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Abstract. We prove generalizations of results of C. S. Wong, T'-H. Chang and Do

Hong Tan with applications to Menger probabilistic metric spaces and random operator

equations.

1-. Introduction and Preliminaries

Let fi,/2 be two self-mappings of a complete metric space (X,d). We denote

mr(fn,fzy) =*u*{a1,, il, M!@+!9t!2!, !9@#@\,

mz(fp, fza) : **{a1t, v), d(r, fP), d(a, fzil,
d(s, fza)+

2

In what follows by rn(f1a,fzA) we mean either of them. We shall be concerned
with the following condition: For each e ) 0, there exists a 6 > 0 such that

e 1 m ( f 1 x , f z a )  <  e * d  f o r  r l y  i m p l i e s d ( f 1 r , f z y )  < e .  ( 1 . 1 )

Note that the condition oftype (1.1) not necessary for distinct c'y was con-

sidered in [3] which generalized the concept of (e, d)-contractive mappings [4].
Under this weaker condition (1.1) we shall prove some common fixed point the-
orems for the pair /1,/2. Along these lines the next theorem generalizing the

* This work was supported in part by the National Basic Research Program in Natural Sciences,
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result of [10] is that if h,lz satisfy the so-called g-generalized contractive con-
dition

d(ha, fzy) 3 g(m(hx, fza)) Vn I y € X,

where g is a self-function of IR+ satisfying the following property:
(G) 9 is upper-semicontinuous, 9(0) :0 and 9(t) < t Vt > 0,

(1 .2 )

then one of h,fz has a fixed point. Moreover, if both fi,/2 have fixed points,
then /1,/2 have a unique common fixed point in X, which is also a unique
fixed point for each h, !2. There are simple examples (cf. [O]) showing that the
conclusion of the theorems above is the best possible.

Before proceeding to the case of probabilistic (random) metric spaces, let us
mention some definitions [5-7]. Let Ao denote the set of all distribution functions
F with F'(0) = 0 (f' is non-decreasing, left-continuous and sup16p,F(t) = t). n
probabilistic metric space (a PM-space) is an ordered pair (X,.F) consisting of
a non-empty set X and a symmetric mapping f : X x X -+ As (f(r,y) is
denoted by Fr,y for n,y € X) which satisfies the following conditions:

(1)  F, ,o( t ) :  I  for  a l l  t  >  0 i f  and only i f  t :v .
(2)  I f  F* , " ( t )  = 1 and F, ,aG):  1,  then F, ,s( t+ s)  = 1 for  a l l  x ,y ,z  € X and

f , s  )  0 .

A Menger space is a triplet (X,F,?), where (X,F) is a PM-space, ? is a
triangular norm (l-norm), and the Menger triangula"r inequality

F, ,y( t  + s)  > T(F*," ( t ) ,  F" ,o@))

holds for allx,y,z e X and l,s ) 0. Recall that a f-norm ? is a commutative,
associative, and non-decreasing mapping ? : [0, 1] x [0, 1] -+ [0, 1] such that
7(0,0) = g, T(a,L) = a. A t-norm fi is stronger than a f-norm ?2 (written as
T 2 Tz) if T1(a,b) > T2(a,b), Va, b e [0, l]. If, in addition, there is at least one
pair (a, b) with strict inequality, then we say 7r strictly stronger than ?2. There
are two important  f -norms:  T(a,b)  := min{a,  b}  and T^(a,b) := max{a*b-1,0}
which will be used frequently in the sequel. The case (X,F,min) was studied
extensively (see, e.g. [1,3] and the cited references therein). In this case, for
each ) € (0,1), one can define a pseudo-metric d1 by putting dx(r,a) - sup
{t I F,,a(t) S 1 - I}. In fact according to [7,8] one can deal with the following
three equivalent objects:

(1) (X, F,min) is a Menger space.
(2) (X,F) is pseudo-metrically generated by the family D := {ds} endowed

with a natural measure - the Lebesgue measure p for O := (0, 1) where 2 is
linearly ordered by the relation ds, 1 ds" if and only if ^1 > .\2.

(3) (X,F) is isometric to an E-space consisting of functions from (O, B,p.) into
the metric space (M,d) such that, for each ) € O : d;(r,g) = d(r()),g(I)),
wherc M is the set of equivalence classes of the explicitly pseudo-metrizable
space X x O.

Our next aim is to extend the method here to the class of Menger spaces
with t-norm T ) T*, and since by [7] every E-space is a Menger space w.r.t.
t-norm T*, we can apply the results of this type to the theory of random operator
equations.
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2. Common Fixed Point Theorems

Theorem 2.1. Let(X,d) be a completemetric space, and f1,f2 two mappings
of X into itself. Assume that condition (l.L) holds with rn: ru. Then at least

one of fi, f2 has a fixed point. If both f1, J2 haue fi'red points, then they haue a
unique cornnxon fired point which is also a unique fired point for each of thern.

In particular, it is so if the implication of type (I.7) holds for all n,y in X.

Proof. Let xs € X be arbitrary, and we construct the sequence {r'} as follows:
r2n+L t: ftozn, f izn+2 i= fzxzn+t. One may assume that o11 f *n11, Vn,
otherwise some of them is a fixed point of h or fz. Putting dn:: d(rn,rn*r),
as in the proof of Theorem 1 in [3], one sees that {d'} converges to 0 (at this
step the condition (1.1) is sufficient for that purpose).

Following the methods of Meir-Keeler and Wong, we now prove that {r'}
is a Cauchy sequence contrariwise. Assume that there exists an e > 0 such that

V,k € N, 1n ) m),t such that d(an,r^) ) 2e. FYom (1.1) we choose d > 0 for
this e, and put o = min {e, d}. The argument similar to that of [3] shows that
one can consider sufficiently la^rge ,k so that d'a 1 a f 4, Vi > k, and for each such
k, lp(k) > S&) >,k such that

(2 .1 )

where o1 := d(xo1x1,oq1r;) and

d(aa,rq1x))  1 d, (a.5a1,cq(k))  + da,  d, (x611,oq(k))  S d(na,nn11,y)  - f  d , i ,  (2 .2)

for  each i  e  {q(k) , . . .  ,p(k)} .  Hence,

d ( ro6y - t , 0q ( f t ) )  <  t * i .

Since in view of (2.3) and the triangle inequality

q a
e + 

| S ap 1 dplx'1-t * d(ap61-t,xo1n'y) 1 dogl-r + € + 
T,

one sees that {ae} converges to e * af 4ftom the right. Let

.I1 := {,b: p(k) even, q(,h) odd},

Iy : -  { lc :  p(k)  odd,  q(k)  odd} ,

\ :: { lc: p(k) odd, q(,t) even},

Ia:: {k: p(k) even, q(,b) even}.

Then at least one of -I,, i = L,..' ,4 is infinite. If .Ir is infinite, since

1 do1x1-t + d(rr61-r,ro14-r) I do6y-t,

(2.3)

q
e - 1 4 < a x
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so {d(re1ry-r,oq(,c)-r)} converges to e * af 4. Hence, there is at least a k e 11
such that np(k)-r f xn61-r. For this k, we get m1(ffiq1x)-1, f2re1x)-t) ( e*d.
Then in view of (1.1) one obtains d(rq6y,oo1*y) ( e, a contradiction to (2.1).
Now, suppose that .I2 is infinite. Since

a
e + 

| S a6 1 dr1n1 -z -t dr1n1 -t + d(r plny -2, r q@) -r) * dq61 -r,

so {d(ro1r1-r,*n1oy)} converges to et af 4. Hence, there is at least ak e Iz
such that np&\-z f aolny-r. For this ft we get m1(f1rq@)-1, f2r,p@)-z) < € + d.
Then in view of (1.1) one obtains d(xq61,ro1q-r) ( e. On the other hand, by

(2 .2 )  and ,  (2 .7 ) :  d ( ro6y , ro1xy - )  )  d ( rq4 "y ,oe4 ) -d ,o r , ; y - r  > r * i -X :  r ,
a contradiction. Similarly for the other two cases except the roles of h, fz
interchange. Thus, the sequence {r"} is convergent, say to a limit r € X. Since
d n ) 0 ,  V n , o n e  o f  I : = { n :  r * r z n + r } ,  J : { n : r f  r 2 n }  i s i n f i n i t e .  I f  1
is infinite, then assume e:= d(s,hr) > 0. For the value ef 2,we choose 6 such
that (1.1) holds. We have d(r, hx) S d(r,x2np) I d,(f2x2n',1, f1x) and

mr( f f i ,  fzrzn+t)  = max 
{d1*,* r*ar1,} {o{* ,  fp)  + d(*zn+r,nzn+z)) ,

| , . ,  , . t
, \d \a, tzn+z)  

*  c l ' \ t2nq1,  J t t ) )  j .

So rn1(hr,lznzn+r) < e12 * d for n suficiently large. Hence, by (1.1), one gets
d(a,f1n) 1e, a contradiction. Thus, x = ftr.Similarly, for the case when J is
infinite, r= fzv. I

One can have an easy application of the above result to Menger spaces with
? = min. Recall that the (e, ))-topology in a Menger space (X, ?,7) can be de-
fined by the family {U,(u, )); r € X, e ) 0, ) € (0, 1)} of (e, ))-neighborhoods,
where

U* (e , \ )  7  { y  €  X i  F , , oG)  >  1  -  ^ } .

If supo.1s,1y T(a,a) = l, then (X,F,?) is a Hausdorfftopological space in the
(e,.\)-topology. It is easy to see that dx(a,A) = inf {e ) 0 : g € U*(e,,\)} in the
case ? = min. The family {d1} generates the same topology in (X, f, min). In
particula.r, it satisfies the following property: dx(r,y) : 0, Vtr e (0, 1) if and
only if r : A. As an immediate consequence of Theorem 2.1 of this paper and
Theorem 3 of [3], one obtains

Corollary 2.2. Let (X,f,min) be a complete Menger space, and fi,f2 two
mappings of X into i,tself. Assume, for each e ) 0, there eaists a 5 > 0 such
that, for all r I y in X

Fy, , ,y"o(e)  )  min 
{ r , ,n |p*  

d) ,max(f }  ,h , (e I5) ,Fo,y,o@ i -  5)) ,

max(F, ,yro(e *  d) ,  Fo,yr , (e + d)) )  Q.4)



Common Fixed Point Theorems for Mappings in Metric and, Menger Spaces L37

Then at least one of h, fz has a fixed point. If both f1, f2 haue fi,red po'ints, then

they haue a unique conlnxon fired point which is also a unique fixed point for
each of them. In particular, it is so if (2'4) holds for all r'y in X,

Theorem 2.3. Let(X,d) be a completemetric space, and f1,f2 two mappings

of X into itself such that one of them is continuous. Assume that condition (1.1)

holds with rn = rmz. Then at least one ol fr, fz has a fixed point. If both f t, fz
haue fixed points, then they haue a unique cornnlon fired poi,nt which is also a

unique fired point for each of them. In particular, it is so if the implicat,ion of

tgpe (1.1) hold,s for all r,y in X.

Prvof. As in the proof of Theorem 2.1 the sequence {o"} is convergent to a limit

x € X.If /r is continuous, then c = ff i.

R e m a r k  1 .  T h e  e x a m p l e  X  =  { r n : 2 - n ,  f l  =  0 ,  1 , 2 , ' . . ,  f i a  : 0 }  a n d

f  t  :  f z ,  h@)  i :  on+L ,  n  :  0 ,1 ,2 , . . . ,  h@* )  :  eo  i n  [ 3 ]  shows  tha t  t he

continuity assumption in Theorem 2.3 above is essential. Since in Theorem 2.1

the continuity is not assumed, one easily checks that fi,/2 do not satisfy (1'1)

with rn : rnL, and hence have no fixed points.

Corollary 2.4. Let (X,f ,min) be a complete Menger space, and f1,f2 two
mappings of X into itself with Jt or fz continuous. Assume, for each e ) 0,
there esists a d > 0 such that, for all r f y in X,

Fy,, ,yr ' (e) )  min 
{r , ,oG * 6),  F,,y, ,(e * d),  Fo, lr@ + 6),

^^* (F,,1o(e + d),  Fo,yr,(e * d))  
)

(2 .5 )

Then at least one ol h, fz has a fined point. If both f 1, f2 haue f'aed points, then
they haue a unique conxrnon fi,red point which is also a unique fixed point for
each of them. In particular, it is so ,f Q5) holds for all r,y in X .

Theorem 2.5. Let (X,d) be a complete metric space, and f1,f2 two mappings
of X. Assume that condition (I.2) holds. Then at least one of f1, f2 has a fired
point. If both fi, f2 haue fired points, then they haue a unique common fired
point which is also a unique fixed point for each of them. In particular, it is so
if condition (I.2) hold,s for all n,y in X.

Proof. Obviously one can assume rn : rn2. As was remarked in [3] condition
(1.2) implies condition (1.1). So one constructs the sequence {r,} as before
which is convergent to a limit r e X.

S i n c e d ,  )  0 ,  V n , o n e o f  I : : { n :  r f  x 2 n 4 1 } ,  J : = { n :  a f  r 2 n } i s
infinite. If 1is infinite, then assume tg:,: d(x,hr) > 0. We have d(c, fp) <
d(r,x2na2) -f d(fzrzn+t, f ir) and
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d(hr,  fzrzn+r) < g(m(fp, fzrzn+t))
/ (:  9 (  max 

\d(r  ,  
x2.a) ,  d(x ,  f1n) ,  d(azn+r,  azn+z) ,

I r , ,  \  ' . ) \
, \d \ r , rzn+z)  

- t  c l \ r2nLr1,  hu))  |  ) .

So by the upper semicontinuity of g and g(tg) < t6, or€ can choose € = to -
g ( t o ) -  6 o  )  0 s u c h t h a t ,  f o r t h i s  e :  g ( m ( f p , f z n z n + t ) )  <  9 ( t 0 )  * e : t o - e o
for n sufficiently large. Hence, we get

to :  d ( r ,  f p )  <  €e  *  t e  -  €o  :  t o ,

a contradiction. Thus, r = frx. Similarly, for the case when -I is infinite,
r : fzr.

Remark 2. The example with X : {1, 2} and fi, f 2 two different mappings onto

[9] shows that the conclusion of the theorems above is the best possible.

Corollary 2.6. Let (X,F,min) be a cornplete Menger space, f1,f2 two map-
pings of X into itself. Assume that there enists a function 9 : IR+ -+ IR.+ satis/y-
ing condition (G) such that, for all r I y in X and t > 0,

Ft , , ,nok( t ) )  > min{ I } ,  o( t ) ,  F, ,y ,* ( t ) ,  Fo,na( t ) ,max(F*,y,u( t ) ,  Fa;n( t ) ) } .
( 2 .6 )

Then at least one of h, fz has a fixed poi,nt. If both f 1, f2 haue fi,red points, then
they haue a unique conlnlon fned point which is also a unique fired point for
each of them. In particular, it is so ,f (2.6) holds for all n,y in X.

3. Applications to Menger Spaces wil}nT )T^

Let (X, F,T) be a Menger space. It is well known that if f-norm ? satisfies
supoelo,r;?(a,a) - 1, then in the (e,A)-topology, X is a metrizable topological
space. In the case 7 ) T^, there is a metric with nice properties, namely

0@,A) : :  in f {u :  F, ,o(u+)  > 1 -  r } .

Indeed, by the definition of. B, the only property of metrics one has to verify is the
triangle inequality. We shall prove it on the contrary: Assume there are r, y , z in
X  such  tha t  p ( r ,A )  >  0@,2 )+BQ,g r ) .  Choose  0  <  e  :=  0@,a ) -0@,2 ) -0Q,a )
so that

0 ( r , a ) ) h t t z , (3 .1 )

where 11 := A(r,z) + e13, t2 := B(z,A) + E13. In view of the definition of 0,

F , , o ( 0 @ , s ) )  < 1 - 0 @ , v ) ,
F , , , ( t t )  )  1 - f 1 ,  F " , a ( t z ) ) \ - t z .
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On the other hand, by using properties of t-norms (taking into account T > T*)
and distribution functions. we have

I -  p(n,y) 2 F,,y@(t,a))  > F,,o(t t  + tz)
> T (F,,,(tL), F",a (tz))

> T ( 1 -  t 1 , l  -  t 2 )

> T * ( 7 - t L , I - t 2 )
:  ( 1 -  t 1 ) +  ( 1  - t z )  -  1  :  1 -  t t  - t z ,

a contradiction to (3.1).

Theorem 3.L. Let (X,F,T) be a complete Menger space withT ) T^, and
f 1, t2 two mappings of X into itself. Assume that there eaists a function g :
IR+ -+ R+ satisfying condition (G) such that, for all r I y in X and t > 0,

|  -  Ff, , ,hy(sQD So (r  -  min{A ,o(t) ,  F*,n*(t) ,  Fo,f"n(t) ,

lF, ,r ,y(t)+Fv,f , , ( t ) l l2\) .  (3.2)

Then at least one of h,Iz has a fired point. If both f1, f2 haue fired, points, then
they haue a unique comnxon fired point which is also a unique fired point for
each ol them. In particular, it is so il Q.2) holds for all r,y in X .

Proof. By Proposition 1 of [1], there exists a continuous and strictly increasing
(hence invertible) self-function / of IR+ such that g(t) < f (t) <t, V t > 0. We
now show that condition (1.2) of Theorem 2.5 holds w.r.t. the metric B. Assume
the contrary that there exist r * y in X such that

7Up,lza) > l (m(hx, fzy)),

i ' e ' '  
t  :=  f - r1p1, , rx ,  f zy ) )  )  m( f1x ,  f2y ) .

So in view of the properties of the metric B and by using the monotony of / and
distribution functions, we have

L -  F t , , , h u ( s ( t ) ) > r -  F h , , r " a ( / ( r ) )  >  p ( h u , f z a ) >  f  ( m ( h n , f z a ) )
> /(max{1 -  F*,u(0@,g)+),1 -  F*,r , , (p@, hr)+), t  -  Fo,r,o(p@,lza)+),

1 -  lF, ,nv(p(*,  fzy)+) t  Fs,r , , (0(A, fr")+) l l2] ' )
> /(max{l  -  F,,o(t) , I  -  F*,y, ,( t ) , \  -  Fn,y"r( t) , |  -  lF*,r"vQ) + Fr,y, ,( t ) ]12})
:  

" f  (1 -  min{,Fl , , r( t ) ,  F*J,*( t) ,  Fa,ny(t) , lF, ,ny(t)  + Fa,h,( t) l l2})
> 9 ( 1 - min{,F},, (t), F,, h, (t), Fa, ny (t), lF,, na (t) + Fr, y,* (t)) I 2}),

a contradiction to (3.2).

Corollary 3.2. Let (X,F,T) be a complete Menger space withT ) T^, and
It, fz, h1, h2 four mapp'ings of X into itself such that
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( " )  f ' (x )  c  h2(X) ,  fz ! )  c  hr (X) ,
(b) h,h1 a,re probabi,l istic compatible, and so are f2,h2,
(c) one of the mappings is continuous,
(d) there esists a function 9 : R+ -+ IR+ satisfying condition (G) such that for
a l l  x ,y  ' in  X and t  > 0,

|  -  Ff i , ,ha(g( t ) )  Sg( t  -  min{F; , , , ,  n ,a( t ) ,  Fn,* , f , * ( t ) ,

Fn,u,  hv ( t ) ,  lFn r , ,  na ( t )  I  F6o,  y , ,  ( t ) l  I  2 \ ) .
(3.3)

Then four mappings haae a unique con1,n1'on fixed point.

Recall that two self-mappings f ,h of a PM-space (X, f) are said to be prob-

abil istic compatible if l im,-- Fynr^,hf r^(t) : f whenever {r '} is a sequence
in X such that l im,-a- Fyr^,nr^(t) = f for all t > 0. In particular, f hr: hf r
if f r = hx (by taking rn = r, Yn).

Proof of the Corollary. Let

mn(ff i ,  fzy) =
(

max 
{d(hrr,h2g),  

d(fux, f1n),  d(h2y, f2y),
+
2

d(h2Y, f1td(fur, f2y) r)
)

In view of Theorem 2 of [3], one has to verify the metric condition for the case
of four mappings:

0.Up, fza) 3 f (mn(hn, fza))

for all r,g in X. Since (3.3) is aversion of (3.2) with h1,h2 involved, the proof
is similar to that of Theorem 3.1 and can be omitted.

Remark 3. Recently, Cho, Ha and Chang ([2, Theorem 3.2] have proved the same
conclusion of Corollary 3.2, but under stronger conditions and by a different
method.

We now apply the results above in showing the existence of a unique solution
of a system of random operator equations. Let us first mention some definitions.
Let (O, A, p,) be a complete probability measure space and let (X, d) be a metric
space. By 6 we mean o-algebra of Borel subsets of X, so that (X,6) is a
measurable space. A mapping r : O + X is called an X-valued random variable
(or generalized random variable), if o-1(B) € A for all B € B. A mapping
A : Q x X -+ X is said to be a random operator if, for any & € X, A(.,r)
is a random variable. A random operator ,4, is continuous if, for each c.; €
Q, A(u,.) is continuous in the topology induced by the metric d. The ordered
pair (.8, f) is an E-space over (X, d) if the elements of .E are equivalence classes
of measurable functions from (O, A, p,) into X such that, for every o, y e E and
t € IR, the set {ar e O : d(n(a),y(u)) < t} belongs to ,4., and f is given via
F",o(t) := p{u e O : d(r(c..,),a@)) < r}. By [7] it is known that (.E, F,T*) is a
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Menger space. Moreover, if (X, d) is a complete metric space, then (E, F,?*) is
complete. A random variable x(w) e E is said to be a random fixed point of the
random operator A(r,.) it n(u) : A(u,*(r)), Vc,., € O. If ,4 is continuous, then
A(w, r(w)) € E, whenever r(u) € E. Now, we assume (X, | . l) is a Banach space:
d(n,y) := lr - gl. Consider the following system of random operator equations

(3 .4)

where  a t , p t  €  E ,  i : 1 ,2 .  We  de f i ne  f i , h i :  E  -+  ,E  by  pu t t i ng  ( f i r ) ( a )  =
Aa(u , r (u ) )  +  a i (a ) ,  ( h i r ) (w )  :=  B t (w , r (a r ) )  +  A t@) ,  i  =  t , 2 .

Theorem 3.3.  Let  (Q,  A,  F) ,  (X,  |  .  l ) ,  (8 ,  F,T^) ,  Ar ,  B i ,a i ,  gr ,  I r ,h t ,  i  =  L,2 be
as aboue. Assume
(a )  h@)  c  hz (E ) ,  f z@)  c  h t (E ) ,
(b) f i, h1 are probabil istic compatible, and so are f2,h2,
(c)  one of  h, fz ,h1,h2 is  cont inuous,
(d) there erists a function 9: IR+ -+ R+ satislging the condition (G) such that,
for  a l l  r ,g  in  E and t  > 0,

r { ,  €  o:  l ( f i r ) (c , r )  -  ( f ry) ( r ) l  >  e( t ) }
< g(ma*{p{a; € O : l(fur)(u) - (h2y)(w)l > t},

p{u e o:  l (h1r) (a. ' )  -  ( / r r ) ( r ) l  >  t } ,

t ' {w e a: \h2s)(a) - (fra)@)l > t}, (3.5)

1
1lu{w e O: l (h1o)(r)-Ura)(u,) l  >r}

+ p{u e a: l(h2y)(r) - (/")(r)l > t}l}).

Then there exists a unique solut'ion of the system (3.4).

Proof. This follows from Corollary 3.2, since (3.5) is equivalent to (3.3).

Remark l. As noted after Corollary 3.2, the same conclusion of Theorem 3.5 (but
under stronger conditions) was obtained in Theorem 4.I of l2l, as an immediate
consequence of Theorem 3.2 of [2].

Corol lary 3.4.  In  the notat ion aboue,  i f  h1(w,r )  = hz(u,x)  :  a ,  and (3.5)
holds for all r I y in E, then at least one of the first two equations of $.a)
has a solution. If both of them haue solutions, then they haue a unique comnlon
solution which is also a unique solution for each of them.
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