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Abstract. give a simple proof of a generalization of a Schauder-Tychonoff type
fixed point theorem directly using the KKM principle.

1. Introduction

The celebrated KKM principle due to Knaster, Kuratowski, and Mazurkiewicz

[8] was used to prove the Brouwer fixed point theorem (see also [11, 12]). The
converse is now well known (see [1]). The Brouwer theorem is generalized to
normed vector spaces by Schauder, and to locally convex topological vector
spaces by Tychonoff. These are all unified by Hukuhara [6]. Moreover, Ky Fan

[3] deduced the Tychonoff fixed point theorem from his own generalization of
the KKM principle, so called the KKMF principle.

In this note we give a simple proof of a generalization of the Schauder-
Tychonoff-type fixed point theorem for compact maps in locally convex topolog-
ical vector spaces directly using the KKM principle. Finally, several remarks on
our results and our proof are added.

2. Preliminaries

Before establishing the result we recall the KKM principle [8]:

KKM principle. Let D be the set of uertices of a s'implex S and, F : D -+ 2s
a multimap with closed ualues such that

coN C F(N) for each N c D.

Then f"ro F(z) * A.
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Here, "co" stands for the convex hull of a set, and F(,Af) = Ur.*F(r).
From the principle we obtain immediately the following due to Fan [3]:

Lemrna. Let X be a subset of a topological uector space, D a non-empty fi,nite
subset  of  X suchthatcoD C X,  andF:  D -+2x amul t imap wi th c losedualues
such that

col{ c F(N) for each N c D. (1)

Then ft"rp F(r) * A.

Recall that a map satisfying condition (1) is called a KKM rnap. We need
also the following notion due to Himmelberg [5]:

Definition. A non-empty subset X of a topological uector space E is said to be
almost conaes if, for any neighborhood V of the origin 0 in E and for any finite
se t  { r1 , . . .  , on }  C  X ,  t he re  e f r i s t s  a  f i n i t e  se t  { r r , . . . , 2n }  C  X  such  tha t ,  f o r
e a c h  i  e { 1 , . . . ,  n } ,  z t  -  o t  e V  a n d  c o { 2 1 , . . . , 2 n }  C  X .

Clearly, each convex set is almost convex, but the converse is not true in
general.

3. Results

Now we are in a position to prove the following result directly using the KKM
principle.

Theorem L, Let X be an almost conaeo subset of a locally conueo Hausd,orff
topological uector space E and f : X -+ X a compact continuous map. Then f
has a fixed point.

Proof. For any neighborhood [/ of 0 in -8, there exists a symmetric open neigh-
borhood V of 0 such that V +V C [/. Since / is a compact map, K := j(fi
is a compact subset of X. Hence, there exists a subset {rt,*r,... ,rn} of K
such that K C U!=r@; + V). Since X is almost convex, there exists a subset
D  =  { r t , z z t . . . t z n }  o f  X  s u c h  t h a t  z a -  r t  €  7  f o r  e a c h  i  =  1 , 2 , . . . , n ,  a n d
co{21,22r... ,2.} C X. Let Lbe the finite-dimensional subspace ofE generated
bv D.

For each i, let
F ( 2 1 ) : =  { a  e  X :  f  ( s )  4  u * V } .

Since 7 is open and / is continuous, each F(21) is closed in X. Then

)  pe) :  {n € x :  f(a) i  l )@n +v)} :  O
; - 1  d - 1

since /(X) c K c UT=r@n + v). Now, we apply the Lemma to x with D
defined as above. Since its conclusion does not hold, F : D -+ 2x cannot be
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a KKM map. That is, there exist a subset {zi, ztr,. ... , zik} of. {21, zz,. . . , zn}

and an zu € co{za, ,z iz , . . .  ,z ik)  such that  ru f  Ui=tF(rU).  Hence,  for  a l l
j  =  t , 2 , .  . .  , k ,  I @ u )  €  x a ,  I  V ,  a n d

f  ( ru )  e  o r i  *V  -  a i . i  z i j  +  z i j  +V  c  z i ,  *V  +V  c  z i , lU .  ( 2 )

D e n o t e  
M : =  { a  e  L :  f  ( r u )  e y + u } .

Since .E is locally convex, we may assume that U is convex. Besides, since -L is
a vector subspace of -8, it is easy to verify that M is convex too. Flom (2) we
obta in that  z i ,  €  M for  j  =  L,2, . . . ,k  and hence

c o { 2 6 r ,  z i z r . . . ,  z a u }  C  M

because M is convex. Therefore, su € M.
So, for each neighborhood U of0, there exist xutAu € X such that yu =

/(oy) and Au e ru * U. Since /(X) is relatively compact, we may assume that
the net {gru} .onuetges to some rs e. K. Since,E is Hausdorff, the net {ry} also
converges to r0. Since / is continuous, we have rs : ,f (r0). This completes our
proof.

FYom Theorem 1, we have the following:

Theorem 2. Let X be a non-empty conaer subset of a locally conuet Hausd,orfi
topological uector space E and f : X -+ X a compact continuous map. Then f
has a fixed point.

4. Remarks

(f) It is well known that the Brouwer theorem, the Sperner lemma, and the
KKM principle are equivalent (see [9]). For elementary proofs of the Sperner
lemma and the KKM principle, see [12]. Combining these proofs with the proof
of Theorem 1, we get an easier proof of the Brouwer theorem. For other proofs,
see [9] and references therein.

(2) If X is a compact subset of an Euclidean space, Theorem 2 reduces to
the Brouwer theorem. Theorem 2 is first due to Hukuhara [6] and is usually
called the Schauder-Tychonofffixed point theorem (see [1,2]). In fact, if ,E is a
normed vector space, Theorem 2 improves the original version of the Schauder
theorem. Moreover, if X itself is compact, Theorem 2 reduces to the Tychonoff
theorem (see [1] or [9]).

(3) There are a lot of generalizations of Theorem 2; for instance [4,7,10].
Note that Theorem 1 is a simple consequence of Theorem a.3 of [7]. However,
our aim is to give a proof directly from the KKM principle. The readers are
kindly asked to compaxe our proof with that of the Schauder theorem in various
text books (see [12]).
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(4) since Theorem 2 readily implies the Brouwer theorem, we conclude that
the KKM principle, the Lemma (the KKMF principle), and the fixed point
theorems due to Schauder and Tychonoff are all equivalent to Theorem 1.

(5) It is natural to ask whether the proof of rheorem 1 works for a Hausdorff
topological vector space .E not necessarily locally convex. In fact, even if X is
convex, the proof heavily depends on the convexity of the set

M = {a e. X n L : f(rry) e a + U} = (f(xu)+ U) n X n L,

where [/ is a symmetric neighborhood of 0 in .8, and L the finite-dimensional
subspace of E generated by D.

Therefore, the convexity of M is always assured whenever -E satisfies the
following condition:
(*) every neighborhood of 0 in ,E contains a neighborhood I/ of 0 such that

(a + U) fl tr is convex for all r in E and for any finite-dimensional subspace
L o f E .
If E is locally convex, then condition (x) holds. The converse also holds.

Indeed, take any n1,r2 e U, ^ e [0,1] and denote n^ = Art + (1 - I)r2.
F\rrther, take an arbitrary o e E and let tr be the subspace of.E generated by
fr , r1, r2.  Since ra e U n L,  i :  ! ,2 ,  and o € .L,  we obta in

x ,  *  a i  e  ( a  +  U )  n  L ,  ' i : 7 , 2 .

By hypothesis, (r * U) n L is convex, so we have

a  *  r s=  ) (o  +  11 )  +  (1  -  l ) ( "  +  r2 )  e .  ( r  +  U )  n  L .

Flom this we get x * rs e r *U and hence xs € U. So [/ is convex, as claimed
above.

This shows that, in our proof of Theorem 1, the local convexity of .E (or, at
least, certain local convexity of X; see Remark 6 below) is essential.

(6) Analyzing the proof of Theorem 1, we find that the crucial points in the
proof are: zti e M and M is convex. Since 21, € X, we may define M : {y e
X : f (au) e ytUj, where [/ can be supposed symmetric, so M can be rewritten
as  M =  {a  e  X  :  s  €  f (nu )  +U}  =  ( f@u)+  t / )  nX .  S ince  f ( ru )  eX ,  f o r
convexity of. M, it suffices to require

(r + U) O X is convex for all c € X.

So the proof of Theorem 1 works if the following condition holds:
(A) Every neighborhood I/ of 0 e E contains aneighborhood [/ of 0 € E such

that (3) holds.
Therefore, in Theorem l, we can replace the local conuerity of E by the

condition (A) on X. Now we look for the meaning of condition (A). Since every
neighborhood of o € X in the induced topology has the form (c + V) n X with a
neighborhood V of 0 e E, the convex neighborhood (r + U)nX C (r *V)nX

(3)
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shows that the induced topology in X is Iocally convex; in other words, X
becomes a locally convex subset of E (in the sense of Krauthausen; see [a, p. 26]) .
Note that Krauthausen gave a number of examples of locally convex subsets of
non-locally convex spaces.

(7) We may consider another type of condition on X as follows:
(B) Foreach r € X and eachneighborhood V of 0 €.E, there exists aneighbor-

hood [/ of 0 e E such that

c o ( ( o * U ) n x ) c r + V .  ( 4 )

Note that (A) implies (B) because

co((r  *  U) n X) -  (r  + U) n X c (r  f  V) r \  X C x - tV.

The converseholdsif X is convex. Indeed, since (r+t/) n X c X and X is
convex, we get co((z * U) n X) C X, which together with (4) gives co((r *
U) n X) c (r * V) n X. Since (a + U) nX is a neighborhood of c € X and
(x +U)nX c co((r  *  U)n X) C X, co((r  + t / )  nX) is a convex neighborhood
of r € X which is contained in (r * V) n X '

Therefore, our proof also works for Theorem 2 under condition (B) instead
of Iocal convexity of E.
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