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Abstract. We prove generalizations of results of C. S. Wong, T.-H. Chang and Do
Hong Tan with applications to Menger probabilistic metric spaces and random operator
equations.

1. Introduction and Preliminaries

Let f1, f» be two self-mappings of a complete metric space (X,d). We denote

mi(frz, foy) = ma-x{d(z,‘,y), d(z, f1z) -2+ d(y, fzy)’ d(z, f2y) er d(y, fiz) }

d(il}, f2y) ar d(yv flm) }
2 .

In what follows by m(fiz, fay) we mean either of them. We shall be concerned
with the following condition: For each £ > 0, there exists a § > 0 such that

ma(fiz, fry) = max{d(z,), d(z, fi2), dy, fay),

e < m(f1z, fay) < € + 6 for x # y implies d(f1z, foy) < €. (1.1)

Note that the condition of type (1.1) not necessary for distinct z,y was con-
sidered in [3] which generalized the concept of (g, §)-contractive mappings [4].
Under this weaker condition (1.1) we shall prove some common fixed point the-
orems for the pair fi, f>. Along these lines the next theorem generalizing the
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result of [10] is that if f;, f» satisfy the so-called g-generalized contractive con-
dition
d(fi1z, f2y) < g(m(f1z, f2y)) Ve #yeX, (1.2)

where g is a self-function of R satisfying the following property:

(G) g is upper-semicontinuous, g(0) = 0 and g(t) < ¢ Vt > 0,
then one of fi, f» has a fixed point. Moreover, if both f;, f have fixed points,
then fi, fo have a unique common fixed point in X, which is also a unique
fixed point for each fi, fo. There are simple examples (cf. [9]) showing that the
conclusion of the theorems above is the best possible.

Before proceeding to the case of probabilistic (random) metric spaces, let us
mention some definitions [5-7]. Let Ag denote the set of all distribution functions
F with F(0) = 0 (F is non-decreasing, left-continuous and sup:crF(t) = 1). A
probabilistic metric space (a PM-space) is an ordered pair (X, F) consisting of
a non-empty set X and a symmetric mapping F : X x X — A (F(z,y) is
denoted by F; , for z,y € X) which satisfies the following conditions:

(1) Fpy(t)=1forallt>0if and only if z =y.
(2) If F; ,(t) =1 and F, y4(s) = 1, then F; 4(t +s) = 1 for all z,y,z € X and

t,s > 0.

A Menger space is a triplet (X, F,T), where (X, F) is a PM-space, T is a
triangular norm (t-norm), and the Menger triangular inequality

Foy(t +8) 2 T(Fz,2(t), Fzy(s))

holds for all ,y,z € X and t,s > 0. Recall that a t-norm T is a commutative,
associative, and non-decreasing mapping T : [0,1] x [0,1] — [0,1] such that
T(0,0) =0, T(a,1) =a. A t-norm T} is stronger than a t-norm 75 (written as
Ty > Ty) if T1(a,b) > T2(a,b), Ya,b € [0,1]. If, in addition, there is at least one
pair (a, b) with strict inequality, then we say T} strictly stronger than T5. There
are two important t-norms: T'(a, b) := min{a, b} and T}, (a, b) := max{a+b-1,0}
which will be used frequently in the sequel. The case (X, F, min) was studied
extensively (see, e.g. [1,3] and the cited references therein). In this case, for
each A € (0,1), one can define a pseudo-metric d) by putting dy(z,y) = sup
{t: Fy4(t) <1—-A}. In fact according to [7,8] one can deal with the following
three equivalent objects:

(1) (X, F,min) is a Menger space.

(2) (X,F) is pseudo-metrically generated by the family D := {d\} endowed
with a natural measure ~ the Lebesgue measure 4 for 2 := (0, 1) where D is
linearly ordered by the relation dy, < dy, if and only if A; > ),.

(3) (X, F) is isometric to an E-space consisting of functions from (£, B, 1) into
the metric space (M, 6) such that, for each A € Q: dy(z,y) = §(z(A),y())),
where M is the set of equivalence classes of the explicitly pseudo-metrizable
space X x Q.

Our next aim is to extend the method here to the class of Menger spaces
with t-norm T > T}, and since by [7] every E-space is a Menger space w.r.t.
t-norm T3, we can apply the results of this type to the theory of random operator
equations.
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2. Common Fixed Point Theorems

Theorem 2.1. Let (X,d) be a complete metric space, and fi, fo two mappings
of X into itself. Assume that condition (1.1) holds with m = m,. Then at least
one of fi, f2 has a fized point. If both fi, f2 have fized points, then they have a
unique common fized point which is also a unique fized point for each of them.
In particular, it is so if the implication of type (1.1) holds for all z,y in X.

Proof. Let o € X be arbitrary, and we construct the sequence {z,} as follows:
Toan41 = f1.'L‘2n, Tan42 = f2$2n+1. One may assume that Ty 75 Tn+1, VTL,
otherwise some of them is a fixed point of fi or fo. Putting d,, := d(zn, Tn+1),
as in the proof of Theorem 1 in [3], one sees that {d,} converges to 0 (at this
step the condition (1.1) is sufficient for that purpose).

Following the methods of Meir-Keeler and Wong, we now prove that {z,}
is a Cauchy sequence contrariwise. Assume that there exists an € > 0 such that
Yk € N, 3In > m > k such that d(z,,2m) > 2¢. From (1.1) we choose § > 0 for
this €, and put o = min {¢,d}. The argument similar to that of [3] shows that
one can consider sufficiently large & so that d; < a/4, Vi > k, and for each such
k, dp(k) > g(k) > k such that

(0}
s+‘f1-‘ga,..<e+§, (2.1)

where ay, := d(zp(k), Tqr)) and
d(@i, Tgry) < A(Tiv1, Tqery) + diy ATiv1, Ter)) < Aziy 2qry) + iy, (2.2)
for each i € {q(k),... ,p(k)}. Hence,

(04
d(Tp(ry—1,Tq(k)) <€+ 7' (2.3)

Since in view of (2.3) and the triangle inequality
!
e+ 7 < ar S dy(ey-1 + ATp()-1, Ta(k)) < dp(ry-1 + €+

one sees that {ax} converges to € + /4 from the right. Let
I := {k: p(k) even, g(k) odd},
I, :={k: p(k) odd, q(k) odd},
I3 := {k: p(k) odd, gq(k) even},
I := {k: p(k) even, q(k) even}.
,41

Then at least one of I;, 1 = 1,---,4 is infinite. If I; is infinite, since

Bl Z < ap < dpry—1 + d(Tpk) -1, Tq(r)—1) + dg(r)—1,
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50 {d(Zp(k)—1,Tq(k)~1)} converges to € + /4. Hence, there is at least a k € I1
such that Zp(k)~ 1 # Tq(k)—1- For this k, we get m1(fizqx)—1, foTpr)—1) < €+6.
Then in view of (1.1) one obtains d(zqx),Tp(x)) < €, a contradiction to (2.1).
Now, suppose that I is infinite. Since

[0
ety Sars dp(k)—2 + dp(k)—1 + ATp(k)—2, Tq(k)—-1) + dg(k) -1

50 {d(Zp(r)—2, Tq(k)—1)} converges to £ + /4. Hence, there is at least a k € I
such that Tp(x)—2 # Tq(k)—1- For this k we get m1(fizgm)—1, fo2pr)—2) <€ +0.
Then in view of (1.1) one obtains d(zq(k),zp(k)_l) < g. On the other hand, by
(2.2) and (2.1): d(:l:q(k),.’l:p(k)_l) > d(.’I}q(k),:L‘p(k)) — dp(k)—l > e+ % = % =g,
a contradiction. Similarly for the other two cases except the roles of fi, fy
interchange. Thus, the sequence {z,} is convergent, say to a limit z € X. Since
d, >0, Vn,oneof I := {n: z# Zan1}, J:{n:a # x2,} is infinite. If T
is infinite, then assume ¢ := d(z, fiz) > 0. For the value £/2, we choose ¢ such
that (1.1) holds. We have d(z, f1z) < d(z, Z2n+2) + d(foT2nt1, f12) and

1
my(fiz, f2m2n+1) = max {d(l‘, Tont1), E(d(:c, fiz) + d($2n+1, Tan+2)),

;( (z, Zan42) + ($2n+1,f1x))}.

So mi (fiz, faZans1) < €/2 + & for n sufficiently large. Hence, by (1.1), one gets
d(z, fiz) < ¢, a contradiction. Thus, z = fiz. Similarly, for the case when J is
infinite, z = faz. ]

One can have an easy application of the above result to Menger spaces with
T = min. Recall that the (g, A)-topology in a Menger space (X, F,T) can be de-
fined by the family {U,(e,A); z € X, € >0, A € (0,1)} of (¢, A\)-neighborhoods,
where
Uzle,N) i ={y € X; Frpyle) >1- A}

If sup,c(0,1) T(a,a) = 1, then (X, F,T) is a Hausdorff topological space in the
(e, A)-topology. It is easy to see that dx(z,y) =inf{e > 0: y € Uy(¢,)\)} in the
case T = min. The family {d)} generates the same topology in (X, F, min). In
particular, it satisfies the following property: di(z,y) = 0, VA € (0,1) if and
only if z = y. As an immediate consequence of Theorem 2.1 of this paper and
Theorem 3 of [3], one obtains

Corollary 2.2. Let (X,F,min) be a complete Menger space, and fi, fo two
mappings of X into itself. Assume, for each € > 0, there exists a § > 0 such
that, for allz £y in X

Fpy tu(€) > min { By (¢ + 6),max(Fy, p,o (e +8), Fy, 1y (€ + ),

max(Fy, g (¢ + 8), Fyuia(e +8)) }. (2.4)
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Then at least one of f1, f2 has a fized point. If both f1, fo have fized points, then
they have a unigque common fized point which is also a unique fized point for
each of them. In particular, it is so if (2.4) holds for all z,y in X.

Theorem 2.3. Let (X,d) be a complete metric space, and f1, fa two mappings
of X into itself such that one of them is continuous. Assume that condition (1.1)
holds with m = ma. Then at least one of fi, f2 has a fized point. If both fi, fa
have fized points, then they have a unique common fized point which is also a
unique fized point for each of them. In particular, it is so if the implication of
type (1.1) holds for all z,y in X.

Proof. As in the proof of Theorem 2.1 the sequence {z,,} is convergent to a limit
z € X. If f; is continuous, then z = fiz.

Remark 1. The example X = {z, = 27", n = 0,1,2,..., Z, = 0} and
fi = f2, fi(gn) = Tny1, 7 = 0,1,2,..., fi(r) = zo in [3] shows that the
continuity assumption in Theorem 2.3 above is essential. Since in Theorem 2.1
the continuity is not assumed, one easily checks that fi, f» do not satisfy (1.1)
with m = my, and hence have no fixed points.

Corollary 2.4. Let (X,F, min) be a complete Menger space, and fi, fa two
mappings of X into itself with fi or fa continuous. Assume, for each € > 0,
there ezists a § > 0 such that, for allz #y in X,

Fpoe pou(€) 2 min { By y (e +6), Fr fuo(e +8), Fyupay (6 + 9),

max (Fy foy (& + ), Fy,puse +8)) }. (2.5)

Then at least one of f1, fo has a fized point. If both fi, f2 have fized points, then
they have a unique common fized point which is also a unique fized point for
each of them. In particular, it is so if (2.5) holds for all z,y in X.

Theorem 2.5. Let (X,d) be a complete metric space, and f1, fo two mappings
of X. Assume that condition (1.2) holds. Then at least one of fi, fo has a fized
point. If both fi, fo have fized points, then they have a unique common fized
point which is also a unique fized point for each of them. In particular, it is so
if condition (1.2) holds for all z,y in X.

Proof. Obviously one can assume m = mgy. As was remarked in [3] condition
(1.2) implies condition (1.1). So one constructs the sequence {z,} as before
which is convergent to a limit z € X.

Since d, > 0, Vn,one of I := {n: ¢ # Tony1}, J:={n: z # 22, } is
infinite. If I is infinite, then assume ¢ := d(z, fiz) > 0. We have d(z, f1z) <
d(z, Tan+2) + d(f2%2n+1, f12) and
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d(fiz, forans1) < g(m(frz, fo2onir))

=g ( max {d($, 1’2n+1), d(iB, flz)a d($2n+1, $2n+2),

%(d(m,-’tzn-l-?) + d($2n+1’f1$))}>'

So by the upper semicontinuity of g and g(to) < t9, one can choose ¢ = t; —
g(to) — €0 > 0 such that, for this £ : g(m(fiz, fatani1)) < g(to) + ¢ = to — €0
for n sufficiently large. Hence, we get

to = d(z, fiz) < €0 + to — €0 = tg,

a contradiction. Thus, ¢ = fiz. Similarly, for the case when J is infinite,
D=

Remark 2. The example with X = {1,2} and f1, f» two different mappings onto
[9] shows that the conclusion of the theorems above is the best possible.

Corollary 2.6. Let (X,F,min) be a complete Menger space, f1, f, two map-
pings of X into itself. Assume that there exists a function g : Rt — Rt satisfy-
ing condition (G) such that, for allz #y in X and t > 0,

Fflz,fzy(g(t)) > min{mey(t)7 Fz»flz(t)v Fy,fzy(t)a max(Fm,fzy(t)’ Fy,f1a:(t))}'
(2.6)
Then at least one of fi, f2 has a fized point. If both fi, fo have fized points, then
they have a unique common fized point which is also a unique fized point for
each of them. In particular, it is so if (2.6) holds for all z,y in X.

3. Applications to Menger Spaces with T > T,

Let (X,F,T) be a Menger space. It is well known that if t-norm T satisfies
SUPge(o,1)T (@, @) = 1, then in the (g, A)-topology, X is a metrizable topological
space. In the case T' > T}, there is a metric with nice properties, namely

B(z,y) := inf{u: Fy(ut) > 1~u}.

Indeed, by the definition of 3, the only property of metrics one has to verify is the
triangle inequality. We shall prove it on the contrary: Assume there are z,y, z in

X such that 8(z,y) > B(z, 2)+B(2,y). Choose 0 < ¢ := B(z,y)-B(z, z) - B(z,y)
so that

Blz,y) > t1 + 2, (3.1)
where ¢, := B(z, 2) + /3, t2:=0(z,y) +¢/3. In view of the definition of 3,

Fz,y(/@(m)y)) S 1 _ﬁ(xay)’
mez(t]_) >1-1t, Fz’y(tz) >1—ts.
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On the other hand, by using properties of {-norms (taking into account 7' > T;,)
and distribution functions, we have

1= B(z,y) > Fr y(B(z,y)) 2 Foy(ts +12)
(Fz,2(t1), Fzy(t2))

(1—t1,1—t3)

m(1 —t1,1 —t2)
I-t)+A—-t2)—1=1-1t; — ¢,

v v v
b S !

a contradiction to (3.1).

Theorem 3.1. Let (X,F,T) be a complete Menger space with T > T,,, and
f1, f2 two mappings of X into itself. Assume that there exists a function g :
Rt — R* satisfying condition (G) such that, for all z #y in X and t > 0,

1 = Ffiz,5,4(9(t)) < 9(1 - min{Fw,y(t)’ Fy 1,4(t), Fy (1),
(Foopay(®) + Fusia®)/2}). (3:2)

Then at least one of f1, fa has a fized point. If both f1, fo have fized points, then
they have a unigue common fized point which is also a unigue fized point for
each of them. In particular, it is so if (3.2) holds for all z,y in X.

Proof. By Proposition 1 of [1], there exists a continuous and strictly increasing
(hence invertible) self-function f of R such that g(t) < f(t) <t, ¥Vt >0. We
now show that condition (1.2) of Theorem 2.5 holds w.r.t. the metric 3. Assume
the contrary that there exist  # y in X such that

B(fiz, f2y) > f(m(frz, f29)),

ie.,

t:= f~1(B(fiz, f29)) > m(f1z, foy).

So in view of the properties of the metric 5 and by using the monotony of f and
distribution functions, we have

L= Ffw,fzy(g(t)) Batile=s fom,fzy(f(t)) 2 ﬁ(flxany) > f(m(fl-'r, f2y))
> f(max{l - Fz,y(ﬂ(m,y)+)a 1~ Fp 12 (B(z, f1$)+), 1 - Fy 1,y (B(y, fzy)+)7
1- [Fm,fzy(ﬁ(xa fzy)+) + Fy,fxm(ﬁ(ya f1$)+)]/2})

2 f(max{l = Fw,y(t)v i Fz,fw(t)a i Fy,fzy(t)’ L [Fwyfzy(t) + Fy,hz(t)]/z})
=f(l1- min{Fz,.y(t), Fm,fﬂ(t)’ Fy,fzy(t)) [Fw,fzy(t) + Fy,flw(t)]/2})
2 g(l - min{FE,y(t)vFw,fw(t)va,fzy(t)’ [Fz,fzy(t) + Fy,f1’£(t)]/2})a

a contradiction to (3.2).

Corollary 3.2. Let (X,F,T) be a complete Menger space with T > T,,,, and
f1s f2, h1, hy four mappings of X into itself such that
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(@) fi(X) Che(X), f2(X)C hi(X),

(b) fi1,h1 are probabilistic compatible, and so are f2, hz,

(¢) one of the mappings is continuous,

(d) there exists a function g : R¥ — R satisfying condition (G) such that for
all z,y in X andt >0,

= Ffﬂ,fzy(g(t)) Sg(l Ly min{Fhlz,hzy(t)7 Fhlz,hz(t),

Fhay, 2y (), [Fhaa, oy () + Fhoy, £12(2)]/2})-
(3.3)

Then four mappings have a unique common fized point.

Recall that two self-mappings f, h of a PM-space (X, F) are said to be prob-
abilistic compatible if lim,—co Ffhe, hfe.(t) = 1 whenever {z,} is a sequence
in X such that lim, oo Ffg, az,(t) = 1for all ¢ > 0. In particular, fhx = hfz
if fx = hz (by taking z, = z, Vn).

Proof of the Corollary. Let

mp(f17, foy) =

max {d(hﬂ, hay), d(hz, fiz), d(hay, f29),

d(hiz, fay) + d(hey, fiz) }
= .

In view of Theorem 2 of [3], one has to verify the metric condition for the case
of four mappings:

B(f1z, f2y) < f(mr(fiz, f2y))

for all z,y in X. Since (3.3) is a version of (3.2) with hq, hy involved, the proof
is similar to that of Theorem 3.1 and can be omitted.

Remark 3. Recently, Cho, Ha and Chang ([2, Theorem 3.2] have proved the same
conclusion of Corollary 3.2, but under stronger conditions and by a different
method.

We now apply the results above in showing the existence of a unique solution
of a system of random operator equations. Let us first mention some definitions.
Let (£,.4, u) be a complete probability measure space and let (X, d) be a metric
space. By B we mean o-algebra of Borel subsets of X, so that (X,B) is a
measurable space. A mapping z : ! — X is called an X-valued random variable
(or generalized random variable), if z=}(B) € A for all B € B. A mapping
A: Qx X — X is said to be a random operator if, for any ¢ € X, A(, 1)
is a random variable. A random operator A is continuous if, for each w €
Q, A(w,.) is continuous in the topology induced by the metric d. The ordered
pair (E, F) is an E-space over (X, d) if the elements of F are equivalence classes
of measurable functions from (2, A, i) into X such that, for every z,y € E and
t € R, the set {w € Q: d(z(w),y(w)) < t} belongs to A, and F is given via
Fpy(t) = p{we Q: d(z(w),y(w)) < t}. By [7] it is known that (E, F,T),) is a
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Menger space. Moreover, if (X, d) is a complete metric space, then (E, F,T,,) is
complete. A random variable 2(w) € F is said to be a random fixed point of the
random operator A(w,.) if z(w) = A(w, z(w)), Vw € Q. If A is continuous, then
A(w,z(w)) € E, whenever z(w) € E. Now, we assume (X, |-|) is a Banach space:
d(z,y) := |z — y|. Consider the following system of random operator equations

z(w) = A1 (w, z(w)) + o (w)
y(w) = A2 (w, y(w)) + az(w)
u(w) = Bi(w,u(w)) + Bi(w)
v(w) = Ba(w, v(w)) + Ba(w),

(3.4)

where o;,8; € E, i = 1,2. We define f;,h; : E = E by putting (fiz)(w) :=
Aj(w, z(w)) + a;(w), (hiz)(w) := Bi(w,z(w)) + Bi(w), i =1,2.

Theorem 3.3. Let (2, A, 1), (X, |- ), (B, F,Tn), Ai, B;, as, Bi, fir hay, @ = 1,2 be
as above. Assume

(@) fi(E) C ho(E), f2(E) C h(E),

(b) f1,h1 are probabilistic compatible, and so are fa, ho,

(c) ome of fi1, f2,h1, ha is continuous,

(d) there exists a function g : Rt — RT satisfying the condition (G) such that,
for all z,y in E and t > 0,

mw € Q: |(fiz)(w) = (foy)w)l 2 (1)}
< g(max{p{w € Q: |(h12)(w) - (h2y)(w)] > t},
mw e Q: |(hz)(w) - (hz)Ww)] = t},
p{w € Q: |(hay)(w) = (f29) (W) > t}, (3.5)

Slitw €2 [(2)(w) - (fw)(@)] 2 1}
+pfw €92 (hay)) - (fiz)w)] 2 1))

Then there exists a unique solution of the system (3.4).

Proof. This follows from Corollary 3.2, since (3.5) is equivalent to (3.3).

Remark /. As noted after Corollary 3.2, the same conclusion of Theorem 3.5 (but
under stronger conditions) was obtained in Theorem 4.1 of [2], as an immediate
consequence of Theorem 3.2 of [2].

Corollary 3.4. In the notation above, if hi(w,z) = ho(w,z) = z, and (3.5)
holds for all x # y in E, then at least one of the first two equations of (3.4)
has a solution. If both of them have solutions, then they have a unique common
solution which is also a unique solution for each of them.

Acknowledgement. The author would like to thank Professors Nguyen Minh Chuong,
Do Hong Tan, and Nguyen Duy Tien for their encouragement, stimulating discussions



142

Tran Thi Lan Anh

and, several improvements to this paper. Thanks are also due to Dr. Dinh Nho Hao
for drawing the author’s attention to the recent reference [2].

References

10.

T.-H. Chang, Common fixed point theorems in Menger spaces, Bull. Inst. Math.
Acad. Sinica 22 (1994) 17-29.

Y.J. Cho, K.S. Ha, and S.-S. Chang, Common fixed point theorems for compatible
mappings of type (A) in non-Archimedean Menger PM-spaces, Math. Japon. 46
(1997) 169-179.

Do Hong Tan, Some common fixed point theorems for mappings of contractive
type, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak., Ser. Mat. 25 (2) (1995)
9-22.

A. Meir and E. Keeler, A theorem on contractive mappings, J. Math. Anal. Appl.
28 (1969) 326-329.

K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. USA 28 (1942) 535--537.
B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960)
313-334.

H. Sherwood, On E-spaces and their relation to other classes of probabilistic metric
spaces, J. London Math. Soc. 44 (1969) 441-448.

R.R. Stevens, Metrically generated probabilistic metric spaces, Fund. Math. LXI
(1968) 259-269.

C.S. Wong, Common fixed points of two mappings, Pacific J. Math. 48 (1973)
299-312.

C.S. Wong, Generalized contractions and fixed point theorems, Proc. Amer. Math.
Soc. 42 (1974) 409-417.



