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L. Introduction

Two basic techniques widely used in global optimization are branch-and-bound
and outer approximations. Algorithms using these techniques require construct-
ing at the beginning an initial polyhedral convex set whose vertices and extreme
directions are easy to calculate. Moreover this set must contain at least one
optimal solution and not beyond the domain where the objective function as
well as constraints are defined. Throughout this note we mean such a polyhe-

dral convex set as a well initiated' polyhedron. When the objective function and
the constraints of the problem are finite on the whole space, a well-initiated
polyhedron can be constructed by available methods. Usually it is a simplex, a
cone,or a box depending on the structure of the considered problem. There are
however some important problems for which finding a well-nitiated polyhedron

is not an easy task, because the objective and/or constraint functions are not
defined everywhere or their effective domains are not given explicitly. Exam-
ples for such problems can be taken from a class of multiplicative optimization,
bilevel programming, and optimization over the efficient set.

In this note we propose the use of outer and inner (primal and dual) ap-
proximations, which are widely used in global optimization, to construct a well
initiated polyhedron for optimization problems over the efficient set of a multi-
ple objective linear program and for bilevel linear programs. Branch-and-bound
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methods using an initial polyhedron constructed according to our proposal re-
quire special subdivision strategies because the resulting initial polyhedron does
not, in general, belong to the sets of cones, simplices, and boxes. For this case
we make use of an adaptive polyhedral subdivision developed in convex-concave
programming to obtain a decomposition branch-and-bound algorithm for solving
bilevel linear progams.

2. Examples

Below are examples for which constructing a well-initiated polyhedron, which is
a cone, a simplex, or a box, is not an easy task.

(7) Positiue Multiplicatiue Optimization l3l
Consider the following multiplicative programming problem:

m in { / ( r )  , = i l ! = t f { r ) : r e  D ) .  ( 1 )

Suppose that D is a closed convex set and fi ( i = 7,...,k) is affine, positive
valued on D. Then n!=rfi(r) is quasiconcave on D. So in this case, Problem
(1) is a quasiconcave minimization. Note that without the restriction to positive
values of. f i, i = 1, ...,,b, the quasiconcavity property of / may fail to hold.
Therefore, solution methods rely on quasiconcavity of the objective function
should work within a domain where all h Q = 1, ..., k) are positive valued.

(2)  Opt imizat ion Ouer the Ef f ic ient  Set l l ,2 ,4,6,7 l

Let X be a bounded polyhedron in ft', C u (px n)-matrix, and / a real-valued
function on R'. Let E(C,X) denote the set of all efficient (Pareto) points of C
on X,  i .e . ,

E (C ,X )  : -  { r  €  X  :  Cy  }  C r ,A  e  X  +  Cx  =  Ca} .

The problem of finding a most preferred (with respect to /) efficient point can
be written as

Let

m a x { / ( r )  : r e E ( C , X ) } .

Cs : :  {x € Rn :  Cr 10},  G(X) := {r  e R" :  Cy t  Cx, y e X}

and
r\n) :: max{er (cy - cr) : cy ) cn,a € x},

where as usual e denotes the vector whose every entry is 1. It has been shown

[1, 4] that (2) is equivalent to the problem

max{ / ( r )  : r ( r )  <  0 , r  €  X } .  ( 3 )

Since the effective domain G(X) of r is not given explicitly, constructing a well
initiated polyhedron contained in G(X) is not straightforward.

(2 )
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(3) Bileuel Linear Programming [9,10]
Let K and .L be two bounded polyhedral convex sets in r?p and -Ra respectively,
and let f : Re x .Rq -+ R, g : Rq -+ .R be linear functions. Consider the following
bilevel linear program:

max/(c, y) s.t. r €. K and y solves

max{g(y) : y € L, Ax -f By 1 r),

where r € R*, and .4, B are given appropriate matrices. Let

po(r)  : :  maxig(g) :  y e L,By 1 r  -  A*\ .

Since g is linear, p0 is a finite concave function on the set

(4)

(P( '))

(5 )

G ( L )  : :  { x  :  B y  1 r  '  A a , A  €  L } .

As usual we assume that, for every s € K, Problem (P(z)) has a feasible solution.
Thus,  K C G(L) .  For  each z = (n,A)  e G(L)  x  -Ra,  def ine p(r ,A)  , :  po(r ) -S(a) .

Then p is a finite concave function on G(L) x ,Re. Clearly,

( r ,y)  is  feasib le for  (4)  i f  and only i f .  (x ,g)  € K x L,Ar  *  By 1r ,p(u,U) = 0.
(6)

Thus, Problem (4) can be formulated as

max { / ( c ,  y )  :  r  e  K ,A  e  L ,A r  *  By  1 r ,p (n ,g )  S  0 } .  ( 7 )

3. Construction of an Initial Polyhedral Convex Set to Optimization
Over the Efficient Set and Bilevel Linear Programrning

In branch-and-bound and outer approximation methods we are often given two
polyhedra P and Q satisfying P cQ. It requires us to construct a polyhedron
S such that P C,9 c Q and its extreme points and directions can be calculated
with a reasonable effort. Below we propose two procedures using inner and outer
approximations for constructing such a polyhedron. In the sequel we assume that
P is a bounded polyhedron (polytope) given by a finite system of inequalities.

3.1. Outer Approximation

Suppose that a bounded polyhedral convex set Ss containing P has been con-
structed. If ^90 C Q, we are done. Otherwise, there must exist a vertex u of ,Ss
such that  u dQ.Then t - r  /P,  s ince P CQ.Find aconstra int  of  P v io latedby
o. Add this constraint to ^5e to obtain a new polytope 51 . Then the procedure
is repeated with ,9r and so on. Since P C Q, the procedure must terminate
yielding a polytope containing P and contained in Q. Since searching vertices
is very costly in high-dimensional spaces, we suggest reducing, if possible, the
dimension of the space in which this searching takes place. Let us illustrate this
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procedure by applying it to the feasible domain of Problem (3) which is given
as D :: {r : r(x) 1 0,x e X}. For simplicity, assume that rank C : k, that
the first & rows cL,...,ck of C are independent, and that all the data are given
in the basis cL , ..., ck ,bk*' , ..., bt, where bkl' , ..., bt forms a basis of the subspace
L2:: {r : Ca = 0}. Denote by ,L1 the subspace generated by {"t,..., cft}. Then
every r is uniquely expressed as r = rL +fi2 with o1 e. L1, x2 € .L2. Thus, every
r is uniquely defined by a couple of vectors (u,r, '), where u: (ur,...,24) and
u : (uk+I,...,un) are calculated by the following system of equations:

I t n

* ' - T u i C ,  t 2  =  D  , t r .
j =L  j =k+ t

It has been shown (see e.g., [4]) that r(r) =r(rL): r(u). Thus, the constraint
r(n) < 0 that makes D non-convex actually only depends upon k-variables.
This allows us to apply the above outer approximation in .L1 . Namely, we take
P = Xt, and Q = G(Xt) where X1 stands for the projection of X on .L1 and
G(Xr) is the effective domain of r(u).

3.2. Inner Approximation

In inner approximation, which can be regarded as a dual form of the above
outer approximation, we suppose that a polyhedron .9s containing the origin and
contained in Q has been defined and that the vertices and extreme directions of
its polar, denoted by Sd, can be easily computed. If P c,So, then we are done.
Otherwise, there exists u € Sfi such that

(r,o) > 1 with o € argmax{(o, c) : r € V(P)} (r(r))
(V(P) stands for the set of the vertices of P). Then we set 5r = conv(,90,{o})
and repeat the procedure with ,91 . Clea.rly St C Q. Since the number of vertices
of P is finite, this procedure must terminate yielding a polyhedron containing P
and contained in Q.

Since 51 = conv(So, {o}), we have Sf : ^9d n {u : (a,u) S 1}. Since dimSfi
is equal to n-linealityS6 and the latter is a measure of non-linearity of ^90, this
inner (dual outer) approximation procedure is expected to apply to problems
where ^9s has low non-linearity.

To illustrate the proposed methods, let us apply them to the optimization
problem over the efficient set and to the bilevel program given in the previous
section.

Consider first the optimization problem over the efficient set in the form of
(3). Without loss of generality, we assume that X contains the origin. Then
Co c G(X). Since C6 - {n : Cr < 0}, its polar is

k

C I  :  { u '  u  =  I  t i C , t i  >  0  V  j  =  1 , . . . , k } .
j = L

We can then apply the above proposed inner approximation method with P = X,

Q = G(X), and,5o - Co. Since dimSfi = k, the vertices and extreme directions
are created in a k-dimensional space.
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Next we consider the bilevel program given by (7). As before, assume that
the origin is feasible. We observe that ps(r) is constant on the linear space
Ls :: {s, : Ar = 0}. Hence, the function p(r,y) : po(*) - S@) is convex on
.Le. Since the origin is feasible for (7), we have Cs:': {n: Aa (-0} c G(I). We
then can apply the inner approximation method with P = K, Q = G(tr) and

So = Co. Note that if rank,4 = k, then the vertices and extreme directions, are
computed, as before, in a k-dimensional space.

4. On Solution Method by Branch-and-Bound

The initial polyhedral convex set constructed by the above methods in general is

neither a simplex, a cone, nor a rectangle. Therefore, branch-and-bound methods

using simplicial, conical, or rectangular subdivisions, in general, cannot be used

for this set. We propose to use an adaptive polyhedral bisection developed in

convex-concave programming to obtain a decomposition algorithm for solving

Problem (7).
Suppose that a polyhedral convex set Ss satisfying K c S0 c G(r) has been

constructed. Let ,S be a subpolyhedron of ,Ss whose vertices V(S) and extreme

directions ,B(S) are at hand. Consider the bilevel program (7) with respect to

,S,  i .e . ,

AG) :=  max { / ( r ,  y ) :  r  e  S ,y  e  L ,A t *  By  / - r , ps ( t )  - g (E )  S  O}  (P (S ) )

By decoupling variables r andy in (P(S)), we obtain the relaxed problem

c(,S) := max{/(r ,  y) :  r  € S n K,u Q. S,U € L,

Ar + By 1r,ps(u) -  g(y) S 0).

Since p6 is finite and concave on S, it is easy to see that

(,R(S))

a(.9) = max{/(r ,  y) :  r  e S n K,U € L,

An -f  Ba < , ,po(ut)  -  g(y) < 0), (P("s))

where
us € arg min{pe(u) : u e 7(S)}.

Note that since / and g are linear, (P("")) is a linear prograrn'

Let (rs,gs) be an optimal solution of Problem (P("s)). C,learly, P(S) <
a(S), and 0{.S) : a(S) whenever us = rs. Thus, if us f rs, one suggests

bisecting S into two polyhedral convex sets by a separation function defined by

a hyperplane passing the midpoint of segment joining us and rs. Namely, we

set
,91 := {r  € S :  ( ls,  ,  -  (us + f  )12) < 0},

5 2  : :  { r G , 9  :  ( l s ,  x  -  ( u s  +  f ) 1 2 )  >  0 } ,

where ls = (us - rs)l(l"s - rsll). The points ss and us are called bisection
points of s. As usual, a partition set ,s;, is selected to be bisected at iteration k
if

a(Ss) = max{o(S) : S e ?-n},
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where Rp denotes the family of partition sets of interest at iteration ,b.
It has been shown [5] that if {Si} is an infinite nested sequence of partition

sets generated by this bisection and {uJ}, {rl} are two sequences of correspond-
ing bisection points, then the sequences {ut}, {*t} have a common cluster point.
This property ensures that a branch-and-bound algorithm using the just de-
scribed bounding, branching, and selecting rules will be convergent in the sense
that the algorithm produces a non-increasing sequence of upper bounds and a
non-decreasing sequence of lower bounds which both tend to the global optimal
value of the problem. Moreover, the common cluster point of bisection points of
selected partition sets is a global optimal solution.
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