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Abstract. This paper examines the set B(P) : {Q t p. Q = l, Q e R*}, wherc
P e Rm is unimodular and R is either the algebra ?p of algebraic polynomials which
are real-valued on the cube IId or the algebra Lp of. Laurent polynomials which are
real-valued on the torus 1fd. We sharpen previous results for the case rn = 2, d,= Iby
showing that if P is non-negative, then there exists a positive Q e B(P ) whose Iength
is bounded by a function of the length of P and the separation between the zeros of
P. In the general case we employ the Quillen-Suslin theorem, the Swan theorem, the
Weierstrass approximation theorem, and the Michael selection theorem to prove a result
about the existence of solutions to the Bdzout identity with inequality constraints.

1. Introduction

In this paper we present several improvements of the results in our recent paper

[30] which was motivated by our interests in orthonormal wavelet construction

[33,34] and conjugate quadrature filter design 122,371. As explained in [30], this
leads one to the probldm of solving certain algebraic identities with inequality
constraints over Laureirt polynomial rings. These inequality constraints state
that the univariate Laurent polynomials have non-negative values on the unit
circle and this implies they have spectral factors. The B6zout equation implies
that these spectral factors are conjugate quadrature filters associated with or-
thonormal wavelet bases. In this paper, a special case, provided by Corollary
4.1, of inequality constraints for multivariate Laurent polynomials state that
they have non-negative values on the torus. Although they generally do not
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have spectral factors, the B6zout equation implies that they are associated with
interpolatory positive definite functions. These functions are potentially useful
for interpolating autocovariance functions from their values on a lattice.

The general form of the identity we study is the equation

f f i t  - f  " ' *  f *9* :  r , ( 1 . 1 )

where, for each k : I,. . . .n'L1the products /agn belong to a ring R with identity
1.  For  us,  " f i , . . . , f *  are speci f ied and a solut ion 9r , . . . ,g-  sat is fy ing cer ta in
auxiliary conditions is sought.

The earliest known equation of this form was studied by the ancient Hindu
mathematician Aryabhata [a9]. He characterized the set of integer solutions r, g
of the equation

a r  +  b A  : 7 1 ( 1 . 2 )

where o and 6 are integers. The modern notion involving polynomials originated
from the algebraic investigations of B6zout [9,10,23], after whom the identities
are often named. In deference to common practice we will refer to these equations
as B6zout identities.

B6zout identities play a central role in mathematics and its applications to
science and engineering. A description of some of their multitude of applica-
tions can be found in several of the references. For example, B6zout identities
involving polynomial rings have applications in transcendental number theory
[2], spectral theory [16,17], infinite dimension realization theory [18], and ro-
bust stabilization [21]. B6zout identities involving rings of entire functions with
growth conditions arise in the problem of finding all distributional solutions to a
system of linear partial differential equations, and in image and signal process-
ing wavelet construction [38] applications requiring deconvolution [1-7]. B6zout
identities involving the ring f/- of bounded analytic functions on the disc are
the focus of the corona theorem 112,201. B6zout identities involving matrices
also occur in signal processing and control theory. In particular, If. f1,... , f^
are pxq matrices with coefficients in F'[r], the ring of polynomials in the in-
determinate r over the field fl then there exist qxp matrices 9r,...,g- with
coefficients in ['[r] that satisfy the B6zout identity (1.1) if and only if h,. . . , f ̂
are right-coprime [47,p.693]; 19,p.239-241]. Multivariable extensions are dis-
cussed in [11,p.5a-72]. B6zout identit ies also play an important role in the
graphical display of curves and surfaces [13,32, a3]. The construction of locally
supported multivariate interpolation schemes [37,43] as well as the locally finite
decomposition of transtlation invariant spaces [35,36] also leads to the study of
B6zout identities.

Of the many important theorems which address the existence of solutions
of the B6zout identity, the most fundamental is the Nullstellensatz which states
that when ft,... , f* are in the ring of algebraic polynomials

R = F l n t , . . . , r a ) ,

where F is a subfield of the field c of complex numbers, there exists a solu-
tion 91 , ... ,9n € R of Eq. (1.1) if and only if the set of common roots of the
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po l ynomia l s  f t , . . . , f *

V : = { z :  z e  C d ,  h Q ) = " ' =  f * ( z ) : 0 }

is empty, that is, V : 6.For the ring of Laurent polynomials

R  :  F l r t , . . . , f r d . , r t ' , . . . , r i ' 1 ,

the existence of a solution to Eq. (1.1) is guaranteed if and only if

V  c { 2 ,  z = ( 2 r , . . . , 2 a )  € C d ,  2 1 " ' z a = 0 }

( see  [15 ,28 ,46 ,48 ] ) .
The material in this paper falls naturally into two categories. In the first part,

we review the proof of our result presented in [30]. This allows us to contrast
it with a new and simpler proof presented here. Moreover, some additional
observations are presented in the univariate case concerning the degrees of the
solution of a given B6zout identity which were inaccessible by the methods of [30].
In the second part, we fully exploit this alternate derivation to obtain a general
multivariate version of our main result from [30]. To accomplish this objective,
we first parameterize the set of all solutions of a given B6zout identity using the

Quillen-suslin and Swan theorems, [27,28,4I,44,46], then we use the Michael
selection theorem, [39], to show the existence of a continuous solution to this
identity that satisfies general inequality constraints and finally, by invoking the

Stone-Weierstrass approximation theorem [14], we obtain a desired polynomial

solution.
To begin this program, we start by reviewing our notation and terminology

from [30]. Let us use Zq, V', R, C, ID, and 'll to denote the non-negative integers,
integers, reals, complex numbers, unit disc, and unit circle, respectively. We
shall also use 4 to denote the algebra of complex-valued Laurent polynomial

functions on C \ {0}. Recall that a Laurent polynomial

P : C \ { 0 } - + a

is in ,C provided there exists a finitely supported complex-valued coefficient se-
quence {pnt n € Z} such that

f-

P(z)  :  ) - )n "2" ,  z  €  A \ {0 } .
n t L

For any Laurent polynomial P, we define

(1 .3 )

n { P ) : =  m i n { n  ' .  n € Z q , p ^ t ' 0 } ,  n s ( P ) : : m a x { n  :  n e  Z a , p " l 0 } ,

and the length of. P by
( . (P)  : :  

"g(P)  
-  n^P). (1 .4 )

We also use 4p, LN, Lp to denote the subsets of Laurent polynomials whose
restriction to the unit circle 1f is real-valued, non-negative, and positive, respec-
tively. It is obvious that any Laurent polynomial P is in f,n if and only if its
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coefficient sequence is hermitian-symmetric, that is, for n € Z , p_n - p^. In
this case, we have that n/P) = -ns(P) and (.(P) is an even integer.

2. Univariate Laurent Polynomials: Existence

In our recent paper [30] we showed that if Pr and P2 arc in ,Cr and have no
common zeros in A \ {0}, then there exist Q1 and Q2 in 4ry such that

&Qt  *  PzQz  =  L '  ( 2 ' 1 )

Let us now describe a construction of these Laurent polynomials which differs
slightly from that given in [30]. In what follows we always assume neither P1
nor P2 is identically constant as this case is apparent, in all respects.

First, we choose any pair of Laurent polynomials Bt € Ln, l. : !,2, that
satisfies the B6zout identitv

P1B1*  P2B2  -  1 .  ( 2 .2 )

Using these Laurent polynomials, we introduce two rational functions

R r , =  - 2 ,  R  ' -  B t
1 7  " ' : =  4  

( 2 ' 3 )

and define a positive constant

7 '= !  (max {P1 (z)P2(z)  :  z  e 1t }  ) -1 .  (2.4)

Equation (2.2) implies that Rr is bound,ed, aboue on'lf, -rR2 is bounded below on
'11, and

= - Rz(w) - -Ri (tr)
a S _-_.n--!, to €'lf. (2.b)

Second, we define the function / Uy ttr" equation

,  Er+E,
I , :  2  ,  ( 2 . 6 )

where E1 is defined by the equation

E t@) : :  max { f t r ( t u ) ,  m in  {R  ( r ) :  z  €  T ' }  - 27 } ,  u r  € ' t f ,  ( 2 .7 )

and Ez is defined by the equation

E @): :  min {R ( r ) ,  max{ f t1(z)  :  z  €T}  + 27} ,  t r . r  €  '11.  (2.8)

Our choice of these functions guarantees that the inequality

Er@) +z < 7@) S Er@) -2,  u. ,€ l f  (2.e)
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holds and ensures that the function I is continuous on 'll.

Third, we construct a Laurent polynomial F that is real-valued on lf and
approximates / uniformly on 1f to within ?, that is

l l / - F l l n < a ' (2 .10)

where we use llglll to denote the maximum norm of a function g on 'lf. The exis-
tence of the Laurent polynomial F is assured by the Weierstrass approximation
theorem.

Fourth, we define Laurent polynomials

Q 1 : :  8 1  -  F P z ,  Q z : =  B z  *  F P r . ( 2 . 1 1 )

Certainly Q1 and Q2 satisfy the B6zout identity (2.1). F\rrthermore, since in-

equalit ies (2.9) and (2.10) imply that

h(w) S r(u) < Rz(w), t r  € '1f (2.r2)

we conclude that Qr and Q2 arein Lp, fulfilling our expectations. This proves

the assertion. It should be noted that, although the function / is continuous, it
is only piecewise analytic.

We will describe an alternative four-step procedure to construct non-negative

Laurent polynomials Q1 and Qz that satisfy the B6zout identity (2.1)' Our
next proof uses a matrir extension method which will be fully exploited for the
multidimensional case

As in the proof above, we use Lemma 2'2 of [30] to identify 81, 82 € Lp

which satisfy the B6zout identity (2.2). Let us consider the matrix

and its inverse

* ': l!;' *')

,-' = lE: -;:l
In addition to the rational functions in Eq. (2.3) we require the rational function

v . - P 1 + P 2
(2 .15)

and the positive constant

e : :  min { -Rr( t )  ,  Rz(z)  :  z  e T} . (2 .16)

Note that g is analytic in a neighborhood of lf as well as positive on 1f . Likewise,
the function

(2 .13)

(2.r4)

f  :=  g(81 -  82) (2.77)
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is analytic in a neighborhood of 
'lf, 

real-valued on 1f, and satisfies the equation

f;] ,= *-'l',] (2.18)

We now choose a Laurent polynomial ,F' which is real-valued on lf and ap-
proximates / uniformly on lf to within e, that is,

l l / - r l l r < . . (2.1e)

Again, we observe that the Laurent polynomials Q1 and Q2 in Eqs. (2.11) satisfy
B6zout identity (2.1). F\rrthermore, we combine Eqs. (2.11) and (2.14) to obtain

(2.20)

Therefore, Eqs. (2.18) and (2.20) imply that

l3:l: '- '[;]

l3:l: t;l - *-'1,2,1 / t  D l \

and consequently, using Eq. (2.14) and inequalities (2.19), we conclude that
Qt, Qz e Lp.In contrast to our first proof, the rational function / is analytic
on an open neighborhood of lf. This fact will be exploited in the next section.

We end this section by observing that the above result extends to a finite col-
lection of univariate Laurent polynomials Pr,... ,P^ € 4ry having no common
z e r o s i n A \ { 0 } .

Lemma 2.L.  Let  Pt , . . . ,P*  € L7,1 haue no cornnxon zeros in  C\{0} .  ?hen
there erist Laurent polynomials Qt,.. . ,Q* € Lp such that

iooo:r.
; - 1

We will give a proof of this fact using induction on rn and the following fact.

Lernma 2.2. Giuen P1, P2 € Ly, there exist p1, pz € LN hauing no cornrnon
zeros and P e Ltt such that P1 : p1P and P2 = pzP.

Let us explain the reasoning we used to establish this lemma. A well-known
result of Riesz-Fejer states that a Laurent polynomial P is in lru if and only if
there exists an algebraic polynomial S such that

P ( z ) : l S ( t ) l ' ,  z  € T .

Alternatively, every P € LN admits the canonical factorization

(2.22)
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t (P) /2

P(z )=se1  I l t r - \ n ) ( r - '  - I ; ) ,  ze  C \ {o } ,
n=l

where \n, n = 1,. . . ,  ( . (P) 12,are the roots of ,S and c(P) is a posit ive constant.
In other words,

t (P) /2

S(z )=J ;@ f I  ( r - ) , ) ,  z€a \ {o } .
n = L

Furthermore, we may choose S so that its roots lie in the closed unit disc. In
this case, Jensen's theorem [25] implies that c(P) equals the geometric mean of
P. that is

103

(2.23)

(2.24)

In fact, c(P) is the geometric mean of. P if and only i/ S has all its zeros in the
closed unit disc. With this information at hand we now prove Lemma 2.2.

Proof of Lemma 2.2. For (. = 1,2 and z € C \ {0}, we express Pa(z) in the form

P2(z) := S2(z)52(Llz),

where each 52, (, = 7,2 is an algebraic polynomial that has all its zeros in the
closed unit disc.

Let U be the algebraic polynomial obtained as the greatest degree common
divisor of 51 and 52. Therefore

S t = U D t , l . = 1 , 2 ,

where D1 and, D2 a,re algebraic polynomials having no common zeros in C. Hence

c(P) =*r 
[# lo'" rcsr{"\de]

where

Pt --  PPt,  L = 1,2,

P ( z ) : = U ( z ) U ( 1 l z ) ,  z  €  C \ { 0 } ,

(2.25)

and
pi lz) := D2(z)Dx( t lz ) ,  z  €  A\{0} .

The proof is concluded by observing that p1 and p2 have no common zeros. r

We now return to the proof of Lemma 2.1 which uses induction on rn.

Proof of Lemma 2.1. Having established the result for m:2, we now assume
m ) 3 and that the result has been established for any collection of. m - |
Laurent polynomials having no common zeros in A \ {0} which are non-negative
on'lf. We now suppose that Pr,...,P* are Laurent polynomials in 4;y with
no common zeros in A\{0}.We apply Lemma 2.2 to the Laurent polynomials
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Pr and Pz to obtain Laurent polynomials Pt,Pz, and P that satisfy Eq.(2.25)'

Since the two collections of Laurent polynomials {pt, pr} and {P, Pz,- . . , P*}

have no common zeros in A\{0}, the induction hypothesis implies that there

exist Laurent polynomials qt, qz e 4p such that

P f l t * P z Q z = l

and there exist Laurent polynomials Q, Qs,.. '  ,Q* € fp such that

PQ - f  PzQs  +  . . .  +  P*Q^  =  l .

We define, for L:1,2, Laurent polynomials in 4ry by the equation

Q t , =  q t Q .

Then Q1, ... ,Q^ satisfy the B6zout identity

P t Q t  *  " ' t  P p Q *  -  l .

This advances the induction hypothesis and proves the result. I

It is important to realize that this method of proof does nof extend to

multiuariate Laurent polynomials. The reason for this is two-fold. First, we

relied on the fact that univariate Laurent polynomials form a princi'ple ideal do-

main, aproperty not available in the multivariate case. Furthermore,by Bdzout's
,intersection theorem [9, 10,24, p. 670], for algebraic varieties' any collection of. m'

polynomials in at least rn dimensions generally has common zeros. We shall

overcome these difficulties and provide substantial generalizations of Lemma 2'1

in Sec.4.

3. Univariate Laurent Polynomials: Length Bounds

In this section we estimate the lengths of the Laurent polynomials Qr and Qz
in Lp whose existence was established in the previous section. To this end,

corresponding to a pair P1 and P2 of Laurent polynomials in fry having no

common zeros, we define positive integers L,B, and D by the equations

L:= maxp(Pr), (.(Pz)\ , (3 .1)

B : :  m in{mMU(Q) , t (Q) }  t  Qr ,Qz €  Lp ,  P1Q1-r  P2Qr :1 t t ,  (3 '2 )

and
P ;:  min{ l(  F) :  F e LN, l l f  -  Fl l r  < e}, (3.3)

where e is the positive constant and / is the rational function described at the

end of Sec. 2. We also introduce a measure p of the separation of zeros of Pr and

P2 defined by

p := min{ lp -  } l  ,  / r ,  . \  € C, h(t t )  = Pr())  = 0} ' (3.4)
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Since Pr and, P2 are in Lry, it follows that

p = min{ lp -  \ l  t  t t , )  €  ID,  h( t t )  :  P2())  = 0}  ,

and so it follows that p € [0,2]. Moreover, the solutions 81,82 € ,Cn of the
B6zout identity (2.2) were constructed above to satisfy the inequalities

t(Br) < [(Pr), [ .(82) S (.er). (3.5)

Therefore, Eq. (2.11) implies that

B < D + L  ( 3 . 6 )

and if t(F) > 1, we obtain the equation

B :  D-r  L .  (3 .7)

Our main result in this section provides an upper bound for B.

Theorem 3.1. There eaists a function

G :  (0,  a)xZ' ,  -+ Za

such that for any pair of Laurent polynomials P1 and' Pz in La hauing no comrnon
zeros in  A\  {0} ,

B  <  G ( p , L ) .

Furthermore, for a fined p, the Junction G may be chosen to satisfy, the asymp-
totic bound,

G(p,L) = o( r"5' ' '  Pry\"'n), L -+ n,'  
\  \ p /  /

and, for a fired L, the asymptotic bound

G(P,L)  -  O(P-r '21+ IogP-t ) ,  P -+ O'

We have computational evidence that indicates these bounds are pessimistic.

However, without the alternate proof of the existence of positive solutions of the
B6zout identity (2.1) presented here, even these bounds would be inaccesible.

To prove Theorem 3.1 we derive a series of upper bounds for B in terms of
various quantities and then relate these quantities to p and ,L. Although these
quantities require knowledge of Pr and P2, they provide convenient methods
to obtain upper bounds for B without having to compute positive solutions of
the B6zout identity. We approach the problem by using the notion of. resultant.
Before starting the proof we show by example that B may tend to infinity as p
tends to zero, even if. L is fi,ned.
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Proposition 3.1. For any positiae integer n, there erist Laurent polynomials
P1 and P2 in Ly such that L(PL) : [ '(Pz) = 4n, and

i

3  >  ap -L  _  4n .  (3 .8 )

Proof. We choose distinct numbers )1 and )z in lf such that,\1 f -.\2, and
represent these numbers as

\ x - s i o ' , ( . = I , 2 ,

where
0 z € ( h , ? r r n ) .

Using these numbers and any positive integer n, we define Pr and P2 in Ly of.
length 4nby the equation

2

P1(z) := f l t ,  
-  \ i lk- '  -  ^r)" ,  P2(z) := Pr(-r) ,  z € a \  {0} .

l = L

Since P1 and P2 have no common zeros, there exist Laurent polynomials Q1 and

Q2 in LN that satisfy the B6zout identity (2.1). We introduce W e LN by the
formula 

l
W(z)  := ' r (QrQ)  +  Qz?z ) ) ,  z  e  C \  {0 } ,

so that
P1Q)W(z)  +  P1( -z )W ( - r )  =  1 ,  z  e  C\  {0 } .

Next, we define 7 e Lx by setting

V := PtW

and the trigonometric polynomial ? by the equation

T(0) := V("ot), I e IR.

Clearly, ? is non-negative and satisfies the equation

f ( e ) + T ( 0 + r )  = 1 , 9 € l R .

Hence, we conclude that
T ( 0 ) S  1 ,  A € l R .

Moreover, ? has an n-th order zero at 02 and L - f (' f zr) has an n-th order
zero at d1. Therefore, there exists

Q € (02,0t - l  r )
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such that (_l)n-r
T(zn-L) (6) = 

@L +;:W;r

By Bernstein's inequality [8, Vol' I, p' 26],

. | !.(v)12^-r
lr,"-,(i l\= L-, I

from which we conclude that

107

qv) >

We also observe that

qV) = I'(PLW) = {'(P) + l(W) : 4n + t(W)

and 
tW) smax{l(Q1), t(Qz)} '

Since Qr and' Qz satisfy the B6zout identity' we obtain that l(Q1) = l(Qz)'

Therefore, for I = 1,2, we conclude that

L
t ( Q i l 2 ; o - ' - + n '  I

to one. With this condition we obtain the estimate

l lPd l rS2x ,  [ -7 ,2 . (3.e)

W e l e t B r a n d 8 2 b e t h e L a u r e n t p o l y n o m i a l s ' e t h e p o s i t i v e c o n s t a n t ' a n d g
,"1 i o" irre rationat functions described at the end of sec. 2. In our preliminary

estimates we also make use of the following constant

B := max{ l lB df t  :  I  = t ,2}  '

Later, we shall estimat e g by some function of p and 'L'

Wedef inetheLaurentpolynomialPinLpbytheequat ion

P : - P t * P z ,

TltP(") >- B-'

(3.10)

2
( f i + r - e 2 )

and observe that (3 .11)
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Moreover, since c(P1) = c(Pz) = 1, Jensen's theorem and the arithmetic-
geometric inequality imply that

c(P) : c(Pt * Pz) 2 2t/ c(h)c(P2) / 2. (3 .12)

To proceed further we need a measure of the separation between the zero set
of P and the unit circle lf. To this end, we introduce the positive constant

(3 .13)

We note the quantities e defined by Eq. (2.16), B defined by Eq.(3.10), rc defined
by Eq.(3.13), and p defined by Eq. (3.4), are functions of Pr and P2 (albeit,
complex functions of Pr and Pr). W" derive an upper bound on the lengths of

Qr, I = 7,2by deriving bounds on e, B, and rc in terms of p and L.
To this end, we also make use of the error of best uniform approximation on

1f, to the rational function /, defined in Eq. (2.17), by trigonometric polynomials

which is given by

E.(f) := min { ll/ - Gllo : G e Lp, (.(G) 3 2n}. (3 .14)

Our first lemma provides a bound for this quantity as a function of.8,rc, and L.

Lemma 3.L. Let f be the rational function defined in Eq. (2.I7). For any 'integer

n ) L and Jor any r in the open interaal (1 - ^, I), there holds the inequality

rc  : :  m in{ } , * t . { r  -  l r l  :  P( ) )  :  o ,  t r  .  t } }

rn+L-L
E"(I) s2A O-,tG-+W,

Proof. For n 2 L, we have that

(3 .15)

where

E"( l )  <20 EN(s), (3 .16)

where N ;= n - tr. F\rrthermore, the canonical factorization of P and the fact
c ( P ) > 2 i m p l y t h a t

E"(f) < 1Ex(h),

1

(3 .17)

h(z )  :=
ntre)/2e _ ̂ i le-t _\d ,  z e C \ { 0 } ,

and )1, (. : !, . . . , (.(P) 12 are roots of P inside the unit disc. Note that, for any
r in the interval (1 - n,1), h is analytic in the annulus

. A , " : = { z : r < l z l ( " - t }

and uniformly bounded on it by the constant (r - 1 + n)-t1e1 . A standard result

E n ( h ) = W
ensures that
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Combining the above inequalities and the fact that [(P) < tr concludes the
proof. r

The bound given by the right side of inequality (3.15) is minimized by choos-
ing r to be equal to the unique root of the equation

n + l - L  I  L

*  
=  

r - r - ; - 1 1 :

in the open interval (1 - rc, 1). A simple bound, that describes the asymptotic
decay of E.(l), is obtained by choosing

r = ( 1 - r c ) ( l  + ; 1 2 1 ) ,  " > r ( t . * )  
( 3 . 1 8 )

With this bound we are led to the following corollary.

Corollary 3.1. Let f be the rational function defined in Eq.(2.17). Then

(3.1e)

Proof. We substitute the value of r in Eq. (3.18) into inequality (3.15) to obtain

E"U) <
2 B G  -  K ) n + r - 2 1 ( ! +  ) n + 1 - 2 1 ( n  + t  -  D L

(rc - (1 - rc) )L"

The result follows by a direct computation using the fact that (7 + r f rn)^ < e'
f o r a l l m ) 0 , c ) 0 .  I

Our next result bounds B in terms of L, n and B.

Proposition 3.2. The minimal length B d,efined by EC.Q.2) sati,sfies the in-
equality

E*6) <?Er,  _ a" (  ) , ,  ,  >+ .

B < L*max{aor ,  f  ta+a loga) } ,

where a and b are defi,ned by the equat'ions

and

(3.20)

(3 .21)

(3.22)

Proof. Usingthe bound on the norm on P2, L : 1,2, given in Eq. (3.9), we obtain
the inequality

, 2  2 - 2 L - L (3.23)



110 Wayne M. Lawton and, Charles A. Micchelli

Therefore, by Corolla^ry (3.1), if n22Lf n and

(3.24)

then B < L + n,. The inequality in (3.24) is equivalent to demanding that

n - a l o g n 2 b ,  ( 3 . 2 5 )

where a and b are defined in Eqs. (3.21) and (3.22). To unravel this inequality
we introduce the function

!t(r) := r - logr, r € [1, oo) . (3.26)

(3.2e)

where A :- {z: Il2 Slzl < 1}. Recall inequalitv (3'11) which states that

m i n { l P ( z ) l  : z € T } > P - ' .

Moreover. the canonical factorizations of Pr and, P2 imply that

m a x { l P ' ( z ) l  :  z € A }  < L 5 L / 2 -

Combining these last two inequalities with inequality (3.29) proves the result.l

(o - . ,  ( ry )L  <2-zL- ' l ,

This function is a strictly increasing bijection of (1, m) and satisfies the inequal-

i tY 

!,  < r/ | ,),  r € [40, oo) . (3.27)
D

using this function we can guarantee inequality (3.25) provided that

1
, h (  ) > ; ( b * o l o g a ) .

Flom this observation and Eq. (3.27) the result follows' t

we recall our objective to bound B above by a function of p and .L. Propo-

sition 3.2 implies that it suffices to derive upper bounds for rc and B in terms of

p and L. The next result provides an upper bound for rc in terms of B. To this

end, we define the constant Bs =max{l,p}.

Lemma 3.2. The quantity n defined, by Ec.(3.I3) satisfies the estimate

2 3 * - ' S A o L S L l z (3.28)

Proof. Eqtation (3.13) implies that rc < l12, and therefore, the left-hand side of

the above inequality is valid' For the upper bound we observe that

1 - t r t  z min 
{ i ,  . , -  ^r  } ,
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Proposition 3.2 and Lemma 3.2 show that B is bounded above by a function
of 0, p, and Z. We now conclude the proof of Theorem 3.1 by deriving an upper
bound for B in terms of p and L. The method we use relies on the notion of a
resultant of two polynomials.

We begin with a lemma about two algebraic polynomials P1 and P2 having
no common zeros in C. We will use this lemma to get the desired bound on B.

Lemma 3.3. Let

P1(z) :=, fr,V - \), z € C.
j=r

and
n

p 2 ( z ) : = d f l e - p , ) ,  z e  C
j = L

be two polynomials with no cornnlon zeros in C. Suppose lc is an integer such
that 0 1 k 1 m * n - l. Let Qt and, Q2 be the unique polynomials of degree
n - l, m - l, respectiuely, which satisfy the Bdzout i'dentity

P tQ)Qt (z )  +  P2 (z )Q2(z )  :  z * ,  z  €  C .

Then there hold the inequalities

(3.30)

l l0 r l ln  S
n,l lAl l f t - '  l lPzl l f ' (3 .31)

and

lrdl IIL, [] ,l\ i - t"ol'

,nllPLllft ll&llfr-'
l r a l [ l = r f [  , l \ i - r "n l '

Prool. We write

Q { r ) : r o + r r z  +  " ' +  r n - L z n - r ,  z  € C ,

Q r Q )  =  s s ' l  s 1 z +  " '  +  s * - L z * - I ,  z  €  C '

Define two vectors in lRrn+n by setting

f i  :  l r o r T L r . . .  r T n - L t  S o t s l , . . .  r  s * - 1 l f

and set
e  =  [ 0 , . . . , 0 , 1 , 0 , . . . , 0 ] T ,

where one occurs in the k + 1 coordinate of the vector e. Let I,7 be the
(m+n)x(m+n) matrix which represents the resultant of Pr and P2 (see [50, p. 29-
30]). Hence, Eq. (3.30) is equivalent to the linear system Wx = e and it follows

l lQzl l r  S (3.32)

that
detWi

r i  =  
d " t # ,  i  : 1 ) , . . . , f f i  I  n  -  L ,
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where Wi is the (m + n)x(m -f n) matrix formed by replacing the (j + l)th
column of W by the vector e. Note that all the columns of I,77 have the sum of
squared moduli equal to either lP1lfr-, lP2l!r, or one (for the j * lst column) where

f . l1 denotes the Il2-norm on'lf. Moreover, since )r, )2, . .. ,\^, Ftt Fzt. . . , ps,
are the zeros of P1 and P2, respectively, we know that

detw = 7d Ii frt^, - F),
i = t  j = -

(see [50,p.30]). Hence, the Hadamard inequality 126,p.4721implies that

v , l s f i f f i 6 ,  ' i : 0 , " ' , n - L .

l , , l  s - J f f i ]  , .  i : 0 , . . . , f f i - ; .
[IL' [IP' lAi - r'l '

This proves the lemma. r

The Laurent polynomial version of the above result is stated next.

Lemma 3.4. For i  = 1,2, let

Ni

P a ( z ) =  p * t z k , z e C \ { 0 } ,
&=-Ni

be Laurent polynomials with zeros \i;, i -- I,. . . ,I{,; . Suppose

Ns- ;  - 1

A a ( z ) =  t  a k i z k ,  z e  C \ { 0 } ,  i = 7 , 2 ,
k=-Ng_ i

are the unique Laurent polynomials of thei,r respectiue degrees that sati,sfy the
Bd.zout identity

P1 (z )A1 (z )  *  P2 (z )A2 (z )  =  1 ,  z  €  A \  {0 } .

Then there hold the inequalities

l / , ln.m (3.33)

and

l lAzllr < /(P')llPlil6(P') lf, ' l l{ '(&)-'
pr,rr,rpr,,,llir, n-ff;' 

(3'34)
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In the next lemma we bound B in terms of p and -L when Pr and P2 are
Laurent polynomials in ,Cn both having geometric mean one.

Lernma 3,5. Suppose Pt and, P2 are Laurent polynom'ials in Ln with geometric
rneans equal to one and hauing no conlrnon zeros in A \ {0}. We haue the estimate

(3.35)

Proof. Recall that
Bt = fr.Au (. = 1,2,

where ,41 and A2 are the Laurent polynomials identified in Lemma 3.4. Hence,
we conclude that

B ! max{llAr lln, ll/zlh} .
This means that the desired bound for F will follow from Lemma 3.4. For this
purpose, we recall the bounds

l l pz l l r  S  2 t (P r ) ,  ( .  =  L ,2 ,

from Eq. (3.9) for the maximum norm of. Px, I = t,2, on the unit circle. To
finish the proof it suffices to note that the canonical factorization of fl implies
t h a t  l p r y " , a l  1 1 ,  i = 1 , 2 .  I

We have now derived the inequalitites necessary to prove Theorem 3.1.

Proof of Theorem 3.1. To complete the proof we combine inequality (3.20), which
bounds .Lg above as a function of .L, B, and tt-l, with inequality (3.2), which
bounds rc-r as a function of .L and p, and, inequality (3.35), which bounds B as
a function of .L and p. These inequalities establish both claims in the theorem.r

An upper bound for B in terms of p and L can be obtained by using a contour
integral representation for the solution of the B6zout identity. We do not pursue
this method here but do record the following fact.

Lemma 3.6. Let P1 and, P2 be Laurent polynomials with no cornrnon zeros in
A\ i0) .  Supposelx,  l :1 ,2,  are s imple c losed curues whose inter ior  {11 ,  ( .  =
t,2, contains the roots of Ps-t and whose esterior contains the roots of P2, (.:

1,2. We define analytic functions C2, l. = !,2, on the open region C\fr,, where

O : = O r U O z ,

by the equation

go  3L(h ) ' "

c2(z):=+l,r dl

(z  -  )Pr(e)Pz(Q'
z e C \ O . (3.36)

Then the functions C2, l. :1,2, are the restrict'ions to the complement of Q oJ
Laurent polynomials A2, [. = I,2, which satisfy the Bd,zout identity

PrAr -f P2A2 = t. (3.37)
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Proof. The fact that each C2, [. = 1,2, equals the restriction to the complement
of o of a Laurent polynomial follows from Cauchy's integral formula. Moreover,
it can be seen, by noting the asymptotic growth of the integrand as z -+ oo, that
nilAt) ) n1(Ps-2) and, nn(A2) < nn(Ps-t) - 1. To confirm the B6zout identity
we introduce Laurent polynomials T:= PtPz and,S:: PrAtI PzAz. It suffices
to show that S(z) : 1 for z / A.First note that

( /o\  -  rk)  f" \ " ) -  2 r i ,  J y G - r ) r 3 ) '

where f is the boundary of O. Next, observe that since the integrand is a rational
function which is analytic in the extended complex plane, except at the zeros of
7 and the point z, the sum of its residues is zero. Since O contains the zeros of
7 and z / Q, the integral equals the sum of the residues of the integrand at the
zeros of ?. The result follows from the fact that the residue of the integrand at
z  i s  - l l T ( z ) .  r

4. Multivariate Laurent Polynomials

Our objective in this section is to extend the results from Sec.2. For this purpose,
fix an integer d ) l. We let I denote the algebra of Laurent polynomia.ls with
coefficients in C defined on (C \ {0})' and let P denote its subalgebra consisting
of algebraic polynomials. Let X denote either the d-torus lfd or the d-cube
IId:: [-1,l]d and ? either the subalgebra Lpof ,C, consisting of functions that
are real-valued on 'lfd, or the subalgebra Pn of. P, consisting of functions that
are real-valued on IId. Let C(X) denote the Banach algebra of all continuous real-
valued functions (under pointwise multiplication), equipped with the maximum
norm (denoted by ll . llx), on X. We use the notation C(X)- for the rn-fold
product of C(X) with the maximum component norm. For .R € C(X)-, we
define the set

B " ( P )  : :  { R  :  R €  C ( X ) - ,  P .  R =  I } ,

where
F  ' G  : =  F t G r  - 1  " ' +  F * G *

for
F  :  | h , . . . ,  f ^ f ,  G  =  \ g t , . . . , 9 * ) €  C ( X ) - .

Similarly, for P € R* we introduce the set

B " ( P )  : =  { Q ,  Q  € R ^ ,  P .  Q  :  t } .

We let C(X)T denote the cone consisting of elements in C(X)- whose compo-
4ents are non-negative and use int C(X)f for its interior. The results in this sec-
tion include the fact that for any P € C(X)T ) R* , the set int C(X)f; n B,(P)
is non-empty. Our method of proof proceeds in three steps. First, we parame-
terize the set B,(P) by using the Quillen-Suslin and Swan theorems. Next, we
apply the Stone-Weierstrass theorem on C(X)- to show that B,(P) is dense in
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B"(P).Finally, we employ the Michael selection theorem to construct an element
in B,(P) that satisfies the desired inequalities.

Our first concern is to parameterize the Bdzout set B,(P) of a vector P in
R^. For this purpose, we say an element P <. R^ is un'imodular provided that
B,(P) is non-empty. For the algebra P, the Nullstellensatz implies that P is
unimodular if and only if its components have no common zeros in Cd, while
for the algebra L, the Nullstellensatz implies P is unimodular if and only if
the components of P have no common zeros in (A\{0})'. Moreover, for any
unimodular P e Pff, the Quillen-Suslin theorem implies that there exists an
mxm matrix M over Pn such that M has an inverse with entries in 2a and has
the first row that coincides with P 14I,44,45].

For any unimodular P e Pfr, the following result parameterizes the B6zout
set B,(P) in terms of the entries of M-1 . To state this result we find the following
notation convenient. For every r € C*-1, we let r* denote the vector in C-
whose first component is one and the remaining components are the components
of r. For every r € C-, we Iet 11 denote the vector in C2* whose first rn.
components are the components of r and the remaining rn components are zero.
In addition, for any A e C2*, we let y1 denote the vector whose components are
the first rn components of y.

Proposition 4.1. Let P €Pft be unimodular. Then

B,(P)  = {F :  F = G*M-r ,  G ePf t - l } . (4 .1 )

Proof. For G e Pfr-r, we define the vector F = G*M-7, where M is the matrix
defined above by the Quillen-Suslin theorem. Since the first row of M is P, we
observe that

P M - t  =  0 * .

We compute
P . F : P M - | G !  = 1 ,

in other words, F e B,(P). Conversely, for any F e B,(P), we define G e Pff-r
by the equation

MFT : GT

which concludes the proof. r

We now turn our attention to a description of Br(P) for R : Ln and a
unimodular vector P e R^. This case presents some difficulty. Recall that, for
any unimodular P € L^ , the theorem of Swan implies that there exists an rn x rn
matrix M over 4 such that M has an inverse having entries in .4 and the first
row of M coincides with P 128,461. However, it is unknown if the entries of the
matrix M can be chosen to be in ^46 when P e LH (see [29]). To overcome this
problem, we observe that p is in I if and only if there exist pp and pt in .Ca such
that p: pnli,pl.We use this fact in the following way. For any unimodular
P e Lft,let M be its matrix completion (over 4) given by the Swan theorem
and express it in the form

M :  M n l i M l ,

I 1 D



116 Wayne M. Lawton and, Charles A. Micchelli

wherc Mp and M1 aren'Lxrn matrices over Lp. We constructthe2mx2m matrix
M in block form by the equation

f  t r  t t  
' l

M ,:  I  
t "  tut l  |  @.2)" - ' -  l - t u t ,  U * l '

Note that the inverse of.M is given by

r a  A r lM - ' , : l n l  t  t ,  ( 4 . 3 )
L-1 r r  aRJ

where .4n and A7 are mxm matrices over la defined by the equation

An -f i 'Ar :: M-1 .

Since P e LH., the first row of M equalsthe2m-vector P1. Using these facts,

we now parameterize B,(P) in terms of the entries of M-l.

Proposition 4.2. Let P € Lft be unimodular. Then

B , ( P ) = { 4  , F : G * M - r , C e f . ! - L } .  ( 4 . 4 )

Proof. The proof of this result is similar to the proof of Proposition 4.1. Speci-
fically, for G e LT-', we define the vector

F  ,=  G*M-T.

Since the first row of .[Z equals P1, we conclude that

PrM-L :  o*.

Therefore, we have that

P '  F 1  =  P 1  '  F  =  P t M - '  ' G *  : 0 *  ' G *  =  l ,

in other words, F1 is in the B6zout set B'(P). Conversely, for any F e B,(P),
we define G e L!-L by the equation

G! '= mr{ .

Consequently, we obtain that

Ft : G'M-T

which concludes the proof. I

Next, we demonstrate that, for any unimodular vector P in R* , the B6zout
set 6,(P) is dense in B"(P) relative to the maximum norm on X.
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Proposition 4.3. Let P €R* be unimod,ular. Then B,(P) is d,ense in B"(P).

Proof. We divide the proof into two cases. First we deal with the case where
R=Pn. Given f/ € B.(P), we define the vector-valued function F e C(X)--I
by the equation

F* := HMT, (4.5)

where M is the mxm matrix over Pp given by the Quillen-Suslin theorem, as
appearing in Proposition 4.1. By_the Weierstrass approximation theorem, for
every € ) 0, there exists G e Pff-' such that

l l r - G l l 5 < e .

We define the vector "I in the set B,(P) by the equation J := G*M-T, and note
that

l l J  -  r l l l x  <  l lM-r l l  l l r  -  Gl lx  <,  l lM-r l l ,
where

( n  )

l M - r l : = m a x  {  I  t t  ( M - ' ) n o l l x :  i  =  r , . . . , m 1
( j =  

'  ' e ' r  
)

which concludes the proof of the first case.
The case R : Lnis argued similarly. Given,[/ e B"(P) we define a vector-

valued function F € C(X)2--1 by the equation

F* :=  H1MT, (4.6)

where M isthe2mx2rn matrix over,C6 given by the Swan theorem, as appearing
in Proposition 4.2. By the Weierstrass approximation theorem, for every e ) 0,
there exists G e Lz{-t such that

l l r - G l l 5 < e .

We define the vector J e L{ by the equation

J := G*M-T

and note that { is in 6"(P). Therefore, we obtain that

l l r+ - f / l l r  s l l f i - ' l l  l l r  -  Gl lx <, l l f i -r l l

which concludes the proof of the second case and the proposition. r

We now address the existence of solutions to the B6zout equation with in-
equality constraints. To this end, we require some facts about cones. We let tsm
denote the closed unit ball and let S*-1 denote the unit sphere in IR-. For any
non-empty closed subset frn of.7l and vector b € lB-, we define

d ( b , H )  : : i n f  { l b - h l :  h e  [ i l ] .
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F\rrthermore, we let 7l denote the set of all non-empty closed subsets of IB-
equipped with the Hausdorff topology defined by the metric

d(lt[l,lHl2) := suP {d(h,nnz) : h € IHII } + sup{d(h'[n1) : h e fil2 ].

For any subset IHI of IR.*, we let [Hl denote the convex hull of IHI and let cllHlbe
its closure.

A cone K is any subset of lR* containing all non-negative multiples of its
elements and is non-f riuialif it contains a non-zero element. We say it is admis-
sibleif it is closed, convex, and does not contain a line, that is, a one-dimensional
linear subspace. The dual cone of any cone K is given by the equation

K r : =  { u :  u  € R - ,  u . u )  0 ,  u e  K } .

Recall the fact that any closed convex cone K satisfies Krr = K.
We use the continuous function

(4.7)

d :  (R*\{0}) x (R*\{0}) + [0,  zr]

defined by the formula

o(u ,u) ,=  cos- l  
, *+ r ,  

u ,u  e  (R- \ {o } ) , (4.8)

where | . I denotes euclidean length of a vector. The function 0(u,u) is the angle
between the vectors u and u. Also, it equals the geodesic distance between the
vectors ullul and, o/lol in S--1.

For any closed subset K of IR- containing non-zero elements and a vector
u € IR* \ {0}, we set

9 ( u , K )  : : i n f { O ( u , u ) :  u e  K \ { 0 } } .

Let K denote the set of all admissible cones in IR* equipped with the topology
induced by the metric

9(K1,K2)  : :max{d( r ,K2)  :  o  €  K1 \  t0 } }
f  m a x { d ( r , K 1 )  :  c € K z \ { 0 } } ,  K 1 , K 2 € K .

(4.e)

Our main result in this section is the following theorem.

Theorem 4.L. Let s be any continuous (set-ualueQ function

s : X - + K .

Suppose P e R* is unimodular and satisfies

P ( r ) e s ( r ) ,  r e  X .
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Then there enists Q e B,(P) such that

Q @ ) e i n t s ( z ) 4 ,  z € X .

Our objective in the remainder of this section is to prove this result and to
note some interesting special cases. To this bnd we fi.rst relate the topological
spaces K and?7.

Lernma 4.t. The following funct'ions are continuous

$ : K - + 1 7  d e f i n e d  b y  d ( K )  : :  K f l S - - 1 ,  K e  K ;
t! : K -+ 71 defined, by r/(K) ,: [K n S--t] , K e K;

l :  K -+ R d,efined, bs f(K) := d(0, fncnS--1];,  K e K.
Furthermore, the last function is positiue-ualued.

Proof. First, observe that, for any K1 , Kz g K,

d (K1 ,  K2 )  :  0 (K r  o  S - - t ,  K2  n  S - -1 ) ,

and for every pair of closed subsets Dr, Dz of S--1,

1 1 9

l trrr,D2) 
< d(Dr, D2) < d(D1, D2) . (4 .10)

Therefore, we conclude that

d (d (K , ) ,  d (ucz ) )  <  d (K l ,  K2 )  .

The function ry' satisfies the same inequality since, for every pair of closed
subsets IHIr,lHIz of IR-, we have that

d ([[ i l ,], [mr]) s d(HIl, H2) .

The final claim is proved by using the triangle inequality to confirm that the
function I satisfies the same inequality as Q and tlt. r

We also need facts about admissible cones. To this end, for any non-trivial
cone K, we define

O(K) := max { d(u, u) :  u,?, € K\{0}} (4 .11)

and set O({0}) : :  0.

Lernma 4.2. Suppose K is a closed conaeo cone.
The following properties are equiualent: K € K, O(K) < er, int Kr f @.
ffK fs admissible, u € K andu € int  Kr,  thenu 'u > 0.
I f  J  Ls  a  c losed conuer  cone suchtha t  Kc  {0 }U in tJ , thenJa c  {0 }U in t  Kr .

f fK1 ,K2 e K, then

a$f nts^, K* n B-) = d'(Kt ̂ 1B^, K2 n B-).
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d(Ki ,  K2r)  < 7rd(Kl ,  K2)  .

Proof. We briefly describe the proof of the last three claims since the others are
argued in a similar manner to the third. Since JI' C K-, it suffices to prove that
if u is a non-zero vector in the bound@ry of Kr, then u / JL. Let u € R*\{0}
determine a support ing hyperplane for  Kr  at  u.  Thus,  LL ' ' tD:0 andT.r .u )  0
for all u € Kr. Since u.r € Krr = K, it follows that u e int JI. Hence, there
exists y € JI such that u' y < O.This shows that u cannot be in JIr and proves
the third claim.

To show the fourth claim, we first observe that the above discussion implies
that, for any K € K and for any r € IRm,

d (2 ,  K r )  :  max { - t u '  t  :  w  €  Kn  lB - } '

In fact, if u / Kr, then the vector u which achieves the maximum of the right-
hand side of the above equation is given by

a - ru =

where y is the closest point in Kr to r. Therefore, if K1 and K2 are in K and
r € ( K + \  ) n t s - , t h e n

d ( c , K f )  =  - 1 1 . r  (  m a x { - u  . u  ;  u  e K i  n B * }  =  d ( u , K r ) .

Flom this inequality, it follows that

max{d(r,Ki  nts-)  :  o € Kf nB*} (  max{d(u,Kl nB'n) :  u € Kz nts-} .

Interchanging the roles of K1 and K2 and then replacing K1 by Kf and Kz by
Krr concludes the proof of the fourth assertion.

To show the fifth claim we first prove, for any non-trivial cone K and any
v e c t o r u € S ' t - l , t h a t

d( r ,  K  n  B- )  I  d , (a ,K  n  s - -1 )  12d(n ,K n  IB- )  . (4.12)

The first inequality follows from the inclusion S--1 C IBm. To show the second
inequality, we let zr'(r) denote the closest point in K to r. It r(r) = 0, then
d(o,K) : 1 and since d(r,KnS--1) ( 2 the claim holds. Otherwise, we set

- _ r(r)' -  
l " ( * ) l

and observe that z € KnS--1. Moreover,  s ince r ' r (x) =ln(r) l ' ,  we compute

d ( r , K ) 2 :  t  -  l z r ( r ) 1 2  >  L - l z r ( r ) l  =  ! P - * l ' )  d , ( n , n 6 , ^ ' 5 m - r ; z
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which concludes the proof of inequality (4.12).
To finish the proof of the fifth assertion we observe that inequality (4.12)

implies that

d(K* n s--1, Ki n s--1) s 2 d(Ki n B-, K+ n B-).

Appealing to the fourth claim we obtain that

d(n<f n s--r, K+ n s--1) < 2 d(K1 I IEm, K2 n B-).

We now combine this inequality with inequalities (4.10) to conclude that

d(Ki,Ki) S i  a1u<1 f l  S--1,K* n S--1) ( ur d(K1 f l  IB*, K2 n B-).

Using the fact that]for any admissible cone K, the function

r r+ d(x, K n B-)

is a convex function on IR-, we have that

d ( K i , K + )  <  z r d ( K 1 o s - - r , K 2  n s * - 1 )  (  z d ( K 1 , K 2 )

which concludes the proof of the fifth and final assertion. r

We will also require the following specialization of the Michael selection the-
orem from Theorem 3.1 of [39].

Michael Selection Theorern. ff X fs a compact metric space and if t is a
continuous function /rorn X into ?{, then t, admits a continuous selection, that
is, a continuous function

g : X + l B -

such that, lor all r € X, g(r) e t(r).

We are now prepared to prove our main result.

Proof of Theorern 1.1. Lef
s : X - + K

satisfy the hypothesis of Theorem 4.1. Choose any positive e such that

_  z r - m a x { O ( s ( r ) )  : z € X }

2

and define the function s. by the equation

s . ( r )  : : c l { u  :  u  €  I R - \ { 0 } ,  d ( u , s ( r ) )  <  e } ,  e  €  X .

We first prove that this function maps X into K continuously and satisfies the
inclusion

s ( r )  c { 0 } U i n t s . ( r ) ,  r € X .  ( 4 . 1 3 )
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The fact that s. maps into K is a consequence of our choice of e and also the
first part of Lemma 4.2. The inclusion (4.13) uses the fact that, for s € X,

int s.(r) :- {u : u € IR?II \ {0}, 0(u, s(r)) q e}.

We shall now show that s. is, indeed, uniformly continuous. Choose p > 0.
It suffices to show that there exists d ) 0 such that, for any tr,9 € X, l" - Al < 6
implies

0 (s , ( r ) , s . ( y ) )  S  p .

Since s is continuous and X is compact, there exists d > 0 such that, for any
r, gr € X, lx - yl ( d implies that

d(s ( r ) ,  
" ( i l  

<  * .

For any r,gr € X with la - al <d and u a 
".1r11".1r), 

it sufices to show that

g(u,s , ( f i )  <  |  ,

since the roles of x andycan be interchanged.L rnr, end, we observe that there
exist u e s(o) and tu e 

"(g) 
such that 0(u,u) ( e and 0(u,w) < pl2. Therefore,

by the triangle inequality, it follows that

0(u ,w) (4.14)

By our choice of u, we are assured that

L := [ {u, tu} ]  n  c l  s . (y)

is a proper closed convex subset of the line segment [{", r}] that joins u and
tu. Therefore, -L is a line segment having the form [{r,r}) where z is in [{u,u.,}]
and on the boundary of cl s.(g). Consequently, z also has the property that

0 ( z , w )  :  6 . (4 .15)

Our choice of z ensures that 0(u,w) = 0(u,z) + 0(2,u.,). The reason for this
is that the unit vectors

2 : :  z l lz l  ,  t ,  : :  u l lu l  ,  6 : :  w 1111

have the property that 2 is on the geodesic connecting 0 and 6 in S--1. There-
fore, it follows that

0(u ,w)  =  0 ( i , 6 )  : 0 ( t , 2 )  +  0 (2 ,6 )  : 0 (u ,z )  +  Q(z ,w) .

Consequently, combining Eqs. (a.1a)-(4.16) yields

u
a r + ; .

p

2 '
0(u ,s , (y ) )  <  0 (u ,z )  <

(4.16)
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and establishes the assertions concerning the function s..
Next, we introduce the function t : X -+ 17 by the equation

t ( r )  : = [ " . ( r ) t n S - - 1 ]  ,  r € X ,

and observe that Lemmas 4.1 and 4.2 imply that t is continuous. Therefore, the
Michael selection theorem implies that there exists a continuous function

g :  X  -+  IR* ,

such that
g(r )  e t ( r )  c  s . ( r ) r \ {o}  C int  s( r )a .

Part two of Lemma 4.1 implies that the function P.9 is positive on X which
ensures that the function -R defined by the equation

R ( r \ : = : : 9 - -  ,  z € X ,  ( 4 . L T )
P(x) . s(r1

is in 6"(P). Next, we construct the subset f of functions in C(X)- by the
equation

F  t :  {F  :  F (n )  e  i n t s ( r ) r ,  0  €  X } .

Since s is continuous and X is compact, f is open. Proposition 4.3 asserts that
B.(P) is dense in B,(P) and hence there exists Q e B,(P) such that Q e F and
the proof is complete. I

We record two corollaries of Theorem 4.1.

Corollary 4.L. Let P € C(X)T i R*. Then there exists Q e int C(X)T n
B,(P) .

Proof. The cone int C(X)? is admissible and self-dual. Moreover, the function

s : X - + K

defined by
s ( r ) : :  K ,  r  €  X

is continuous. Theorem 4.1 implies that there exists Q € B,(P) such that

Q @ ) e i n t C ( X ) f  ,  r € X ,

which concludes the proof. r

Corollary 4.2. Let P e R^ be unimodular and let 0 I e < rf2. Then there
exists Q e B,(P) such that

0 ( P ( r ) , Q @ ) ) < e  ,  r € X .
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Proof. For each 0 € X, define the cone

s ( r )  : :  c l  
{ , ,  

,  u  €  R - \ { 0 }  , 0 ( P ( r ) , q  S ;  -  r } .

Since this cone is admissible and contains P(r) Theorem 4.1 implies that there
exists Q e B,(P) such that, for all r € X,

Q@) e  in t  s ( r ) r  -  {u  ,u  e  R- \ {0 } ,  0 (P(x ) ,u )  <  e } .

This concludes the proof. r
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