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Abstract. In this paper we show the existence of an infinite hierarchy of Petri net
languages on the number of transitions and places of their recognizing nets.

1. Preliminaries

As is well known, the Petri net is a mathematical model of parallel and dis-
tributed computing systems. In the last ten years, the theory of Petri nets and
its applications have been investigated extensively by many authors (see, for
example, [8-11}).

Let AV be a Petri net with m transitions and n places, and k = min{m,n}.
For any integer n > 1 we denote by L£(n) the class of all Petri net languages
acceptable by a Petri net A with k < n.

Our aim in this paper is to prove that there exists an increasing infinite
sequence of integers n;,

1< <ng < < < njypy < -+,

such that
L{ny) C L(ny) C--- C L(n;) C ﬁ(ni+1) @ £p -

The proof of the result is based on a complexity characteristic of Petri net
languages, obtained earlier by the first author [6].

Analogous hierarchies for some other classes of languages were earlier con-
sidered by several authors, for instance, by Cole for languages recognizable by
iterative arrays of finite automata [1}, by P.D. Dieu and P.T. An for languages
recognizable by probabilistic automata and those with time-variant-structure
[3,4].
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Definitions of Petri nets and Petri net languages are recalled in this section.
In Sec. 2 a complexity characteristic of languages is considered. Using this char-
acteristic a necessary condition for the Petri net languages is given. However, as
it will be shown, this condition is not sufficient. In Sec. 3, we show the existence
of an infinite hierarchy of Petri net languages on the number of transitions and
places of their recognizing nets. For any finite alphabet ¥, we denote by X*,
(resp. X7, £=7) the set of all words (resp. of all the words of length 7, of all the
words of length at most r ) on the alphabet ¥, A denotes the empty word. For
any word w € ©*, [(w) denotes the length of w. Every subset L C X* is called a
language over the alphabet ¥. Let N be the set of all non-negative integers and
N* = N\{0}.

A (labeled) Petri net N is given by a list:

N: (PvT’IaO,Ua/'l’OaMf);

where
P ={p1,...,pn} is a finite set of places;
T = {t1,...,tm } is a finite set of transitions, PNT = 0;
I:P xT — N is the input function;
O:T x P — N is the output function;
o0 : T — I is the labeling function, where X is a finite output alphabet;
to : P — N is the initial marking,
Mys = {ps, ..., s } is a finite set of final markings.

We can extend the labeling function ¢ for the words in T as follows:

if t =tity...tn, then o(t) =o(t1)o(tz)...o(tn).

A marking p (global configuration) of the Petri net AV is a function u : P — N
from the set of places P into N. The marking p can also be represented as an
n-vector g = (fy, ..., ftn ) Where p; = pu(p;) and n = |P|. A transition t of N is
said to be firable at the marking p if

Vp € P: u(p) 2 I(p,t).
If ¢ is firable at y, then when t fires, the Petri net A will go into a new marking
u' given by
Vp e P:p'(p) = p(p) — I(p,t) + O(t, p).
We write then 6(u,t) = 1/ and call § the state changing function of the net N.
A firing sequence of N can be defined as a sequence of transitions such that
the firing of each of its prefixes will lead N into a marking at which the next

transition is firable. The set of all firing sequences of N is denoted by Fy .
The function § can be extended for firing sequences by induction as follows:

{ 6(p, A) = 1,

6(.“‘7tt.7') T 6(6(/‘7 t)vtj)’

where t € T*, t; € T, and p is a marking at which #¢; is a firing sequence.
We call language acceptable by a (labeled) Petri net N the set:

LN)={zeX |FHeT :(z=0(t))A(t € Fn)A(S(po,t) € My)},
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The set of all (labeled) Petri net languages is denoted by L.

2. On a Criterion for Petri Net Languages

In this section we recall a necessary condition for Petri net languages introduced
in [7] (Theorem 2.1) and show that the condition is not sufficient (Theorem 2.3).
This condition is based on a complexity characteristic for languages defined as
follows:

With every language L C ©* we associate an equivalence relation on X7, de-
noted by E<,(modL), and an equivalence relation on X7, denoted by E,(modL),
which are defined, respectively, as follows:

Vri,x0 € Zsr,xlEsrxz(modL) SYWeT inyweL - zwe L;

Vzi,20 € X7, 21E,29(modLl) & VYw € ¥* : 2w € L & zow € L.

Then we define Gy (r) = RankEe, (modL),

Hy (r) = RankE, (modL).

They are used as complexity characteristics of the language L. It is easy to see
that, for any » € NV,
1 < Hp(r) £ Gp(r) < Exp(r),

where Exp(r) denotes some exponential function of r.
Let us take some examples.

Ezample 1. Let ¥ = {a,b} and L; = {a™b"|m,n € N*}. Consider the subsets
Wy ={a"|1<m<r}
Wo={a"bFm+k<r k>1};
W ={weZ*|w¢ W UW,).

Obviously, =" = Wy UW, UW3 and W, N W, =0 , 4 # j.

It is easy to prove that any two words in every W;, ¢ = 1, 2, 3, are equivalent.
However, any two words in different sets W, are not equivalent by the relation
E<,(modL,). Therefore, G, (r) = 3.

Ezample 2. Let |X| = k > 2 and Ly = {zzf|z € £*}, where 2% is the inverse
image of z.

It is easy to show that if z1,29 € X7, 1 # 29, then 7, E, z2(modLy), thereby
Hp,(r)=|Z"|=k".

Ezample 3. Let |[E| =k >2,c¢ X and L3 = {zex |z € X*}.
It can be verified that if 2,z € £°7, z; # z9, then z;E<,22(modL3).
Therefore, Gr, (r) = |[Z57| = k(k" - 1)/(k — 1).
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The following result has been established in [7].

Theorem 2.1. Let L be accepted by a Petri net with m transitions and n places
and k = min{m,n}. There ezists a polynomial P of degree k such that, for any
integer r > 1,

Hy(r) < Pe(r),

Gr(r) < Py(r).

Using Theorem 2.1, we can show a series of rather simple languages not being
acceptable by any Petri net.

Ezample 4. Let |£| =k > 2 and ¢ ¢ . Consider the languages Ly = {zz® |z €
¥v*}, Ly = {zcx|z € £*}, where z¥ is the inverse image of x.

We have proved in Examples 2 and 3 that Hr,(r) = k" and Gr,(r) =
k(k™ —1)/(k ~1). By Theorem 2.1 we have L, ¢ £ and L3 ¢ L.

Now we shall show that the necessary condition in Theorem 2.1 is not suffi-
cient. For this we need some notions in the theory of codes (see [14]) .

A language L C X* is a code over ¥ if for all n,m > 1 and z1,...2,,29,...,
z,, € L, the equality

1Ty ... Ty = T|Th ... Thy

impliesn =m and z; =z} fori =1,...,n.

In other words, a set L is a code if any word in L* can be written uniquely
as a product of words in L, that is, it has a unique factorization on words of L.

A subset L of ¥* is a prefiz set if no word in L is a proper left of another
word in L. Evidently every prefix set L with L s {A} is a code called a prefix
code.

It is not difficult to check that if L is a prefix code, then every word z € &+
can be written uniquely in the form of x = #xg, where £ € L* and z; has no left
factor in L.

Using the above fact we obtain

Lemma 2.2. If L is a prefiz code, then, for anyr € N*,

Gp+(r) < Gr(r),
where LT = L*\{A}.

Proof. Tt suffices to prove that Vz,y € 57, 3zg,yo € =" such that
2o E<,yo(modL) — zE<,y (modL™"),

which implies
Rank E<,(modL*') < Rank E<,(modL),

i.e., GL+ (’I") < GL (r)
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Since L is a prefix code, z,y can be written uniquely as z = Zxg, y = o,
where %, € L*; zo,y0 € ©=" and zg, yo have no left factors in L.

If z9E<,yo{modL), then Vw € T*,zow € L «—— yow € L. Two cases are
possible:

Case 1. zow € L and yow € L.
From zow € L and yow € L, it follows that fzow € Lt and jyw € L™, i.e.
zw € LT and yw € LY, therefore, zFE<,y (modL*).

Case 2. zow ¢ L and yow ¢ L.

If zow € LY, yow € LT, then Zzgw € Lt and §yw € LT, ie., 2w € LT and
yw € LT,

If xow ¢ L*,yow ¢ L*, then Zxow ¢ L and gyow ¢ LT, ie., zw ¢ LT and
yw & LT,

Let zow € L*, yow ¢ L*. We have zow = (@owg)w € L™, where zqwy € L,
@ € L*. On the other hand, yow = (yowo)w ¢ L, L is prefix and & € L*; it
follows that yowo ¢ L, i.e., there exists wp such that zowy € L and yowy ¢ L.
This contradicts the hypothesis z¢ E<,yo(modL).

Thus, in both cases, we have proved that zE<,y (modL*). This completes
the proof. n

Now we can establish the main result of this section.
Theorem 2.3. There exists a language L with G, (r) < Ps(r), which cannot be

accepted by any Petri net. In other words the necessary condition in Theorem
2.1 is not sufficient.

Proof. We consider the language

L'={a"b"|n>1}.
This language L' is easily verified to be accepted by the Petri net A/, depicted
in Fig. 1, with k& = min{|T|,|P|} = 5. By Theorm 2.1 it follows that G (r) <

P5 (1‘)
On the other hand, L' is obviously a prefix code.

A F

a b
l J { K5
T T o

b b

i
S
-

Fig. 1.
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Put L = (L')*. By Lemma 2.2 we have
GL(T') = G(Ll)+ (1") < Gp (’I') < P5(T').

As shown in [13] by Peterson the language L = (L)% is not a Petri net language.
The theorem is proved. ™

3. An Infinite Hierarchy of Petri Net Languages

Based on Theorem 2.1, we can obtain the solution of problem on the infinite
hierarchy of Petri net languages.

Theorem 3.1. There exists an increasing infinite sequence of integers n;,
1<ni<ng<---<ny <Ny <+,

with ny4q1 = 3n; + 6, such that
L(ny) C L(ng) C -+ C L(n;) C L(Migp1) C+--

Proof. Let £ = {0,1}, c¢ £, k > 2. Consider the language
Ly = {zcx|z € X", |z|; =k},

where |z|; denotes the number of occurences of 1 in z.
We now prove the two following propositions:
(i) For any r > k : Hg, (r) = Py (r); therefore, Ly ¢ L(k —1).
(i) Ly = L(N'), where NV is a Petri net with min{|{T|, |P|} = 3k+3; therefore,
Ly € L(3k+ 3).
Put
W, ={z|z € &% z) =r; |z[1 =k},

where I(z) denotes the length of z. It is easy to verify that

[We|=CF =rl/kl(r—k)l =r(r=1)...(r —k+1)/k! = B(r).

For any x1,z9 € W, with z; # x4, by choosing w = cz;, we have zyw = zczy €
Ly, whereas zow = zocx; ¢ Ly, that is, z; E-x9 (modLy). This means that

Hp, (r) > |W;| = Py(r).

By Theorem 2.1 it follows that Ly ¢ L(k — 1).

On the other hand, the language Ly is easily verified to be accepted by the
Petri net N, depicted in Fig. 2, with po = (1,0,...,0,0) and My = {u; =
(0,0,...,0,1)}. Obviously, the number of transitions and that of places of A/
are, respectively, 4k + 3 and 3k + 3. Thereby Ly € £(3k + 3). Thus we have
proved that Ly € L(3k + 3)\L(k —1).
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k Transitions k Transitions

Fig. 2.

To obtain the sequence n; of integers, it suffices to fix a k¥ > 2 and put
ng=k—1,n;4; =3n;+6foralli>1
The theorem is proved. ™
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