, the equality

t t f r 2 . . . n n :  t l n ' z , , . r l

impl ies n :  r r l  and.  ra :  x l  for  i  :  7 , ' . . ,n ,

In other words, a set L is a code if any word in .L* can be written uniquely
as a product of words in .L, that is, it has a unique factorization on words of tr'

A subset L of. E* is a prefir sel if no word in -L is a proper left of another
word in .L. Evidently every prefix set ,L with L + {L} is a code called a prefix

code.
It is not difficult to check that if ,L is a prefix code, then every word r € X+

can be written uniquely in the form of n: frs, where rt e L* and rs has no left
factor in Z,

Using the above fact we obtain

Lemma 2.2. If L is a prefix cod'e, then, for anE r e N+ ,

Gy* @) 3 Gr. ( r ) ,

where L+ : r-\{A}.

Proof. It suffices to prove that Vz, y € Ds', )ro,Ao € Es" such that

which implies

ro E < rao(modL) -'-'-- n E 3,U (mod.L+ ),

Rank E4" (mod,L+ ) ( Rank 85" (mod.L)'

i .e . ,  G7n ( r )  < G1(r) .
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Since ,L is a prefix code, u,g can be written uniquely as r: rtro, A: ilAo,
where rt,fi e L"; xo,yo e Ds" and no,Aohave no left factors in -L.

lf rsEarys(mod,L), then,Vc.r € E* ,rsu € L +------+ Alu e tr. Two cases are
possible:

Case 1. rsu € L and. lsu € L.
From zgar € tr and ysu € L, it follows that rtrsw € .L+ and gyou e L+ , i.e.

rw e L+ and ya € tr+, therefore, nE<,y (mod,L+).

Case 2. nou e,L and you 4 L.
If. rsu € L+,ysa € tr+, then firsu €.L+ and ilyoa e tr+, i.e., na e L+ and

ya e  L+.
I f  xsw 4 L*,A0, ( .L+, then ixsa (,L+ and yAo, f  L+, i .e. ,  ru f  L+ and,

yu  4  L+.
Let rsu € L+, ysu f. L+ . We have rsw : (rsus),i € .L+, where rgus e L,

b e L+. On the other hand, Aou: (yoro)d f L+, L is prefix and ri' € L+;it
follows that ysus f L, i.e., there exists rers such that zslrs € tr and Aoao 4 L.
This contradicts the hypothesis roEs,Ao(modL).

Thus, in both cases, we have proved that rE3,A (mod,L+). This completes
the proof,

Now we can establish the main result of this section.

Theorem 2.3. There ea,ists alanguage L withGt(r) < P5(r), which cannotbe
accepted by any Petri net. In other words the necessarA cond'ition in Theorem
2.7 is not sufficient.

Proof. We consider the language

L ' - { a " b " l r > 1 } .

This language -Ll is easily verified to be accepted by the Petri net .A/, depicted
in Fig. 1,  with,k:  min{ l?l , lPl}  :5.  By Theorm 2.1 i t  fol lows that G;,(r)  (
Ps( r ) .

On the other hand, -L' is obviously a prefix code.

0

Fig. 1,
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Put ,L : (Lt)+. By Lemma 2.2 wehave

Gr'( ') : G17'1+ (') < G"' (r) S Ps(r)'

As shown in [13] by Peterson the language L : (Lt)+ is not a Petri net language.
The theorem is proved. I

3. An Infinite Hierarchy of Petri Net Languages

Based on Theorem 2.I, we can obtain the solution of problem on the infinite
hierarchy of Petri net languages.

Theorem 3.I. There erists an increas'ing infinite sequence of integers ni,

7  1  n t  <  n 2  < . . .  1  n t  1  n + t  <  . ' . ,

with n6a1 :3nt * 6, such that

L (n1 )  c  L (n2 )  c  . . .  c  L (na )  C  L (naa1 )  c , . .

Proof. Let D : {0, I}, c 4E, k ) 2. Consider the language

Lp : {rcr lz e D* , lri : k},

where lrll denotes the number of occurences of 1 in r.
We now prove the two following propositions:
(i) For any r ) k : H;o(r) 2 Po(r); therefore, Lx f L(k - 1).
(ii) Ik : L(N), where,A/ is a Petri net with min{171, lPl} : 3,k*3; therefore,

L x e L ( 3 k + 3 ) .
Put

W, : {n lz € X.; I(r) : r; lnll : lc},

where l(r) denotes the length of r. It is easy to verify that

l W , l :  C f  :  r l l k l ( r  -  / c ) !  :  r ( r  -  1 )  . . . ( r  -  k + r ) l k l :  P * ( r ) .

For any r1,n2 € IrIl" with nt # rz, by choosing u): cfrL, we have rli: r1cfr1 Q.
-Lp, whereas r2u): n2cr7 (. Lp, that is, r1E,r2 (mod.L6). This means that

Ht  r? )  >  lw , l :  Pr  ( r ) .

By Theorem 2.1 it follows that .L6 4 L(k - I).
On the other hand, the language Lp is easily verified to be accepted by the

Petr i  net,A/,  depicted in Fig.2, with Ho :  (1,0,. . . ,0,0) and Mf :  { t" f  :
(0,0, . . . ,0, 1)). Obviously, the number of transitions and that of places of ,A/
are, respectively, 4/c * 3 and 3k + 3. Thereby Ln e L(3k * 3). Thus we have
proved that -L6 € L(3k + 3)\4(lc - 1).
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k t ransr f tons k Transi t ions

Fig. 2.

To obtain the sequence n,; of. integers, it suffices to fix a ,k > 2 and
nr : k - l, nt+t : 3n,i *6 for all i  2 1'

The theorem is proved.

215
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