Vietnam Journal of Mathematics 28:2(2000) 97-126 R
Vietnmam Journal

of
MATHEMATICS
© Springer-Verlag 2000

Bézout Identities with Inequality Constraints

Wayne M. Lawton' and Charles A. Micchelli®
! Department of Mathematics, National University of Singapore,
2 Science Drive 2, Singapore 117543, Singapore
2State University of New York, University at Albany

Department of Mathematics and Statistics
Albany, New York, 12222, USA

Received October 11, 1999

We dedicate this paper to Ambikeshwar Sharma with esteem, admiration
and gratitude for lighting our way.

Abstract. This paper examines the set B(P) = {Q : P- Q@ =1, @ € R™}, where
P € R™ is unimodular and R is either the algebra Pg of algebraic polynomials which
are real-valued on the cube I¢ or the algebra L of Laurent polynomials which are
real-valued on the torus T%. We sharpen previous results for the case m = 2, d = 1 by
showing that if P is non-negative, then there exists a positive @ € B(P) whose length
is bounded by a function of the length of P and the separation between the zeros of
P. In the general case we employ the Quillen—Suslin theorem, the Swan theorem, the
Weierstrass approximation theorem, and the Michael selection theorem to prove a result
about the existence of solutions to the Bézout identity with inequality constraints.

1. Introduction

In this paper we present several improvements of the results in our recent paper
[30) which was motivated by our interests in orthonormal wavelet construction
[33,34] and conjugate quadrature filter design [22,31]. As explained in [30], this
leads one to the problem of solving certain algebraic identities with inequality
constraints over Laurent polynomial rings. These inequality constraints state
that the univariate Laurent polynomials have non-negative values on the unit
circle and this implies they have spectral factors. The Bézout equation implies
that these spectral factors are conjugate quadrature filters associated with or-
thonormal wavelet bases. In this paper, a special case, provided by Corollary
4.1, of inequality constraints for multivariate Laurent polynomials state that
they have non-negative values on the torus. Although they generally do not
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have spectral factors, the Bézout equation implies that they are associated with
interpolatory positive definite functions. These functions are potentially useful
for interpolating autocovariance functions from their values on a lattice.

The general form of the identity we study is the equation

figr+ -+ fmgm = 1, (1.1)

where, for each k = 1,... ,m, the products frg; belong to a ring R with identity
1. For us, fi,..., fm are specified and a solution gi,. .., g,, satisfying certain
auxiliary conditions is sought.

The earliest known equation of this form was studied by the ancient Hindu
mathematician Aryabhata [49]. He characterized the set of integer solutions x, y
of the equation

ar + by =1, (1.2)

where @ and b are integers. The modern notion involving polynomials originated
from the algebraic investigations of Bézout [9, 10, 23], after whom the identities
are often named. In deference to common practice we will refer to these equations
as Bézout identities.

Bézout identities play a central role in mathematics and its applications to
science and engineering. A description of some of their multitude of applica-
tions can be found in several of the references. For example, Bézout identities
involving polynomial rings have applications in transcendental number theory
[2], spectral theory [16,17], infinite dimension realization theory [18], and ro-
bust stabilization [21]. Bézout identities involving rings of entire functions with
growth conditions arise in the problem of finding all distributional solutions to a
system of linear partial differential equations, and in image and signal process-
ing wavelet construction [38] applications requiring deconvolution [1-7]. Bézout
identities involving the ring H> of bounded analytic functions on the disc are
the focus of the corona theorem [12,20]. Bézout identities involving matrices
also occur in signal processing and control theory. In particular, if fi,..., fm
are pxg matrices with coeflicients in F[z], the ring of polynomials in the in-
determinate z over the field F, then there exist ¢xp matrices g1,... , g, with
coefficients in F[z] that satisfy the Bézout identity (1.1) if and only if f1,... , fm
are right—coprime [47, p. 693]; 19, p. 239-241]. Multivariable extensions are dis-
cussed in [11,p.54-72]. Bézout identities also play an important role in the
graphical display of curves and surfaces [13,32,43]. The construction of locally
supported multivariate interpolation schemes [37,43] as well as the locally finite
decomposition of transtlation invariant spaces [35, 36] also leads to the study of
Bézout identities.

Of the many important theorems which address the existence of solutions
of the Bézout identity, the most fundamental is the Nullstellensatz which states
that when fi,..., f,, are in the ring of algebraic polynomials

R=IF[£E1,... ,.’L‘d],

where F is a subfield of the field C of complex numbers, there exists a solu-
tion gi,...,gm € R of Eq.(1.1) if and only if the set of common roots of the
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polynomials fi,..., fm
Vi={z:2€C% fi(z) == fm(2) =0}
is empty, that is, V = ¢. For the ring of Laurent polynomials
R =z, ... ,a:d,ml_l,... ,mgl],
the existence of a solution to Eq. (1.1) is guaranteed if and only if
Vc{z:z=(21,...,24) €C% 2z 2zg =0}

(see [15,28,46,48]).

The material in this paper falls naturally into two categories. In the first part,
we review the proof of our result presented in [30]. This allows us to contrast
it with a new and simpler proof presented here. Moreover, some additional
observations are presented in the univariate case concerning the degrees of the
solution of a given Bézout identity which were inaccessible by the methods of [30].
In the second part, we fully exploit this alternate derivation to obtain a general
multivariate version of our main result from [30]. To accomplish this objective,
we first parameterize the set of all solutions of a given Bézout identity using the
Quillen—Suslin and Swan theorems, [27,28,41, 44, 46], then we use the Michael
selection theorem, [39], to show the existence of a continuous solution to this
identity that satisfies general inequality constraints and finally, by invoking the
Stone—Weierstrass approximation theorem [14], we obtain a desired polynomial
solution.

To begin this program, we start by reviewing our notation and terminology
from [30]. Let us use Z4, Z, R, C, D, and T to denote the non-negative integers,
integers, reals, complex numbers, unit disc, and unit circle, respectively. We
shall also use £ to denote the algebra of complex-valued Laurent polynomial
functions on C \ {0}. Recall that a Laurent polynomial

P:C\{0}=C

is in £ provided there exists a finitely supported complex-valued coefficient se-
quence {p, : n € Z } such that

P(z) =) paz", z€C\{0}. (1.3)
nez

For any Laurent polynomial P, we define
ng(P) :=min{n : n € Zy, pr # 0}, nyg(P):=max{n : n € Zy, p, # 0},

and the length of P by
((P) :=ngy(P) — ne(P). (1.4)

We also use Lg, Ly, Lp to denote the subsets of Laurent polynomials whose
restriction to the unit circle T is real-valued, non-negative, and positive, respec-
tively. It is obvious that any Laurent polynomial P is in Lg if and only if its
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coeflicient sequence is hermitian-symmetric, that is, forn € Z , p_,, = p5. In
this case, we have that ng(P) = —ng4(P) and £(P) is an even integer.
2. Univariate Laurent Polynomials: Existence

In our recent paper {30] we showed that if P, and P, are in £y and have no
common zeros in C\ {0}, then there exist Q; and @2 in Ly such that

PQ1 + PQ2 =1 (2.1)

Let us now describe a construction of these Laurent polynomials which differs
slightly from that given in [30]. In what follows we always assume neither P,
nor P; is identically constant as this case is apparent, in all respects.

First, we choose any pair of Laurent polynomials B, € Ly, £ = 1,2, that
satisfies the Bézout identity

P\By + P3By = 1. (2.2)

Using these Laurent polynomials, we introduce two rational functions

B, ey
Ri=-3, Ri=p (2.3)
and define a positive constant
1 o
€:= o (max {Pi(2)Py(2) : 2 € T}) * (2.4)

Equation (2.2) implies that R; is bounded above on T, R, is bounded below on

T, and
Ry (w) — R;(w)

e

weT. (2.5)

Second, we define the function f by the equation

where R, is defined by the equation

Ri(w) := max {Ry(w), min{Ry(z) : z € T} — 2€¢}, weT, (2.7)
and R, is defined by the equation

Ry(w) := min {Rz(w), max{Ry(z) : 2€ T} +2€}, weT. (2.8)
Our choice of these functions guarantees that the inequality

Ri(w) +€ < f(w) < Rp(w) =%, weT (2.9)
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holds and ensures that the function fis continuous on T.
Third, we construct a Laurent polynomial F' that is real-valued on T and
approximates f uniformly on T to within €, that is

\f = Fllr <%, (2.10)

where we use ||g||T to denote the maximum norm of a function g on T. The exis-
tence of the Laurent polynomial F is assured by the Weierstrass approximation
theorem.

Fourth, we define Laurent polynomials

Ql = BI_FPZ: Qz = B2 +FP1 (211)

Certainly Q; and Q- satisfy the Bézout identity (2.1). Furthermore, since in-
equalities (2.9) and (2.10) imply that

Ry(w) < F(w) < Ry(w), weT (2.12)
we conclude that @; and @, are in Lp, fulfilling our expectations. This proves
the assertion. It should be noted that, although the function f is continuous, it
is only piecewise analytic.

We will describe an alternative four-step procedure to construct non-negative
Laurent polynomials @; and Q that satisfy the Bézout identity (2.1). Our
next proof uses a matriz extension method which will be fully exploited for the
multidimensional case.

As in the proof above, we use Lemma 2.2 of [30] to identify By, By € Ly
which satisfy the Bézout identity (2.2). Let us consider the matrix

naalll i 2 R
M .= [—Bz 31] (2.13)
and its inverse
-1 | B =R
M= [Bz P | (2.14)

In addition to the rational functions in Eq. (2.3) we require the rational function

1
— Dl
Ty (2.15)
and the positive constant
¢:=min{—Ry(z), R2(2) : z € T}. (2.16)

Note that g is analytic in a neighborhood of T as well as positive on T. Likewise,
the function
= g(By — By) (2.17)
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is analytic in a neighborhood of T, real-valued on T, and satisfies the equation

] 5[}

We now choose a Laurent polynomial F' which is real-valued on T and ap-
proximates f uniformly on T to within e, that is,

If = Fllr <e. (2.19)

Again, we observe that the Laurent polynomials Q; and Q; in Egs. (2.11) satisfy
Bézout identity (2.1). Furthermore, we combine Egs. (2.11) and (2.14) to obtain

AU s o L
[Qz} =M 1[F]. (2.20)
Therefore, Eqgs. (2.18) and (2.20) imply that
Q| _1lg A 0
E R H e a2

and consequently, using Eq.(2.14) and inequalities (2.19), we conclude that
Q1, Q2 € Lp. In contrast to our first proof, the rational function f is analytic
on an open neighborhood of T. This fact will be exploited in the next section.

We end this section by observing that the above result extends to a finite col-
lection of univariate Laurent polynomials Py, ..., Py, € Ly having no common
zeros in C\ {0}.

Lemma 2.1. Let Py,...,P, € Ly have no common zeros in C\ {0}. Then
there exist Laurent polynomials Q1,... ,Qm € Lp such that

f: PQ;i=1.
i=1

We will give a proof of this fact using induction on m and the following fact.

Lemma 2.2. Given Py, P, € Ly, there exist p1, p» € Ly having no common
zeros and P € Ly such that P, = p1 P and P, = py P.

Let us explain the reasoning we used to establish this lemma. A well-known
result of Riesz-Fejer states that a Laurent polynomial P is in Ly if and only if
there exists an algebraic polynomial S such that

P(z) = [S(2)]*, z€T. (2.22)

Alternatively, every P € Ly admits the canonical factorization
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£(P)/2
P(zy=c(P) [] (z—M)(z' -%2), zeC\{o}, (2.23)
n=1
where A\,, n =1,...,£(P)/2, are the roots of S and ¢(P) is a positive constant.
In other words,

LP)/2

S(z)=+ve®) [ (z=2), zeC\{o}

Furthermore, we may choose S so that its roots lie in the closed unit disc. In
this case, Jensen’s theorem [25] implies that ¢(P) equals the geometric mean of
P, that is
1 2 i
¢(P) = exp [—/ log P(e'a)de] . (2.24)
2T 0

In fact, c(P) is the geometric mean of P if and only if S has all its zeros in the
closed unit disc. With this information at hand we now prove Lemma 2.2.

Proof of Lemma 2.2. For £ =1,2 and z € C\ {0}, we express P;(z) in the form

Py(z) := S¢(2)Se(1/7),

where each Sy, £ = 1,2 is an algebraic polynomial that has all its zeros in the
closed unit disc.

Let U be the algebraic polynomial obtained as the greatest degree common
divisor of S; and S;. Therefore

Se=UDy, £=1,2,
where D; and D, are algebraic polynomials having no common zeros in C. Hence
I8 S = ek (2.25)

where

P(z) = U(:)UJZ), zeC\{0},

and

pe(2) := Dyg(2)De(1/Z), ze€ C\{0}.
The proof is concluded by observing that p; and ps have no common zeros. m

We now return to the proof of Lemma 2.1 which uses induction on m.

Proof of Lemma 2.1. Having established the result for m = 2, we now assume
m > 3 and that the result has been established for any collection of m — 1
Laurent polynomials having no common zeros in C\ {0} which are non-negative
on T. We now suppose that P,..., P, are Laurent polynomials in £y with
no common zeros in C\ {0}. We apply Lemma 2.2 to the Laurent polynomials
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P, and P, to obtain Laurent polynomials p1, pz, and P that satisfy Eq. (2.25).
Since the two collections of Laurent polynomials {p1, p=} and {P, Ps,...,Pn}
have no common zeros in C\ {0}, the induction hypothesis implies that there
exist Laurent polynomials q;, g2 € Lp such that

p1g1 +p2q2 =1

and there exist Laurent polynomials @, Qs, ... ,@m € Lp such that
PQ+ PsQs+ -+ PpQm =1
We define, for £ = 1,2, Laurent polynomials in £x by the equation
Qe = ¢Q.
Then Q1,...,Qm satisfy the Bézout identity
PQi+ -+ PrQmn=1

This advances the induction hypothesis and proves the result. n

It is important to realize that this method of proof does not extend to
multivariate Laurent polynomials. The reason for this is two-fold. First, we
relied on the fact that univariate Laurent polynomials form a principle ideal do-
main, a property not available in the multivariate case. Furthermore, by Bézout’s
intersection theorem [9, 10,24, p. 670], for algebraic varieties, any collection of m
polynomials in at least m dimensions generally has common zeros. We shall
overcome these difficulties and provide substantial generalizations of Lemma 2.1
in Sec. 4.

8. Univariate Laurent Polynomials: Length Bounds

In this section we estimate the lengths of the Laurent polynomials @Q; and Q2
in £p whose existence was established in the previous section. To this end,
corresponding to a pair P; and P; of Laurent polynomials in £x having no
common zeros, we define positive integers L, B, and D by the equations

b= max{Z(Pl), Z(Pg)}, (31)

B := min{max{£(Q1),£(Q2)} : @1,Q2 € Lp, PAQ1 + RQ2=1},  (3.2)

and
D :=min{l(F) : F€ Ly, |If — Fllt <€}, (3.3)

where ¢ is the positive constant and f is the rational function described at the
end of Sec. 2. We also introduce a measure p of the separation of zeros of P; and
P, defined by

= min{|g — A : g, A € C, Pi(p) = P2(X) = 0}. (3.4)
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Since P, and P, are in Ly, it follows that
p=min{|u— A :p, A €D, P(p) =P(A) =0},

and so it follows that p € [0,2]. Moreover, the solutions By, By € Lg of the
Bézout identity (2.2) were constructed above to satisfy the inequalities

UB1) < UPy), £(Bz) < E(P). (3.5)
Therefore, Eq. (2.11) implies that
B<D+1L (3.6)
and if £(F) > 1, we obtain the equation
B=D+ L. (3.7)

Qur main result in this section provides an upper bound for B.

Theorem 3.1. There exists a function
G:(0,00)xZy — Z4

such that for any pair of Laurent polynomials P, and P, in Lr having no common
zeros in C\ {0},
B<G(p,L).

Furthermore, for a fized p, the function G may be chosen to satisfy, the asymp-

totic bound
256\ L /4
G(p, L) =O<L55L/2 <7> ) L= o0,

and, for a fized L, the asymptotic bound

G(p, L) = 0(p~/*1ogp™"), p—0.

We have computational evidence that indicates these bounds are pessimistic.
However, without the alternate proof of the existence of positive solutions of the
Bézout identity (2.1) presented here, even these bounds would be inaccesible.

To prove Theorem 3.1 we derive a series of upper bounds for B in terms of
various quantities and then relate these quantities to p and L. Although these
quantities require knowledge of P, and P,, they provide convenient methods
to obtain upper bounds for B without having to compute positive solutions of
the Bézout identity. We approach the problem by using the notion of resultant.
Before starting the proof we show by example that B may tend to infinity as p
tends to zero, even if L is fized.
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Proposition 3.1. For any positive integer n, there exist Laurent polynomials
P, and P, in Ly such that {(P) = ¢(P2) = 4n, and

_ 4
>—pl—dn.
B> 7rp 4n (3.8)

Proof. We choose distinct numbers A; and Az in T such that \; # —X,, and
represent these numbers as

As =eio‘, {= 1,2,
where
g, € (01,91 +7T).

Using these numbers and any positive integer n, we define P; and P in Ly of
length 4n by the equation

Pi(2) = H(z —A)™Mz"t =A™, Pa(z) = Pi(~z), z € C\{0}.
=1

Since P; and P, have no common zeros, there exist Laurent polynomials @; and
Q. in Ly that satisfy the Bézout identity (2.1). We introduce W € Ly by the
formula

(Q1(2) + Q2(=2)) , z € C\{0},

DO =

W(z) :=

so that
P (2)W(z) + Pi(—2)W(-2) =1, z € C\ {0}.

Next, we define V € Ly by setting
Vi=PW
and the trigonometric polynomial T' by the equation
T(6) :=V(e?), 6 € R.
Clearly, T is non-negative and satisfies the equation
TO)+T@E+m) =1, 6 R

Hence, we conclude that
TO) <1, 6eR.

Moreover, T has an n-th order zero at 2 and 1 — T'(- + w) has an n-th order
zero at 8;. Therefore, there exists

¢ € (02,01 + )
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such that
(_ 1)n—1

6, +7— 02)2"_1 ]

TEI(9) = ¢
By Bernstein’s inequality [8, Vol. I, p. 26),

_ e V 2n—1
et < [42]
from which we conclude that

2 g
(91 + T — 92) 'ﬂ'i/\l + )\g|‘

(V) 2

We also observe that
UV) = (PW) = £(P1) + (W) = 4n + UW)

and

L(W) < max{€(Q1), £(Q2)}-

Since Q1 and @ satisfy the Bézout identity, we obtain that Q1) = UQz)-
Therefore, for £ = 1,2, we conclude that

4
> Zpt =~ 4n.
6{Qe) > = 4n L

We now turn to the problem of deriving upper hounds on B. Since £(Q1)
and €(Q:) are unchanged by multiplying Pi and Py by positive real numbers,
we may assume without loss of generality that the constants ¢(P,) and e¢(Pz) in
the canonical factorization of Py and P described by Eq. (2.23) are both equal
to one. With this condition we obtain the estimate

|Pllr < 26 £=1,2. (3.9)

We let B; and Bs be the Laurent polynomials, € the positive constant, and g
and f be the rational functions described at the end of Sec. 2. In our preliminary
estimates we also make use of the following constant

B :=max{||Bellt : {= o 2 (3.10)

Later, we shall estimate 8 by some function of p and L.
We define the Laurent polynomial P in L£p by the equation

P:=P + P,

and observe that

I;ngrlP(z) 2 8=t (3.11)
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Moreover, since c(P;) = c¢(P;) = 1, Jensen’s theorem and the arithmetic—
geometric inequality imply that

¢(P) = c(Py + P) > 2+/c(Pr)c(Pa) > 2. (3.12)

To proceed further we need a measure of the separation between the zero set
of P and the unit circle T. To this end, we introduce the positive constant

m::min{%,min{1~|/\| g P(A):O,)\ED}}. (3.13)

We note the quantities e defined by Eq. (2.16), § defined by Eq. (3.10), « defined
by Eq.(3.13), and p defined by Eq.(3.4), are functions of P, and P, (albeit,
complex functions of P; and P,). We derive an upper bound on the lengths of
Q¢, £ = 1,2 by deriving bounds on ¢, 3, and & in terms of p and L.

To this end, we also make use of the error of best uniform approximation on
T, to the rational function f, defined in Eq. (2.17), by trigonometric polynomials
which is given by

E.(f) :==min{||f - G|t : G € Lrg, £{G) < 2n}. (3.14)
Our first lemma provides a bound for this quantity as a function of 3, x, and L.

Lemma 3.1. Let f be the rational function defined in Eq. (2.17). For any integer
n > L and for any r in the open interval (1 — &, 1), there holds the inequality

pr+l-L
En(f) S2ﬂ(1_r)(r_1+n), (3.15)
Proof. For n > L, we have that
E.(f) <2BEn(9), (3.16)

where N := n — L. Furthermore, the canonical factorization of P and the fact
¢(P) > 2 imply that

En(f) < BEN(h), (3.17)
where
1
h(z) := —, z € C\ {0},
=) KB )t -2 g

and Ag, £=1,...,0(P)/2 are roots of P inside the unit disc. Note that, for any
r in the interval (1 — &, 1), h is analytic in the annulus

Api={z:r <[z <r7h}

and uniformly bounded on it by the constant (r — 14 x)~4P) A standard result
ensures that

< 2max{|h(z)| : z € A }rNF1
- 1-r '

En(h)
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Combining the above inequalities and the fact that £(P) < L concludes the
proof. |

The bound given by the right side of inequality (3.15) is minimized by choos-
ing r to be equal to the unique root of the equation

n+1—L+ 1 L B
T l—-2z z—-14k

in the open interval (1 — «,1). A simple bound, that describes the asymptotic
decay of E,(f), is obtained by choosing

i 1
L bl -6 =), :
T =) n_L<1+R) (3.18)

With this bound we are led to the following corollary.

r=(1-xk)(1+

Corollary 3.1. Let f be the rational function defined in Eq.(2.17). Then

L
mms—ﬂ—w{ﬁﬁ,nzﬁ. (3.19)

K L K

Proof. We substitute the value of r in Eq. (3.18) into inequality (3.15) to obtain

IB(]' L R)"+1_2L(1 + "+1L_2L)n+1—2L(n +1-— L)L

(= (1= ) rimp) LF

2
En(f) <

The result follows by a direct computation using the fact that (1 +z/m)™ < e®
forallm >0,z >0. ]

Our next result bounds B in terms of L, « and 3.

Proposition 3.2. The minimal length B defined by Eq.(3.2) satisfies the in-
equality

5
B < L + max {40a, Z(b+aloga)}, (3.20)

where a and b are defined by the equations

a:= % (3.21)
and ¥
G L Fg (mf’) } . (3.22)
K K L

Proof. Using the bound on the norm on P, £ = 1,2, given in Eq. (3.9), we obtain
the inequality
el (3.23)
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Therefore, by Corollary (3.1), if n > 2L/x and
24 n [ 4ne y ~2L-1

then B < L + n. The inequality in (3.24) is equivalent to demanding that
n—alogn>b, (3.25)

where a and b are defined in Eqgs. (3.21) and (3.22). To unravel this inequality
we introduce the function

Y(z) =z —logz, x €[l,00). (3.26)
This function is a strictly increasing bijection of (1, 00) and satisfies the inequal-

ity
4

I < Y(z), = € [40,00). (3.27)
Using this function we can guarantee inequality (3.25) provided that
n 1
-) > - .
v(2) > =(b+ aloga)
From this observation and Eq. (3.27) the result follows. =

We recall our objective to bound B above by a function of p and L. Propo-
sition 3.2 implies that it suffices to derive upper bounds for x and 8 in terms of
p and L. The next result provides an upper bound for x in terms of 3. To this
end, we define the constant §o := max{1,3}.

Lemma 3.2. The quantity k defined by Eq.(3.13) satisfies the estimate

2 < k! < BoL5M/2, (3.28)

Proof. Equation (3.13) implies that & < 1/2, and therefore, the left-hand side of
the above inequality is valid. For the upper bound we observe that

. (1 min{|P(z)| : z € T}
1=\ 2 min {5’ max{|P'(z)| : z € A}}’ o)

where A := {z:1/2 < |z| < 1}. Recall inequality (3.11) which states that

min{|P(z)| : z€ T} >B7".
Moreover, the canonical factorizations of P, and P; imply that
max{|P'(z)| : z € A} < L5%/2.

Combining these last two inequalities with inequality (3.29) proves the result.m
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Proposition 3.2 and Lemma 3.2 show that B is bounded above by a function
of 3, p, and L. We now conclude the proof of Theorem 3.1 by deriving an upper
bound for 3 in terms of p and L. The method we use relies on the notion of a
resultant of two polynomials.

We begin with a lemma about two algebraic polynomials P; and P, having
no common zeros in C. We will use this lemma to get the desired bound on 8.

Lemma 3.3. Let

s

Pi(z):=v ||(z—-Aj), 2z€C

.
il
i

and

= f_[z—u] 2€C

be two polynomials with no common zeros in C. Suppose k is an integer such
that 0 < k < m+n — 1. Let Q1 and Q2 be the unique polynomials of degree
n — 1, m — 1, respectively, which satisfy the Bézout identity

Pi(2)Q1(2) + P2(2)Qa(2) = 2*, 2z € C. (3.30)
Then there hold the inequalities

n||PliT ™ 1Pl

19l < AT, T Py -

(3.31)

and -
m || Py |3 || PallT

= ol Tz T P — el

1QzllT < (3.32)

Proof. We write
Ql(Z) =ro+rz+---+ rn_1z"_1, AE (C,

Q2(2) =so+ 812+ +8m_12™Y, z€C.

Define two vectors in R™*" by setting
T
T = [T07T17 cee9Tn—1,80,51,--- ,Sm_.]_]

and set
e=[0,...,0,1,0,...,0]7,

where one occurs in the k + 1 coordinate of the vector e. Let W be the
(m+n)x (m+n) matrix which represents the resultant of P; and P, (see [50, p. 29-
30]). Hence, Eq. (3.30) is equivalent to the linear system Wz = e and it follows

that det W
e j 1
A= =0,..., -1,
%= qaw ' mn
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where W; is the (m + n)x(m + n) matrix formed by replacing the (j + 1)th
column of W by the vector e. Note that all the columns of W; have the sum of
squared moduli equal to either |P; |3, |P;|2, or one (for the j+ st column) where
|-|r denotes the H2-norm on T. Moreover, since A1, Ao, ..., Am, 1,42, -+  Me)
are the zeros of P; and P,, respectively, we know that

k13 m
detW =+v4 HH(/\]‘ - pi),

i=1j=1

(see [50, p. 30]). Hence, the Hadamard inequality {26, p. 472] implies that

[P~ Pl .
ri| < 1=0,...,n—1.
| ’Ll_. H;lzl I‘I;n=1 [AJ_IJ/1,| ) ’
|Pu|R | Pl '
[sq] < , 1=0,...,m—1.
d [T, H;n=1 A5 = piel
This proves the lemma. (]

The Laurent polynomial version of the above result is stated next.

Lemma 3.4. Fori=1,2, let

N;
P(z)= ) puz®, z€C\{0},

k=—N;
be Laurent polynomials with zeros Aj;, j=1,...,N;. Suppose
Ng_;—1
Ai(z) = Z akizk1 z € C\{O}, i = 172v
k=—N3_;

are the unigque Laurent polynomials of their respective degrees that satisfy the
Bézout identity

Pi(2)A1(z) + P2(2)A2(2) =1, z€ C\{0}.
Then there hold the inequalities

(B || P || Py )

| Aulir < NN,
PN 1PN, 2 [y TT2h [ — Aja]

(3.33)

and

4P [Pl || Paflf ™)
| Agliy < —XF0) WPl 1Pl (3.34)

! .
PPNz 2 [T T2 [P — Aje
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In the next lemma we bound £ in terms of p and L when P, and P, are
Laurent polynomials in £r both having geometric mean one.

Lemma 3.5. Suppose P, and P, are Laurent polynomials in Lr with geomnetric
means equal to one and having no common zeros in C\ {0}. We have the estimate

L2
Bo <L (p%) . (3.35)

Proof. Recall that

B, =RA4,, (=1,2,
where A; and A, are the Laurent polynomials identified in Lemma 3.4. Hence,
we conclude that

B < max{||Asllr, [|42(lr}-

This means that the desired bound for 8 will follow from Lemma 3.4. For this
purpose, we recall the bounds

| Pellr < 2689, £=1,2,

from Eq. (3.9) for the maximum norm of P, £ = 1,2, on the unit circle. To
finish the proof it suffices to note that the canonical factorization of P; implies
that |pn, 5| €1, 1 =1,2. [

We have now derived the inequalitites necessary to prove Theorem 3.1.

Proof of Theorem 8.1. To complete the proof we combine inequality (3.20), which
bounds Lg above as a function of L, B, and k!, with inequality (3.2), which
bounds k! as a function of L and 3, and inequality (3.35), which bounds 3 as
a function of L and p. These inequalities establish both claims in the theorem.m

An upper bound for 5 in terms of p and L can be obtained by using a contour
integral representation for the solution of the Bézout identity. We do not pursue
this method here but do record the following fact.

Lemma 3.6. Let P, and P, be Laurent polynomials with no common zeros in
C\ {0}. Suppose Ty, £ = 1,2, are simple closed curves whose interior Q,, £ =
1,2, contains the roots of Ps—; and whose exterior contains the roots of Py, £ =
1,2. We define analytic functions C¢, £ = 1,2, on the open region C\ Q, where

() = Q]_ U Qz s
by the equation
- Ps_k(z) dC —
Ol = o /p G-OBROBE “SC\E (3

Then the functions Cy, £ = 1,2, are the restrictions to the complement of Q of
Laurent polynomials Ag, £ = 1,2, which satisfy the Bézout identity

PiA + PoAs = 1. (337)
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Proof. The fact that each C, £ = 1,2, equals the restriction to the complement
of Q2 of a Laurent polynomial follows from Cauchy’s integral formula. Moreover,
it can be seen, by noting the asymptotic growth of the integrand as z — oo, that
ne(Ae) > ng(Ps_¢) and ny(Ag) < ng(Ps—¢) — 1. To confirm the Bézout identity
we introduce Laurent polynomials T := P1 P, and S := P A; + P, A,. It suffices
to show that S(z) = 1 for z € Q. First note that

() dc
@) = 2m /r«—z)T(o’

where I is the boundary of 1. Next, observe that since the integrand is a rational
function which is analytic in the extended complex plane, except at the zeros of
T and the point z, the sum of its residues is zero. Since  contains the zeros of
T and z ¢ Q, the integral equals the sum of the residues of the integrand at the
zeros of T'. The result follows from the fact that the residue of the integrand at
zis —1/T(z). [ ]

4. Multivariate Laurent Polynomials

Our objective in this section is to extend the results from Sec. 2. For this purpose,
fix an integer d > 1. We let £ denote the algebra of Laurent polynomials with
coefficients in C defined on (C\ {0})? and let P denote its subalgebra consisting
of algebraic polynomials. Let X denote either the d-torus T? or the d-cube
4 :=[-1,1]¢ and R either the subalgebra Lg of L, consisting of functions that
are real-valued on T¢, or the subalgebra Pr of P, consisting of functions that
are real-valued on 4. Let C(X) denote the Banach algebra of all continuous real-
valued functions (under pointwise multiplication), equipped with the maximum
norm (denoted by || - ||x), on X. We use the notation C(X)™ for the m-fold
product of C(X) with the maximum component norm. For R € C(X)™, we
define the set
B.(P):={R: ReC(X)™, P-R=1},

where

F.-G:=FRGi+ -+ F,G,

for
F= [f17"' 1fm]’ G= {917"' ’gm] € C(X)m-

Similarly, for P € R™ we introduce the set
B.(P):={Q : QeR™ P.-Q=1}.

We let C(X)T* denote the cone consisting of elements in C'(X)™ whose compo-
nents are non-negative and use int C(X)7 for its interior. The results in this sec-
tion include the fact that for any P € C(X)' N R™, the set int C(X)T" N B,(P)
is non-empty. Our method of proof proceeds in three steps. First, we parame-
terize the set B,(P) by using the Quillen—Suslin and Swan theorems. Next, we
apply the Stone-Weierstrass theorem on C(X)™ to show that B,(P) is dense in
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B.(P). Finally, we employ the Michael selection theorem to construct an element
in B, (P) that satisfies the desired inequalities.

Our first concern is to parameterize the Bézout set B,(P) of a vector P in
R™. For this purpose, we say an element P € R™ is unimodular provided that
B, (P) is non-empty. For the algebra P, the Nullstellensatz implies that P is
unimodular if and only if its components have no common zeros in C%, while
for the algebra L, the Nullstellensatz implies P is unimodular if and only if
the components of P have no common zeros in (C\ {0})%. Moreover, for any
unimodular P € Pg, the Quillen—Suslin theorem implies that there exists an
mxm matrix M over Pg such that M has an inverse with entries in Pr and has
the first row that coincides with P [41,44, 45].

For any unimodular P € Pg, the following result parameterizes the Bézout
set B,(P) in terms of the entries of M. To state this result we find the following
notation convenient. For every z € C™!, we let z, denote the vector in C™
whose first component is one and the remaining components are the components
of z. For every z € C™, we let 21 denote the vector in C>™ whose first m
components are the components of z and the remaining m components are zero.
In addition, for any y € C*™, we let y; denote the vector whose components are
the first m components of v.

Proposition 4.1. Let P € PF be unimodular. Then
B.(P)={F : F=G.M T ,GePp'}. (4.1)

Proof. For G € P!, we define the vector F = G,M~T, where M is the matrix
defined above by the Quillen—Suslin theorem. Since the first row of M is P, we

observe that
PM™'=0,.

We compute
P.F=PM™GT =1,

in other words, F' € B,.(P). Conversely, for any F' € B,.(P), we define G € P;’—l
by the equation
MFT =GT

which concludes the proof. [

We now turn our attention to a description of B,(P) for R = Lr and a
unimodular vector P € R™. This case presents some difficulty. Recall that, for
any unimodular P € £™, the theorem of Swan implies that there exists an mxm
matrix M over £ such that M has an inverse having entries in £ and the first
row of M coincides with P [28,46]. However, it is unknown if the entries of the
matrix M can be chosen to be in Lr when P € L7 (see [29]). To overcome this
problem, we observe that p is in £ if and only if there exist pr and py in Lz such
that p = pr + ip;. We use this fact in the following way. For any unimodular
P ¢ L7, let M be its matrix completion (over £) given by the Swan theorem
and express it in the form

M = Mg +iMj,
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where Mg and M are mxm matrices over L. We construct the 2m X2m matrix
M in block form by the equation

M := [_Aﬁf ﬁ;] . (4.2)

Note that the inverse of M is given by

e A A
e[ 4] (43)

where Ag and A; are mxm matrices over Lgr defined by the equation
AR + iA1= Mt

Since P € LZ, the first row of M equals the 2m-vector P;. Using these facts,
we now parameterize B,.(P) in terms of the entries of M.

Proposition 4.2. Let P € L} be unimodular. Then
B.(P)={F, : F=G.M™T,Ge ¥} (4.4)

Proof. The proof of this result is similar to the proof of Proposition 4.1. Speci-
fically, for G € L™, we define the vector

F:=G.M™.
Since the first row of M equals Py, we conclude that
PM™ =0,.
Therefore, we have that
P-F,=P,-F=PM™.G.=0,-G, =1,

in other words, F| is in the Bézout set B.(P). Conversely, for any F € B,(P),
we define G € L3 by the equation

GT:=M FTT .
Consequently, we obtain that
F=G.MT
which concludes the proof. [ ]

Next, we demonstrate that, for any unimodular vector P in R™, the Bézout
set B,.(P) is dense in B.(P) relative to the maximum norm on X.
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Proposition 4.3. Let P € R™ be unimodular. Then B.(P) is dense in B.(P).

Proof. We divide the proof into two cases. First we deal with the case where
R = Pg. Given H € B.(P), we define the vector-valued function F € C(X)™~!
by the equation

F,:= HMT, (4.5)

where M is the mxm matrix over Pg given by the Quillen-Suslin theorem, as
appearing in Proposition 4.1. By the Weierstrass approximation theorem, for
every € > 0, there exists G € Py~ such that

|F - Gllx <e.

We define the vector J in the set B, (P) by the equation J := G.M~7, and note
that
IJ = Hllx < IM~T|| IF = Glix < e [[M~T|),

where

|M~T|| ;= max { DMk i=1,... ,m}
=1

which concludes the proof of the first case.
The case R = Lg is argued similarly. Given H € B.(P) we define a vector-
valued function F € C(X)?™~! by the equation

F.:=HM", (4.6)

where M is the 2mx2m matrix over Lz given by the Swan theorem, as appearing
in Proposition 4.2. By the Weierstrass approximation theorem, for every ¢ > 0,
there exists G € LX™! such that

IF - Gllx <e.
We define the vector J € L™ by the equation
J:=G,M™T
and note that J is in B.(P). Therefore, we obtain that
Iy = Hlle < M7 {IF - Glix < el 7|

which concludes the proof of the second case and the proposition. m

We now address the existence of solutions to the Bézout equation with in-
equality constraints. To this end, we require some facts about cones. We let B™
denote the closed unit ball and let S™~! denote the unit sphere in R™. For any
non-empty closed subset H of # and vector b € B™, we define

d(b,H) :=inf{|b—h| : he H}.



118 Wayne M. Lawton and Charles A. Micchelli

Furthermore, we let H denote the set of all non-empty closed subsets of B™
equipped with the Hausdorff topology defined by the metric

d(Hl,]H[z) = sup{d(h,IHIz) 3 hEHl}-l-Sllp{d(h,Hl) : hE]le}.

For any subset H of R™, we let [H] denote the convex hull of H and let ¢l H be
its closure.

A cone K is any subset of R™ containing all non-negative multiples of its
elements and is non-trivial if it contains a non-zero element. We say it is admis-
sible if it is closed, convex, and does not contain a line, that is, a one-dimensional
linear subspace. The dual cone of any cone K is given by the equation

Kt:={v:veR™ u-v>0, uecK} (4.7)

Recall the fact that any closed convex cone K satisfies K1+ = K.
We use the continuous function

6 : (R™\{0}) x (R™\{0}) — [0, 7]
defined by the formula

0(u,v) := cos™! lzl;lzl, u,v € (R™\{0}), (4.8)

where | - | denotes euclidean length of a vector. The function 6(u, v) is the angle
between the vectors v and v. Also, it equals the geodesic distance between the
vectors u/|u| and v/|v| in S™1.

For any closed subset K of R™ containing non-zero elements and a vector
u € R™\ {0}, we set

0(u, K) := inf { 8(u,v) : v € K\ {0}}.

Let K denote the set of all admissible cones in R™ equipped with the topology
induced by the metric

G(Kl,Kz) = ma.x{G(m,]Kz) ek \{0}}
+max{0(z, K1) : z € K\ {0}}, K, Ko eK.
(4.9)

Our main result in this section is the following theorem.

Theorem 4.1. Let s be any continuous (set-valued) function
s: X — K.
Suppose P € R™ is unimodular and satisfies

P(z) € s(z), z€X.
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Then there exists Q € B,(P) such that

Q(x) €int s(z)*, z € X.

Our objective in the remainder of this section is to prove this result and to
note some interesting special cases. To this end we first relate the topological
spaces K and H.

Lemma 4.1. The following functions are continuous

¢ : K = H defined by ¢(K) := KNnS™!, KeK;

¥ : K — H defined by Y(K) := [KﬁSm“l] , KeK,;

I': K = R defined by T(K) := d(0, [KN sm-1]), Ke K.
Furthermore, the last function is positive-valued.

Proof. First, observe that, for any K;, K, € K,
0(Ky, Ks) = 8(K; NS™ 1, Ky nS™7Y),

and for every pair of closed subsets Dy, D of S™~1,
2
;9(]1))1, Ds) < d(Dy,Dy) < 6(Dq,D2). (4.10)

Therefore, we conclude that
d(¢(K1)7 ¢(K2)) S 6(]K1a ]KZ) .

The function 1) satisfies the same inequality since, for every pair of closed
subsets H, H, of R™, we have that

d ([H, ], [He]) < d(H,, H) .

The final claim is proved by using the triangle inequality to confirm that the
function I' satisfies the same inequality as ¢ and . n

We also need facts about admissible cones. To this end, for any non-trivial
cone K, we define

O(K) := max{6(u,v) : u,v € K\{0}} (4.11)

and set ©({0}) :=0.

Lemma 4.2. Suppose K is a closed convez cone.

The following properties are equivalent: K € K, O(K) < =, int K+ # ¢.

If K is admissible, v € K and v € int K+, then u-v > 0.

If J is a closed convex cone such that K C {0}Uint J, then J* C {0} Uint K+.
If Ky, Ky € K, then

d(K{ nB™, K- NB™) = d(K;NB™, K, NB™).
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If Ki,Ky € K, then
(K, Ky) < m(Kq,Kp) .

Proof. We briefly describe the proof of the last three claims since the others are
argued in a similar manner to the third. Since J* C K, it suffices to prove that
if u is a non-zero vector in the boundary of K*, then u ¢ J*+. Let w € R™\{0}
determine a supporting hyperplane for K+ at u. Thus, u-w =0and w-v > 0
for all v € K+. Since w € K+t = K, it follows that w € int J. Hence, there
exists y € J such that u -y < 0. This shows that u cannot be in J* and proves
the third claim.

To show the fourth claim, we first observe that the above discussion implies
that, for any K € K and for any z € R™,

d(z,Kt) = max{-w -z :w € KNB™}.

In fact, if ¢ K, then the vector u which achieves the maximum of the right-
hand side of the above equation is given by

y—2x

ly —z|’

where y is the closest point in K+ to z. Therefore, if K; and K, are in K and
z € (K{\K#) NnB™, then

d(z,K¥) = —u-z < max{—u-v:v €Ki NB™} =d(u,K;).
From this inequality, it follows that
max{d(z, Ky NB™) : z € K{f NB™} < max{d(v,K; NB™) : v € Ko N B™}.
Interchanging the roles of K; and K; and then replacing K; by Ki and K; by
Ks concludes the proof of the fourth assertion.

To show the fifth claim we first prove, for any non-trivial cone K and any
vector z € S™!, that

d(z,KNB™) < d(z,KNS™ ') < 2d(z, KNB™). (4.12)

The first inequality follows from the inclusion S™~! C B™. To show the second
inequality, we let m(z) denote the closest point in K to z. If n(z) = 0, then
d(z,K) = 1 and since d(z, KN S™~!) < 2 the claim holds. Otherwise, we set

2

and observe that z € KN S™~1. Moreover, since = - 7(z) = |n(z)|?, we compute

1
dz,K)2 =1 - |n(z)> > 1 - |n(z)] = 3 |z~ z|® > d(z, KN S™1)?
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which concludes the proof of inequality (4.12).
To finish the proof of the fifth assertion we observe that inequality (4.12)
implies that

d(Ki nS™ 1, Ky NnS™ 1) < 2d(K{ N B™, Ky NB™).
Appealing to the fourth claim we obtain that

d(Ki NnS™ 1 Ky NnS™1) < 2d(K; NB™, K, NB™).
We now combine this inequality with inequalities (4.10) to conclude that

O(K:, Ky ) < = d(Ky NnS™~ 1, Ky NnS™7Y) < md(Ky NB™, Ky N B™).

N3

Using the fact that, for any admissible cone K, the function
z - d(z, KNB™)
is a convex function on R™, we have that
(K, Ky < md(Ky NS™ L Ko NS™ 1) < 10(Ky, Ky)
which concludes the proof of the fifth and final assertion. n

We will also require the following specialization of the Michael selection the-
orem from Theorem 3.1 of [39].

Michael Selection Theorem. If X is a compact metric space and if t is a
continuous function from X into H, then t admits a continuous selection, that
18, a continuous function

g: X—B"

such that, for all z € X, g(z) € t(z).
We are now prepared to prove our main result.

Proof of Theorem 4.1. Let
s: X—= K

satisfy the hypothesis of Theorem 4.1. Choose any positive e such that

7 —max{ O(s(z)) : z € X}

e < 5

and define the function s, by the equation
se(z) :=cl{u : v e R™\ {0}, O(u,s(z)) <e}, zeX.

We first prove that this function maps X into K continuously and satisfies the
inclusion
s(z) C {0} Uint s.(z), z € X. (4.13)
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The fact that s, maps into K is a consequence of our choice of € and also the
first part of Lemma 4.2. The inclusion (4.13) uses the fact that, for z € X,

intsc(z) := {u : v € R™\ {0}, 8(u,s(z)) < €}.

We shall now show that s, is, indeed, uniformly continuous. Choose yu > 0.

It suffices to show that there exists > 0 such that, for any z,y € X, [z —y| < §
implies

0(se(z),8:(y)) < 1.
Since s is continuous and X is compact, there exists § > 0 such that, for any
z,y € X, |z — y| < J implies that

L

0(s(z),s(w)) < &

For any z,y € X with |z — y| < § and u € s(2)\s(y), it suffices to show that

O(u, 5e(y)) <

0=

5)

since the roles of £ and y can be interchanged. To this end, we observe that there
exist v € s(z) and w € s(y) such that 6(u,v) < € and 6(v,w) < u/2. Therefore,
by the triangle inequality, it follows that

B(u,w) < € + % (4.14)

By our choice of u, we are assured that
L := [{u,w}] Ncl sc(y)

is a proper closed convex subset of the line segment [{u,w}] that joins v and
w. Therefore, L is a line segment having the form [{z, w}] where z is in [{u, w}]
and on the boundary of cl s.(y). Consequently, z also has the property that

f(z,w) = €. (4.15)

Our choice of z ensures that 8(u,w) = 0(u, 2) + 6(z,w). The reason for this
is that the unit vectors

Z:=z/|2|, G:=u/f|u], ©:=w/|w|

have the property that Z is on the geodesic connecting 4 and @ in S™~!. There-
fore, it follows that

O(u, w) = 8(u, W) = 0(%,2) + 0(Z, W) = 6(u, 2) + 0(z, w). (4.16)
Consequently, combining Egs. (4.14)—(4.16) yields

0(u,se(y)) < 6(u, 2) <

5)

RS
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and establishes the assertions concerning the function s..
Next, we introduce the function t : X — H by the equation

t(z) := [se(z)l ns™ 1], zeX,

and observe that Lemmas 4.1 and 4.2 imply that t is continuous. Therefore, the
Michael selection theorem implies that there exists a continuous function

g: X = R™,
such that
g(z) € t(z) C sc(x)\{0} C int s(z)*.
Part two of Lemma 4.1 implies that the function P - g is positive on X which
ensures that the function R defined by the equation

R(z) = 57, z€X, (4.17)

is in B.(P). Next, we construct the subset F of functions in C(X)™ by the
equation
F:={F : F(z) € ints(z)*, z € X}.

Since s is continuous and X is compact, F is open. Proposition 4.3 asserts that
B.(P) is dense in B,(P) and hence there exists @ € B,(P) such that Q € F and
the proof is complete. |

We record two corollaries of Theorem 4.1.

Corollary 4.1. Let P € C(X)* N R™. Then there exists @ € int C(X)T N
B.(P).

Proof. The cone int C(X)7 is admissible and self-dual. Moreover, the function
s: XK

defined by
s(z) =K, z€X

is continuous. Theorem 4.1 implies that there exists @ € B,(P) such that
Q(z) e int C(X)T, z €X,
which concludes the proof. ]

Corollary 4.2. Let P € R™ be unimodular and let 0 < ¢ < w/2. Then there
ezxists Q € B.(P) such that

O(P(z),Q(z)) <e, zeX.



124 Wayne M. Lawton and Charles A. Micchelli

Proof. For each z € X, define the cone

s(z) := cl {u . w € R™\{0}, 8(P(z),u) <

o

_6}_

Since this cone is admissible and contains P(z) Theorem 4.1 implies that there
exists @ € B,.(P) such that, for all z € X,

Q(z) € int s(z)* = {u : v € R™\{0}, 8(P(z),u) < ¢}.

This concludes the proof. ]
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