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1. Introduction

This paper deals with the so-called linear regular multipoint boundary - ualue
problems (MPBVPs) for differential-algebraic equations (DAEs). It may be con-
sidered as a complement to works [1, 2], indicating further advantages of regular
MPBVPS.

We begin by recalling some notations and concepts which will be frequently
used in this article.

Let us consider the following linea^r MPBVP:

Ln : :  A( t )x '  + B( t )a = q( t ) ;  t  €  J  := l to ,  T l ,  (1)

where A,B e C(J,Rnxn) are contiuouns matrix-valued functions with
det,4(t) : 0, Vl e Ji n e BV(J,R/lx'x) is a matrix-valued function of bounded
variations, and 7 € IR' and Q e C := C(J, R") are given vector and vector-valued
function, respectively.

In the remainder of the paper we assume that the pair of matrices {A, B}
satisfies the transferability condition [4], i.e.,
(i) There exists a continuously differentiable projector-function a €

Ct("f, R""), i.e., Q2(t) = Q(t) such that ImQ(t) : Ker,4(t) for all t e "I.
(ii) The matrix G(t) := A(t) + B(t)Q(t) is non-singular for all t e J.

Let P(t) := I - Q(t), where.I is the identity matrix, then P e Cr(J,R""')
a n d . P Q : Q P = 0 ;  P 2 = P .

T
t

l x :=  I  d ry ( t )x ( t )  :1 ,
J
ts

(2 )
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Since
A(t)r '  = A(t) [r1t1o1t;] '  

-  A(t)P'(t)r(t), (3)

A(t)X'  + B(t)x = 0; P( 'o)(x(to) -  / )  = 0'

Moreover, KerX(t)=Ker'4(t) for every t € J'

Now, define the so-called shooting matrix D t= [' d,n$)X(t) and a closed

subspace Im l := { l Iart( t l r t t )  :  x e C} of R" '

Definition l. The triplet {A,B,r:] is said to be regular if the shooting matrir

D satisfies the conditions:

KerD =  KerA( t6 ) ;  ImD:  Iml '

The regularity of {.4,8,4} guarantees the well-posedness of MPBVP (1)-(2).

More precisely, what can be proved is the following:

Theorem 1. lll The regularity of the triplet {A,B,q} is equiualent to the

unique sotuabitiiy'of MPBVP (1)-(2) inthe space X for allqe C and ? € Imf.

Moreouer, the solution o/(f)-(Z) d,epends continuously on the data (q'1)'

Flom Theorem 1 and Banach's fixed point principle, one can derive an exis-

tence theorem for perturbed system:

(4)

7s p A(t)x '  + B(t)a = q(t)  + ef (x '  ,x, t ) ,

Theorem 2. Suppose that
(i) The triplet {A,B,q} is regular.
(ii) I , lR- x Ri x J -+ R" is Lipschitz continuous in the first two uariables,

c ' a ' t

l l / (( ,s, t)  -  l (( , i , t ) l l  s cr l l (  -  ( l l+ czl ls -  al l  v(, i ,s, i ,  e R"; vt e J'

T
f

lx = I dn\)n(t) = 1J es(x).
J
ts

(5)

(6)
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(i i i) Ker A(t) c Ker/i((,s,r) V(,( € lRn; Vt e J. Here, f is assumed to be con-
tinuously differentiable in the first uariable and f[ denotes the corresponding
partial deriuatiue,

(iv) The nonlinear boundary operator g : C -+ Imf is Lipschitz continuous, i.e.,

Ilg(r) - g(s)ll S "tll, 
- ull*; Yr,y € C.

Then for a sufficiently small e ) 0, problem (5), (6) is uniquely soluable for
all q e C and I € Iml. Moreoaer, the iteratiue process: A(t)x'"*r-t B(t)rna1 :

q(t) + ef (r'^,rn,t)i ff arl1t1".*L(t) :'y * eg(r.) is conuergent at a geometrical
rate.

Using Theorems 1 and 2, we can prove the regularity of some perturbed
systems.

Proposition 1. The regularity of the triplet {A,B,r7} is stable under small
pertubation of B e C(J,R"*"), i.e., i! {A,B,q} is regular, then, for any C e
C(J, R"*") and lor a sufficiently small e ) 0, the triplet {A,B + €C,n} is also
regular.

Proposition2. Suppose that {A,B,q} is a regular triplet. Then, for a suffi-
ciently small e > O, the triplet {A + eBP, B + IBPP' ,r.,} is also regular.

We note that the pairs {.4, B +eC} and {,4 *eBP,B +€BPP.} in Propo-
sitions L and 2, respectively, are transferable.

Proposition 3. Suppose that:
(i) i,4, B,q\ is a regular triplet.

(ii) The perturbed, bound,ary operator f,(r) :: IIan,ft)r(t) with

n' e BV(J,Rnxr') satisfies two conditions:
(a) Imf" C Imf.
(b) The total uariation Vff (n - n") is not greater than e.

Then, for a sfficiently small e > 0, the triplet {A,B,qr} is also regular.

Flom now on, let us consider a special MPBVP (1), (2) with a(t) : !i"C(s)ds,
where C e C(J, R"'"). Introducing a new variable g(t) ,= fi"C1s1r(s)ds, we
can reduce (1), (2) to a two-point BVP for an enlarged system:

A1t1z' ,  +B(t)z:EQ),

Mz(to) * Nz(T) =7, (8)

(7)

where .A := (t
q i =

B : =?) ,
( ; )  '

( : ,

( ; )

3 ) '  M ,= (3  ? )  '  r { , = (3  i )  '
( ; ) 'I  . -
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Obviously, boundary condition (8) can be rewritten as, lz ,: II d1z(t) :1
with

(  - M  t : t o
I

t ( r )  = 1  0  t s < t < T

I  N  t = 7 .

Def in ingthe entarged project ions U: (3 3) '  U :T -Q,= ( ;  ?)  *o

taking into account the fact that G : A+EQ t: ( l" 
tr) 

' G-' t:
\ - u q  t / '

/  c - r  o \
( 

"["-, 
]), *" come to the conclusion that the pair {A,E} is also trans-

ferable.
However, if Im f f IR", then the triplet {A,8,4} is not regular with respect

to the space ,Z = {z = (r ,A) '  € C :  Pn,a e CL}.
Thus, it should be more rational to implement approximate methods directly

to regular MPBVPs than to enlarged two-point BVPs.
Let 16 ( tr ( .. . 1 t* = T bea given partition of the interval J = lto,Tl.

Denote by Xr(t) the fundamental matrix satisfying relations A(t)Xl+ B(t)Xi:
0,  t  e l t6, taa1];  P,; lXi( t , )  -  I l= 0 ( i  = 0r " .r  *  -  7),  where f l  := P(t1) '

We are looking for a solution of (1), (2) of the form

r( t )  :  r ( t , ss ,s r ,  . . . ,  s - - r )  : :  r { t )  i f  t  e  l t i , t+ t ] ,  ( i :  0 ,  " ' ,  m -  7 ) ,

where 14(t) is a solution of the IVP:

[  !(qr: lB(tP s(t), (e)
[  f l ( r i ( t ; )  -  s ; )

The shooting vectors si(i:0,..,,ff i  - 1) are defined from the matching condi-

tions:
P r ( s ; t ( t 4 )  - s o )  = 6

and the boundary condition (2):

(10  )

( 1 1 )

According to l4], r(t,so, ..., srr,-r) is a solution of (1) and therefore, by virtue

of (11), it is also a (unique) solution of (1), (2).

Denote by Y(t) the fundamental matrix of the IVP: Yi :

(P 'P"  -  PG-rB)Yi ;  Y4( t )  = I ;  t  €  lk , t+t )  (e = 0,  . . . , rn  -  7) .

From (9), it follows that

r i f t )  :  X i ( t )s i  + f { t )  ;  t  € . l ta , t+t l  ( i  =  0r  " ' ,  rn  -  7) ,  (12)

\  * -1  ' ;+ r

I  c1r1*p1ar=' t  I  cf t )r1t)d,:  t .
io i=o i
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where

f

f {t) : x,(t) I Yn-L (r) P" (r) (I + P' (r)) G- L (r) qft) ar + Q ft)G-t (t) q(t).
J
t ;

The matching condition (10) implies that

Pi(X aa(t1) s;t - sr) = rt,

where rt = -Ptf*1(t1). Using (11), we have

m - L

D cP t :7 ,

187

(13)

(14)
i=0

where Cd = I :n '* 'c( t)x{t)dt  and I  = 'y -DTu' 
t , ' * 'c( t) ln(t)dt .  Let Qi:=

I - P r '

Theorem 3. Let {A,B,q} be a regular triplet. Then the shooting uectors

is giuen by (12).

Finally, let us consider a MPBVP for a weakly non-linear DAE:

La := A( t ) r '  +  B( t ) r  =  q( l )  +  ef  ( r , t ) ,

T
f

l r  =  I  C ( t )a ( t )a t :1 .
J
to

Suppose that the triplet {A,B,4} is regular and the non-linear part /(r,t) is
Lipschitz continuous in r. Flom Theorem 2, it follows that for a suficiently
small e > 0, MPBVP (15), (16) has a unique solution and the Picard method
applied to (15), (16) is convergent. However, avoiding the stiffness effect of the
left-hand side of (15), we should implement the multiple iteration method (see

[3]) for solving (15), (16).
Suppose that the (j-1)th iteration ni-rQ) has been found. Then the next

approximation ni (t) can be defined as

ai 1t1 = trnQ), t  € l t i , ta,r1] ( i  :  0,  " ' ,m - 7),

where rO(t) is a solution of linear MPBVP (1), (2) obtained by the abov+
mentioned multishooting method, and A(t)(rrn)' + B(t)rrn : s(t).+ ef (at-l,t);
Pi@l(t) - ti) = 0 (i > 1). The matching conditions give P6(arn-r(t) - sr) :

0. F\rrther, from boundary condition (16) we get IL;t fi. '*' C1t1r1(t)dt =',t.
Thus, we define

atu(t1 : xa(t)srn + fl (t), t e lta,t6avl,

( 1 5  )

(16)

(17)
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where

fi (t)

Pham Ky Anh and Nguyen Van Nghi

1-  e f ( x t - r , r ) ] d r

+7Q)G-L( t ) [q ( r )  +  e f  ( r i - l  , t ) ) .

Putting
m-r  t i * , r

,i : -nuy1-reu); ti = r - I I c1t1y11t1at,
t:O i,

we come to a system, similar to those of (13), (14):

m - l

I  Cottn - l ;  PiXa-r(t)sit  - PrsI :  r i  ( i  = 1,.. . ,  rn - l) .
; - n

Adding to this system rn relations QPrt =.0 (i : 0,. ' .,ff i  - 1), we can define the

shooting vectors s{ and then determine rro(t) (z = 0, ...,ff i  - 1) by (t7).

Theorem 4. Suppose that the triplet {A,B,q} is regular and f (r,t) is Lipschitz
continuous in r. Then, tor a sufficiently small e ) 0, the multiple iteration
method is conuergent at a geometrical rate.

Detailed proofs and numerical experiments will be given in a forthcoming
paper.
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t
f

= xi l t )  |  Yn-L(r)P"(r)( /+ P'(r))G-L(z)[a(")


