Short Communication

\mathcal{A}-Decomposability of the Dickson Algebra*

Nguyên Hưu Viêt Hưng and Trân Ngoc Nam
Department of Mathematics, Vietnam National University 334 Nguyen Trai Street, Hanoi, Vietnam

Received September 16, 1999

1. Introduction

Let $P_{k}:=\mathbf{F}_{2}\left[x_{1}, \ldots, x_{k}\right]$ be the polynomial algebra over \mathbf{F}_{2} in k variables, each of degree 1. The general linear group $G L_{k}:=G L\left(k, \mathbf{F}_{2}\right)$ acts on P_{k} in the usual manner. Dickson proves in [1] that the ring of invariants, $D_{k}:=\left(P_{k}\right)^{G L_{k}}$, is also a polynomial algebra $D_{k} \cong \mathbf{F}_{2}\left[Q_{k, k-1}, \ldots, Q_{k, 0}\right]$, where $Q_{k, s}$ denotes the Dickson invariant of degree $2^{k}-2^{s}$. It can be defined by the inductive formula

$$
Q_{k, s}=Q_{k-1, s-1}^{2}+V_{k} \cdot Q_{k-1, s}
$$

where, by convention, $Q_{k, k}=1, Q_{k, s}=0$ for $s<0$ and

$$
V_{k}=\prod_{\lambda_{j} \in \mathbf{F}_{2}}\left(\lambda_{1} x_{1}+\cdots+\lambda_{k-1} x_{k-1}+x_{k}\right)
$$

Let \mathcal{A} be the $\bmod 2$ Steenrod algebra. The usual action of \mathcal{A} on P_{k} commutes with that of $G L_{k}$. So D_{k} is an \mathcal{A}-module. One of the authors has been interested in the homomorphism

$$
j_{k}: \mathbf{F}_{2} \underset{\mathcal{A}}{\otimes}\left(P_{k}\right)^{G L_{k}} \rightarrow\left(\mathbf{F}_{2} \underset{\mathcal{A}}{\otimes} P_{k}\right)^{G L_{k}}
$$

which is induced by the identity map on P_{k} (see [3]). Observing that j_{1} is an isomorphism and j_{2} is a monomorphism, he sets up the following

Conjecture 1.1. [3] $j_{k}=0$ in positive degrees for $k>2$.

[^0]Let D_{k}^{+}and \mathcal{A}^{+}denote, respectively, the submodules of D_{k} and \mathcal{A} consisting of all elements of positive degree. Then Conjecture 1.1 is equivalent to $D_{k}^{+} \subset \mathcal{A}^{+} \cdot P_{k}$ for $k>2$ (see [3]). In other words, it predicts that every $G L_{k^{-}}$ invariant polynomial is hit by the Steenrod algebra acting on P_{k} for $k>2$.

In [3], one of the authors proves the equivalence of Conjecture 1.1 and a weak algebraic version of the conjecture on spherical classes stating that: There are no spherical classes in $Q_{0} S^{0}$ except the elements of Hopf invariant one and those of Kervaire invariant one. He also gives two proofs of Conjecture 1.1 for the case of $k=3$. The fact that $j_{k} \neq 0$ for $k=1$ and 2 is, respectively, an exposition of the exsitence of Hopf invariant one and Kervaire invariant one classes. In this paper, we establish this conjecture for every $k>2$. We have

Main Theorem. $D_{k}^{+} \subset \mathcal{A}^{+} \cdot P_{k}$ for $k>2$.
Recently, F. Peterson and R. Wood privately informed us that they had optained a proof of this theorem for $k=4$ and probably for $k=5$. The readers are referred to [5] and [6] for some problems, which are closely related to the Main Theorem. They are also referred to F. Peterson [7], R. Wood [11], W. Singer [9], S. Priddy [8] for other approaches to the hit problem from several classical ones in Homotopy theory.

This note contains three sections. Sec. 2 is a preparation on the action of the Steenrod squares on the Dickson algebra. In Sec. 3, we express an outline of the proof of the Main Theorem.

2. Preliminaries

The action of the Steenrod operations on D_{k} is explicitly described as follows.
Theorem 2.1. [2]

$$
S q^{i}\left(Q_{k, s}\right)= \begin{cases}Q_{k, r} & \text { for } i=2^{s}-2^{r}, r \leq s \\ Q_{k, r} Q_{k, t} & \text { for } i=2^{k}-2^{t}+2^{s}-2^{r}, r \leq s<t \\ Q_{k, s}^{2} & \text { for } i=2^{k}-2^{s} \\ 0 & \text { otherwise }\end{cases}
$$

From now on, we denote $Q_{k, s}$ by Q_{s} for brevity.
Let $I_{n}(n \geq 0)$ be the right ideal of \mathcal{A} generated by the operations $S q^{2^{i}}$ for $i=0, \ldots, n$.

Definition 2.2. Suppose $R_{1}, R_{2} \in P_{k}$. Then we write $R_{1} \equiv R_{2}\left(\bmod I_{n}\right)$ if $R_{1}+R_{2}$ belongs to $I_{n} \cdot P_{k}$. By convention, $R_{1} \equiv R_{2}\left(\bmod I_{n}\right)$ means $R_{1}=R_{2}$ for $n<0$.

This is an equivalence relation. We have

Lemma 2.3. Let $k>1$ and suppose S is a non-empty subset of $\{0, \ldots, k-1\}$ such that $1 \notin S$. Then

$$
Q R^{2} \equiv 0\left(\bmod I_{0}\right)
$$

where $Q=\prod_{s \in S} Q_{s}$ and R is an arbitrary polynomial in P_{k}.

3. Outline of Proof of the Main Theorem

Let Q be a non-zero Dickson monomial. If $Q \neq 1$, it can be written as

$$
Q=\prod_{0 \leq i \leq n} A_{i}^{2^{i}}
$$

where n is some non-negative integer and A_{i} is some Dickson monomial dividing $\prod_{0<s<k} Q_{s}$ for $i=0, \ldots, n$ with $A_{n} \neq 1$.

Indeed, suppose $Q=\prod_{0<s<k} Q_{s}^{\alpha_{s}}$. Since $Q \neq 1$, there exists at least one $\alpha_{s} \neq 0$. Consider the 2-adic expansions of all the non-zero α_{s} 's:

$$
\alpha_{s}=\sum_{0 \leq i \leq n(s)} \alpha_{s i} 2^{i}
$$

where $\alpha_{s n(s)}=1$. Now denoting

$$
\begin{aligned}
n & :=\max _{\substack{\alpha_{s} \neq 0 \\
0 \leq \leq<0}} n(s), \\
\alpha_{s i} & :=0 \text { if } n(s)<i \leq n(0 \leq s<k), \\
A_{i} & :=\prod_{0 \leq s<k} Q_{s}^{\alpha_{s i}}(0 \leq i \leq n),
\end{aligned}
$$

one can easily check that $Q=\prod_{0 \leq i \leq n} A_{i}^{2^{2}}$ and each A_{i} divides $\prod_{0 \leq s<k} Q_{s}$. Moreover, there exists an integer r such that $0 \leq r<k, \alpha_{r} \neq 0$, and $n=n(r)$. Then $A_{n}=\prod_{0 \leq s<k} Q_{s}^{\alpha_{s n}}$ is divisible by $Q_{r}^{\alpha_{r n}}=Q_{r}^{\alpha_{r n(r)}}=Q_{r}$, so $A_{n} \neq 1$.

Definition 3.1.

(i) We call n the height of Q. The monomial $A_{i}^{2^{i}}=A_{i}(Q)^{2^{i}}$ is called the i-th cut of Q. It is said to be full if A_{i} is divisible by $\prod_{0<s<k} Q_{s}$. The monomial Q is called full if its cuts are all full.
(ii) A Dickson monomial is called a based cut if it is the 0 th cut of some $Q \neq 0$ and $\neq 1$.

The Main Theorem is proved by means of the following two lemmata.
Lemma 3.2. Let $k>2$ and suppose R is an arbitrary polynomial in P_{k}.
(a) If $Q=\prod_{0 \leq i \leq n} A_{i}^{2^{i}} \neq 1$ and it is not full, then $Q R^{2^{n+1}} \in \mathcal{A}^{+} \cdot P_{k}$.
(b) If $Q=\prod_{0 \leq i \leq n} A_{i}^{2^{i}}$ is full, then $Q S q^{2^{m+n+1}}\left(R^{2^{n+1}}\right) \in \mathcal{A}^{+} \cdot P_{k}$ for $0 \leq m$ $<k-1$.

Lemma 3.3. Suppose $k>2$. If A is a full based cut, then $A \equiv 0\left(\bmod I_{1}\right)$.
Proof of the Main Theorem. Suppose $Q=\prod_{0 \leq i \leq n} A_{i}^{2^{i}}$ is a Dickson monomial with $A_{n} \neq 1$.

If Q is not full, then applying Lemma 3.2(a) with $R=1$, one gets $Q \in \mathcal{A}^{+} . P_{k}$.

If Q is full and $n=0$, then Q is the full based cut of itself. So using Lemma 3.3, one obtains $Q \equiv 0\left(\bmod I_{1}\right)$. In particular, $Q \in \mathcal{A}^{+} \cdot P_{k}$.

If Q is full and $n>0$, then A_{n} is the full based cut of itself. By Lemma 3.3, one has $A_{n}=S q^{1}\left(R_{1}\right)+S q^{2}\left(R_{2}\right)$, with some $R_{1}, R_{2} \in P_{k}$. Noting that $Q^{\prime}=\prod_{0 \leq i<n} A_{i}^{2^{i}}$ is also full with the height $n-1$, one can apply Lemma 3.2(b) to it and get

$$
\begin{aligned}
Q^{\prime} S q^{2^{n}}\left(R_{1}^{2^{n}}\right) & =\prod_{0 \leq i<n} A_{i}^{2^{i}} S q^{2^{n}}\left(R_{1}^{2^{n}}\right) \in \mathcal{A}^{+} \cdot P_{k} \\
Q^{\prime} S q^{2^{n+1}}\left(R_{2}^{2^{n}}\right) & =\prod_{0 \leq i<n} A_{i}^{2^{i}} S q^{2^{n+1}}\left(R_{2}^{2^{n}}\right) \in \mathcal{A}^{+} \cdot P_{k}
\end{aligned}
$$

(It should be noted that $1<k-1$.) Therefore,

$$
Q=\prod_{0 \leq i<n} A_{i}^{2^{i}} \cdot A_{n}^{2^{n}}=\prod_{0 \leq i<n} A_{i}^{2^{i}}\left[S q^{2^{n}}\left(R_{1}^{2^{n}}\right)+S q^{2^{n+1}}\left(R_{2}^{2^{n}}\right)\right] \in \mathcal{A}^{+} \cdot P_{k}
$$

The proof is complete.
Outline of Proof of Lemma 3.2. The proof is divided into two steps.
Step 1: If Lemma 3.2(a) is true for every $n \leq N$, then so is Lemma 3.2(b) for every $n \leq N$.

Indeed, suppose $Q=\prod_{0 \leq i \leq n} A_{i}^{2^{i}}$ (with $n \leq N$) is full and m satisfies $0 \leq$ $m<k-1$. One needs to prove $Q S q^{2^{m+n+1}}\left(R^{2^{n+1}}\right) \in \mathcal{A}^{+} \cdot P_{k}$, where $R \in P_{k}$. By the Cartan formula, one gets

$$
Q S q^{2^{m+n+1}}\left(R^{2^{n+1}}\right) \equiv \sum_{0<j \leq 2^{m}} S q^{2^{n+1} j}(Q) R_{j}^{2^{n+1}}\left(\bmod \mathcal{A}^{+} \cdot P_{k}\right)
$$

where $R_{j}:=S q^{2^{m}-j}(R)$ for $j=1, \ldots, 2^{m}$.
Let $B=\prod_{0 \leq i \leq p} B_{i}^{2^{i}}$ be an arbitrary Dickson monomial of $S q^{2^{n+1} j}(Q)$, with $B_{i}^{2^{i}}$ the i th cut of B. Note that $p \geq n$. If $\prod_{0 \leq i \leq n} B_{i}^{2^{i}}=1$, then $p>n$, so we get $B R_{j}^{2^{n+1}}=\left(\prod_{0 \leq i \leq p} B_{i}^{2^{i-1}} R_{j}^{2^{n}}\right)^{2} \equiv 0\left(\bmod I_{0}\right)$. If $\prod_{0 \leq i \leq n} B_{i}^{2^{i}} \neq 1$, then it is not full. So we can choose an integer q such that $B_{q} \neq \overline{1}(0 \leq q \leq n \leq N)$ and $\prod_{0 \leq i \leq q} B_{i}^{2^{i}}$ is not full. Applying Lemma 3.2 (a) to $\prod_{0 \leq i \leq q} B_{i}^{2^{i}}$, we obtain

$$
B R_{j}^{2^{n+1}}=\prod_{0 \leq i \leq q} B_{i}^{2^{i}}\left(\prod_{q<i \leq p} B_{i}^{2^{i-q-1}} R_{j}^{2^{n-q}}\right)^{2^{q+1}} \in \mathcal{A}^{+} \cdot P_{k}
$$

Therefore, Step 1 is shown.
Step 2: Lemma 3.2(a) holds for every non-negative integer n.
Let $q=q(Q)$ be the smallest integer so that A_{q} is not full $(0 \leq q \leq n)$. Suppose s is the smallest integer with $0<s<k$ such that $Q_{s} \nmid A_{q}$.

Using Step 1, we prove Lemma 3.2(a) by induction on n and for a fixed n by induction on s.

Outline of Proof of Lemma 3.3. Note that to prove Lemma 3.3, it suffices to show

$$
Q_{2} Q_{1} \equiv 0\left(\bmod I_{1}\right)
$$

Let $R_{1}:=\sum_{s y m} x_{1} x_{2} x_{3} x_{4}^{8} \cdots x_{k}^{2^{k-1}}$, where $\sum_{s y m}$ denotes the sum of all symmetrized terms in x_{1}, \ldots, x_{k}. Using Theorem 2.2 of [4], one can show that

$$
Q_{2} Q_{1} \equiv\left[S q^{2}\left(R_{1}\right)\right]^{2}\left(\bmod I_{1}\right) \equiv 0\left(\bmod I_{1}\right)
$$

Lemma 3.3 is proved.
The result of this note will be published in detail elsewhere.

References

1. L. E. Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1911) 75-98.
2. Nguyên H. V. Hưng, The action of the Steenrod squares on the modular invariants of linear groups, Proc. Amer. Math. Soc. 113 (1991) 1097-1104.
3. Nguyên H. V. Hưng, Spherical classes and the algebraic transfer, Trans. Amer. Math. Soc. 349 (1997) 3893-3910.
4. Nguyên H. V. Hưng and F. P. Peterson, Spherical classes and the Dickson algebra, Math. Proc. Camb. Phil. Soc. 124 (1998) 253-264.
5. Nguyên H. V. Hưng, The weak conjecture on spherical classes, Math. Zeit. 231 (1999) 727-743.
6. Nguyên H. V. Hưng, Spherical classes and the Lambda algebra, Trans. Amer. Math. Soc., to appear.
7. F. P. Peterson, Generators of $H^{*}\left(\mathbf{R P}^{\infty} \wedge \mathbf{R} \mathbf{P}^{\infty}\right)$ as a module over the Steenrod algebra, Abstracts Amer. Math. Soc. 833-55-89, April 1987.
8. S. Priddy, On characterizing summands in the classifying space of a group, I, Amer. Jour. Math. 112 (1990) 737-748.
9. W. M. Singer, The transfer in homological algebra, Math. Zeit. 202 (1989) 493523.
10. N. E. Steenrod and D. B. A. Epstein, Cohomology Operations, Ann. of Math. Studies, Vol. 50, Princeton University Press, 1962.
11. R.M.W. Wood, Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Camb. Phil. Soc. 105 (1989) 307-309.

[^0]: * This paper is supported in part by the National Research Project, No. 1.4.2. AMS 2000 Subject Classification: Primary 55S10, Secondary 55P47, 55Q45, 55 T 15.

