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Abstract. This is a survey on recent results on the relationship between diagonal
subalgebras and blow-ups of projective spaces.

1. Introduction

Diagonal subalgebra is a rather new object in commutative algebra. The moti-
vation for the study of diagonal subalgebras comes from algebraic geometry.

In the last ten years many authors have studied rational surfaces obtained
by blowing-up P? at collections of points. They showed that these surfaces
embedded in certain projective spaces often have good algebraic properties [6,9 -
12,15, 17]). For instance, Geramita, Gimigliano and Harbourne [10] considered
the blow-up of P? at points which are the intersection of two curves fand g
meeting transversely. They embedded the obtained rational surface in pro jective
spaces by very ample divisors which correspond to the linear systems of curves
of a fixed degree c passing through the points of multiplicity at least e, where e is
a given positive number. Their main results can be summarized in the following
theorem.

Theorem 1.1. Let R be the coordinate ring of such an embedded surface. Sup-
pose that dy = deg f > d» = degg.

* This paper is an extended version of a lecture given at the 44th Conference of the Mathemati-
cal Society of Japan, Tokyo, August 1999. It was completed when the author visited the Tokyo
Metropolitan University. It was completed when the author visited the Tokyo Metropolitan
University. He would like to thank M. Oka and K. Kurano for arranging this visit and for their
generous hospitality.
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() Ifdy =dy =d, c=d+1, ande =1, then R is defined by 3 quadrics and d
forms of degree d.
(ii) R s normal.
(iii) R is a Cohen-Macaulay ring if and only ifc>dy +edy — 2.

Moreover, they raised the problem of computing the defining equations for
R in (i).

Diagonal subalgebra was introduced in order to solve this problem (26} and
it turned out that digonal subalgebra is an effective algebraic tool for the study
of embedded rational n-folds obtained by blowing-up P"~! along a subvariety
[7]. In this paper we will give a survey of the methods and the results of (26]
and {7] and we shall see that Theorem 1.1 can be greatly generalized.

We will consider the more general situation of blowing-up P"~! at an arbi-
trary subvariety Z. Let V denote the obtained rational (n - 1)-fold. Then V' can
be described algebraically as follows.

Let I C k[X] = k[z1,. .. ,Tn] be the defining ideal of Z. One can associate
with I the Rees algebra:

R(I) := @y '’

which is the subalgebra of k[X, t] generated over k[X] by the elements ft, f € I.
Since I is a homogeneous ideal, R(I) has a natural bigraded structure by setting
R(I)(u.v) = (Iv)utv

for all (u,v) € N?, where ('), denotes the k-vector space of forms of degree u
of IY. Therefore, we can associate with R(I) the projective scheme

Biproj R(I) =
{P € Spec R(I)| P is bihomogeneous, P 2 R(I);) and P 2 R}

where R(I)(1) and R(I)(z) denote the ideals of R(I) generated by the homoge-
neous elements of degree (u,v) with u > 1 and v > 1, respectively. The following
lemma is more or less a standard fact:

Lemma 1.2. V = Biproj R(I).

Let ¢ and e be two fixed positive integers. We shall see when V can be
embedded into a projective space by the linear system (I¢). of forms of degree
c in the ideal I¢. Let

R = K{(I°).]

be the subalgebra of k[X] generated by the elements of (I¢).. Since R is gener-
ated by forms of the same degree, it is a graded algebra and we can define the
projective scheme

Proj R := {p € Spec R| p is homogeneous and p 2 R+ },

where R, denotes the ideal of R generated by the homogeneous elements of
positive degree.
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Let I = (fy,...,f,), where fi is a homogeneous polynomial with d; =
deg f;, 7 =1,...,r. Put

d:= ma.x{dl, s ,dr}.

One can easily prove the following relationship between Biproj R(I) and Proj R:
Lemma 1.3. Biproj R(]) ProjR ifc > de + 1.

So we obtain V & Proj R if ¢ 2 de+ 1. In that case, the linear system (I¢),
corresponds to a very ample divisor of V and R is the coordinate ring of the
embedding of V into a projective space by this very ample divisor.

Now we shall see that, given two positive integers c, e, one can associate
with every bigraded algebra a subalgebra and that R is Just this subalgebra of
R(I)if ¢ > de + 1.

Let A = {(ci,ei)|i € Z2}. Let S = ®(u,0)en25(y,) be an arbitrary bigraded
ring.

Definition. Given any bigraded S-module M we define
Mpa = @iczM(g; o)

and we call Ma the A-diagonal or the (c, €)-diagonal of M.

It is clear that S, is a graded ring and M a graded Sa-module. We may
consider the A-diagonal as a functor from the category of bigraded algebras to
the category of (simply) graded algebras.

We can intepret the algebra R = k[(1°).] as the A-diagonal of the Rees
algebra R(I) for certain ¢ and e:

Lemma 1.4. R = R(I)s ifc > de.

This interpretation of the algebra R provides us with an algebraic tool for
the study of the blow-ups of projective spaces.

We shall see that many properties of R(I)a can be read off from the Rees
algebra R(I). We would like to mention that the above observations also hold
if we consider the blow-up of any projective variety W at any subvariety Z. In
this case I is a homogeneous ideal of the coordinate ring of W.

This paper consists of six sections. The next five sections will deal with
the presentation, normality, local cohomology, Cohen—Macaulayness, and Koszul
property of R(I)a, respectively.

We will keep the notations of this introduction unless otherwise specified.
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2. Presentation of R(I)a

Let k[X,Y] = k[z1,... s Zn, Y1, - - - ,Yr| be a polynomial ring over k. We consider
k[X,Y] as a bigraded algebra by setting

degz; = (1,0), v =1,... ,n,

degy; =(d;,1), j=1,...,r.

Mapping y; to f;t we get a bigraded isomorphism
R(I) = k[X,Y]/J,
where J is a bihomogeneous ideal of k[X,Y]. It is clear that
R(I)a = k[X,Y]a/Ja-

Thus, to find a presentation for R(I)a we only need to find a presentation for
k[X,Y]a and the preimage of Ja in the polynomial ring of the presentation of
k[X,Y)a.

The algebra k[X,Y]a is generated by the monomials z7* - -z gyl
whose exponents satisfy a system of equations

a1+---+an+b1d1+---+brd,=cz',
by 4o + by = e,

where i can be any non-negative integer. Such an algebra is defined by binomials,
hence one can easily find a presentation for k[X,Y]a.

Let us consider the following case which generalizes Theorem 1.1(i).
Case: dy=...=d,=d,c=d+1,e=1.

In this case I is generated by forms of the same degree. Therefore, we can
replace the natural bigrading of R(I) by the simpler bigrading:

R(I)(u.v) = (Iu)u+dvtuy

which corresponds to the standard bigrading degz; = (1,0), degy; = (0,1) of
k[X,Y]. Since the new bigrading is only a linear transformation of the natural
bigrading, the ideal J remains bihomogeneous.

Now, let A = {(4,1)| i € Z®}. Then R(I)a = k[la41]. We have

k[X,Y]a =klziysli=1,...,n, j=1,...,7]
= k[T)/L(T),

where T = (t;;) is an n x r generic matrix and I,(T") denotes the ideal of k[T
generated by the 2 x 2 minors of T'.
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Proposition 2.1. Let C be an ideal of k[T] generated by the preimages of the
elements of a minimal set of generators of Jo. Then

R(I)a = k[T)/I,(T) + C.

To compute C' we only need to find a set of generators of Ja and then
compute their preimages in k[T]. But such a set of generators for Jo can be
easily determined.

Lemma 2.2. Let J = (Hi,...,H,), where H; is a bihomogeneous polynomial
of degree (a;,b;), i = 1,...,s. Put c; = max{a;,b;}. Then Ja is generated by
elements of the forms H;M, where M € k[X,Y] is a monomial with degM =
(C,‘ - Qai, C{ —bi), 1= 1,... y 8.

Now we will show how to compute a presentation of R(I), in the situation
of Theorem 1.1(i).

Example. Let I = (f,g) C k[z1, 2, 3], where f, g are two homogeneous poly-
nomials of the same degree d which form a regular sequence (the ideal I need
not to be the defining ideal of a set of points). We have

R(I) = k[zy, 22, 23,91, y2]/ (H),

where
H := gy1 — fya.
In this case,
tin t12
T=|ta tao
t31  t32

is a 3 x 2 generic matrix. Hence,
L (T) = (ti1tag = tiatar, tiitas — tiatar, tartsn — tagtar)

is generated by 3 quadrics. Since deg H = (d,1), (H)a is generated by elements
of the form Hy%yb, a + b = d — 1. Since there are d monomials y¢yd with
a+b=d-1 and since the preimages of Hyfy} in k[T] is a form of degree d,
the preimage C of (H)a in k{T] is generated by d forms of degree d. Therefore,
the defining ideal I5(T) + C of R(I)a is generated by 3 quadrics and d forms of
degree d. This gives an easy proof for Theorem 1.1(i). Moreover, we can also
solve the problem of computing the defining equations explicitly. For instance,
if f = 2¢ and g = 2, then H = zdy; — zfy, and 5; 5, — 12,683 a+b=d -1,
is a preimage of Hy%y} in k[T]. Therefore, we may put

C = (tf, — tartgy 'ttt — 1365, %, . 13 g — 1)),

Hence,
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R(I)a = k[T)/(t11t2z — tiata1, t11t32 — ti2ts1, tartae — taotar,

d— d— d— -
ty — tartgy ' tutly | — 8550, Lt e — 1),
We would like to raise a more general problem as follows.

Problem. Compute the Betti numbers of R(I)a in terms of I.

3. Normality of R(I)a

Let S be an arbitrary bigraded domain. Let
Q(S) = {g | 7,9 are homogeneous, g # 0}

be the field of homogeneous fractions of S. Then Q(S) is a Z*-bigraded ring.
Let S denote the integral closure S of S in Q(S). Then § also has a bigraded
structure. Therefore we can define the A-diagonal Sa.

Let

Q(Sa) = {£ | f,g € Sa are homogeneous, g # 0}
be the field of homogeneous fractions of Sa. Let (Sa) denote the integral closure
of Sa in Q{Sa). By degree reasoning we can easily show that

(Sa) =SanQ(Sa).

As a consequence, the normality is preserved by passing to the diagonal sub-
algebra.

Proposition 3.1. If S is a normal domain, then so is Sp.

This result can also be proved using the notion of Reynolds operator which
is of independent interest. A Reynolds operator of a ring extension R C S is
an R-module surjection ¢ : S — R such that the composition R € S — R is
the identity map. In this case, normality carries from S to R by a result of
Hochster and Roberts [19]. A Reynolds operator exists if and only if R is a
direct summand of S. Therefore, the ring extension So C S has a Reynolds
operator.

Now we want to apply the above observation to the diagonal R(I)a of the
Rees algebra R(I).

First we will show how to compute the integral closure (R(I)a) of R(I)a
in terms of J. It is not hard to see that

QR(I)a) = k ("'—2 ,z—’:,xlf>

Y
T
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which is the subfield of k(X) generated by the elements z2/z1,... ,z,/21, 21 f
for any element f # 0 of (/¢)q—;.
It is well-known that R(I) = @,enI?t", where T¢ denotes the integral closure
of IY. Therefore, e
R(I) 5 = k[(I**)ci| i € N]

which is the subalgebra of k[X] generated by the elements of (I¢f),;, i € N.
So we obtain the following formula for the computation of the integral closure
(R(I)a) of R(I)a.

Proposition 3.2. [26] Let f # 0 be an arbitrary element in (I¢).—;. Then
—— Tn F=r g
(R(I)a) =k (———, ’:—z_;’xlf> N k[(I¢%)| i € N

Moreover, we can easily generalize Theorem 1.1(ii) as follows.
Let I be the defining prime ideal of a collection of points. Then

I=r1,- [T

where p; are the defining ideals of the points. Assume that I is generated by a
regular sequence. Then I is an unmixed ideal for all v > 1. From this it follows
that

I" = Nj(p;)°.
Hence,
R(I) = @u201"t" = N;( @u30 (p)")-

Note that @,>0(p;)” is the Rees algebra R(gp;) of p;. This Rees algebra is
normal because p; is generated by linear forms. Therefore, as an intersection of
normal rings, R(I) must be normal, too. By Proposition 3.1, this implies that
R(I)a is also normal. So we obtain

Theorem 3.3. [26] Let I be the defining prime ideal of a collection of points in
Pn=1. Assume that I is generated by a regular sequence. Then R(I) and R(I)a
are normal.

4. Local Cohomology of R(I)a

Let S = k[X,Y] with the bigrading degz; = (1,0) and degy; = (d;,1). Since
R(I) can be represented as a bigraded quotient ring of S, we will consider,
instead of R([), an arbitrary finitely generated bigraded S-module L.

Let E be the additive monoid generated by the tuples (ay,... ,8n,b1,... ,b,) €
N™*7 which are solutions of a system of equations

a+:--+an+bidi+--- +bd = ci,
e 2 ol
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where 1 can be any non-negative integer.
Let k[E] denote the semigroup ring of E over k. Then

Sa = k[E).
It is easily seen that E is normal, that is, if m{ai,...,an,b1,... ,b,) € E for
some integer m > 0, then (a1,...,aq,b1,...,b;) € E. Hochster [18] showed

that in this case, k[E] is a Cohen-Macaulay ring. Moreoyer, we can compute
the canonical module wyz) of k[E] in terms of E [28]. It follows that Sa is a
Cohen—,Macaulay ring with

WS, = (UJS)A.
Hence, there is a canonical homomorphism from Homg(L,ws)a to
Homg, (La,ws,).

By local duality [14] this canonical homomorphism induces the following
link between the local cohomology module HZt (L) of L (with respect to the
maximal graded ideal ms) and the local cohomology module Hg, - (La) of La

(with respect to the maximal graded ideal ms, of Sa).
Proposition 4.1. (7] There is a canonical graded homomorphism
8 B, (La) = HEMD)a.

To obtain more information on the local cohomology modules of La, we
have to consider a minimal free resolution of L:

0—-D—=:-—>Dy—>Dyg— L.
Taking the A-diagonals we obtain a graded resolution of La:
0— (D[)A =2 300 = (D1)A — (DO)A — La.

Therefore, we may get information on the local cohomology modules of La from
that of (D;)a, i = 1,...,l. Each module D; is of the form ®5(a,b), where
S(a,b) denotes the twisted module S with the degree shifted by (a,b). Since
(Di)a = ®S(a,b)a, we need to know the local cohomology modules of S(a,b)a.
It turns out that the local cohomology modules of S(a,b)a can be computed by
means of the notion of Segre products of bigraded modules.

Let A and B be two bigraded algebras over a field k. Let M be a bigraded
A-module and N a bigraded B-module. If we set

(M Rk N)(u,v) gES Ga(ur}-v;,1.:.2-+—vz)=(u,1))M(ul,111) Ok N(uz,vz)

for all (u,v) € Z2%, then M ®; N is a bigraded module over the bigraded algebra
A®, B.

Definition. The Segre product M ®a N of M and N is defined by
M®a N = (M ®k N)a.
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It is clear that A®a B is a graded algebra and M ®a N is a graded A®x B-
module.

This Segre product of bigraded modules is a natural extension of the usual
Segre product of (simply) graded modules.

Example. If A and B are two graded algebras, we may view A and B as bigraded
algebras by setting

A(uo) = Au, A@wy =0if v >0,

B(O,v) = BU) B(u,v) =0ifu>0.

In this case, if we take A to be the (1, 1)-digagonal of 72, then A ®a B is the
usual Segre product M@N of A and B which is defined by

A®B := BienA; S B;.

Goto and Watanabe [13], Stiickrad and Vogel [27] already computed the
local cohomology modules of the Segre products of modules over graded algebras.
Following their approaches we can describe the local cohomology modules of
M®a N by means of those of M and N. For this we will compute the transforms
of M®a N with respect to the maximal graded ideal of A®a B which are defined
as follows (see, e.g., [3]).

Given an ideal m of a ring T and a T-module L, we call the module
D& (L) := lim Ext%(m*, L)?

the gth m-transform of L, ¢ > 0. The m-transforms of L are related to the local
cohomology modules HZ (L) of L with respect to m by the exact sequence

0— HO(L) = L = DY(L) = Hy(L) = 0

and the isomorphisms
D& (L) = HE(L), g2 1.

We have the following formula for the transforms of the Segre product of
bigraded modules.

Theorem 4.2. (7] Let mag, B, M4, and mp denote the marimal graded ideals
of A®a B, A, and B, respectively. Then

D¢ (M®aN)= € Di,,(M)®a D}, (N), ¢20.

ma@a B
i+j=q

Now let A = kIX] and B = k[Y] with the bigrading degz; = (0,1) and
degy; = (d;,1). Then S = A ®; B. Hence,

S(a,b)a = Ala,b) ®a B.
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Since A and B are polynomial rings, we know the local cohomology modules of
A and B (which are all zero except H, , (A) and HJ,_(B)). Using the above the-
orem we can describe the local cohomology modules of S(a,b) in terms a, b, c, e.
From this description we can deduce the following results on the local cohomol-
ogy modules of L.

Theorem 4.3. (7] Assume that ¢ > de +1. Then
(i) ¢1 is an isomorphism for ¢ < n.
(i) There is a positive integer sq such that ¢} induces an isomorphism

[HE, (La)ls = [HZE(L)als
for |s| > sg andg2n. .

Theorem 4.4. [7] Assume that dimLa = dimL -1 for ¢ > e > 0. Then the
following conditions are equivalent:
(i} La is a Buchsbaum module with H,%SA(LA).g =0fors#0,g<dimL -1
ifc>»>e>0.
(i) HE (L)(~u,—v) =0 foru>»v >0, g<dimL.

5. Cohen-Macaulayness of R(I)a

It is usually hard to determine when the diagonal of a bigraded algebra is Cohen-
Macaulay, even in the case of Segre products of graded algebras [13, 27].

If we happen to know a free resolution of the given bigraded algebra, then we
can use the knowledge on the local cohomology modules of the twisted modules
of the resolution to find out which diagonal of the bigraded algebra is Cohen-
Macaulay.

Let us consider the case I = (f1,...,fr), where fi,..., fr is a regular
sequence of homogeneous forms in k[X]. In this case, we have the following

presentation:
R(I) = S/1,(M),
where S = k[X,Y] and M is the matrix

( f L e OO f r )
Y ... Yr
Therefore, the Eagon—-Northcott complex gives a minimal free resolution for

R(I):
0= D,y —--—=Dy—>Dy=85— R(I),

p
D,=6p S(-(dj, + - +dj,;,),—m), p=1,...,r =1
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Using the information on the shifts of the twisted modules of D,, we can
compute the local cohomology modules of (Dp)a. This led to the following result
which generalizes Theorem 1.1(iii):

Theorem 5.1. [7) Let I = (f1,...,fr) C k[z1,... ,z,), where f1,...,fr isa
regular sequence of homogeneous elements of degree dy,... ,d,. Let d = max; d;
and assume that ¢ > de + 1. Then R(I)a is a Cohen-Macaulay ring if and only

if
.
c>2dj+(e—1)d—n.
=1

Example. Let I be as above with n = 3, r = 2. Assume that d; < ds. By the
above theorem, R(I)a is Cohen-Macaulay if and only if ¢ > d; + ed2 — 3. That
is exactly Theorem 1.1(iii).

Another approach to the Cohen—-Macaulayness of the diagonal subalgebras
is the technique of filtration.

Let S be an arbitrary bigraded algebra. Let F be a filtration of bigraded
ideals of S. Then gr-(S) also has a bigraded structure and therefore the diag-
onal subalgebra gr(S)a. Let Fa be the filtration of S which consists of the
A-diagonals of the ideals of 7. Then we can show that

grr,(Sa) = gre(S)a.

As a consequence, if gre(S)a is Cohen—Macaulay, then so is Sa.

This technique can be applied to study the Cohen-Macaulayness of R(I)a
when I is generated by a d-sequence or when I is a straightening closed ideal.
For more information on these notions, we refer to (4, 5, 20].

Let I = (f1,..-,fr) C k[X] be generated by forms of the same degree, say d.
Then R([) can be bigraded by R(I)(y,v) = (I")vd+ut?. Consider a presentation

R(I) = k[X,Y]/J.

Then the lexicographic term order on k[X,Y] induces a filtration F of bigraded
ideals of R(I) with
grx(R(I)) = k[X,Y]/J",

where J* denotes the ideal generated by the initial forms of the elements of J.
Hence

grr(R(I))a = k[X,Y]a/(J")a.

If f1,..., fr is a d-sequence or if k[ X] is a polynomial ring with straightening
law on a finite poset IT and Q = {fy,..., fr} C I is a straightening closed poset
ideal, where fq,..., fr-is a linearization of ), then we can compute J* [16, 25].
It turns out that J* is the intersection of ideals Q; such that each quotient ring
k[X,Y]/Q, is the tensor product of two well-determined algebras. Therefore,
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(J*)a is the intersection of the ideals (@;)a and k[X,Y]a/(Qj)a is the Segre
product of these algebras. Under some mild conditions, the Segre products of
these algebras are Cohen-Macaulay so that we can deduce that k[X,Y]a/(J%)a
and therefore, R(I)a are Cohen-Macaulay rings. For instance, we can prove the
following result:

Theorem 5.2. [26] Let k[X] be a polynomial ring with straightening law on an
upper semimodular semilattice II. Let I = Qk[X], where Q is a straightening
closed ideal in II of homogeneous elements of the same degree such that rank IT\
Q > 2. Then the (1,1)-diagonal algebra of R(I) is Cohen-Macaulay.

This theorem is interesting because it contains the case when I is the ideal
generated by the maximal minors of a generic matrix.

The Cohen—-Macaulayness of R(I)a has been further studied by other au-
thors. Hyry [21] gave a sufficient condition for the Cohen-Macaulayness of the
(1,1)-diagonal of a Cohen-Macaulay standard bigraded algebra in terms of the
defining equations. Cutkosky and Herzog [8] studied conditions under which
there is a positive integer t such that R(I)a is Cohen-Macaulay for ¢ > te.
Lavila-Vidal [22] proved that if R(I) is Cohen-Macaulay, then there exist Cohen-
Macaulay diagonals R(I)a. But the culminate point was the following recent
result of hers:

Theorem 5.3. [23] Let V = Biproj R(I). There ezists a Cohen-Macaulay dia-
gonal R(I)a if and only if the folllowing conditions are satisfied:

(i) V is locally Cohen-Macaulay.

(ii) T(V,0v) = k and H*(V,0Ov) =0 fori > 1.

Moreover, Lavila-Vidal and Zarzuela [24] also studied the Gorenstein prop-
erty of R{(I)a.

6. Koszul Property of R(I)a

In this section we will study the Koszul property of the diagonal subalgebra.
Let A be a positively graded algebra over a field k. Let M be a finitely
generated graded A-module. Set
t:(M) := sup{j| Tor?(L,k); # 0}
with ¢;(M) = —oo if Torf (L, k); = 0. We call
reg M := sup{t;(M) — 1| i > 0}

the Castelnuovo~Mumford regularity of M, and M is said to have a linear A-
resolution if reg M is equal the least non-vanishing degree of M. If k has a linear
A-resolution, we call A a Koszul algebra [2].

A Koszul algebra is always defined by quadrics. Hence we will first study
the problem when the diagonal algebra is defined by quadrics.
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Let T be a standard bigraded algebra over &, that is, T' is generated over k
by the elements of T(; 0y and T{g). Let T = §/J be a presentation of T, where
S = k[X,Y] is a bigraded polynomial ring in two sets of variables X = {z;} and
Y = {y;} with degz; = (1,0) and degy; = (0,1). It is easy to see that Sa can
be represented as the factor ring of a polynomial ring k[T'] by an ideal generated
by quadrics and we can estimate the degree of the minimal generators of the
kernel of the natural map Sa — Ta. As a consequence of this estimation we
obtain the following result.

Proposition 6.1. [7] Let ®S(~aj, —b;) = S = T be a finite free presentation
of T as an S-module. Then Ta is defined by quadrics if

1
¢ 2 - maxaj,

2
1
e> —z-mjaxb,

To study the Koszul property of Ta we need to consider a finite free pre-
sentation of T' as an S-module:

0> F,—> - - > >FK=S—>T.
It can be shown that T is a Koszul algebra if
reg(Fi)a <i+1
fori =1,...,s. Toestimate reg(F;)a we note that F; is a direct sum of modules
of the form S(a,b). The diagonal S(a,b)a of each of the twisted module S(a, b)
can be written as the Segre product of twisted modules over the graded algebras

k[X] and k[Y)]. The Castelnuovo-Mumford regularity of such a Segre product
can be computed and we get

reg S(a,b)a = max { f%]a fg]} )

where [ p] denotes the least integer > p. Therefore, we can compute reg(F;)a
in terms of the shifting bidegrees of the twisted modules of F;. Summing up we
obtain the following criterion for the Koszul property of the diagonal subalgebras.

Theorem 6.2. [7] Ta is a Koszul algebra if, fori=1,...,s,
max {12,121} <i+1
c ? e -— ?
where (a,b) runs over all shifting bidgrees of the twisted modules of F;.

Corollary 6.3. Ta is a Koszul algebra for ¢ and e large enough.
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Since we know the minimal free resolution of the Rees algebra R(I) of a
homogeneous ideal I when [ is generated by a regular sequence (see Sec. 5), we
can deduce from Proposition 6.1 and Theorem 6.2 the following result. Note
that R(I) can be made a standard bigraded algebra if I is generated by forms
of the same degree.

Corollary 6.4. Let I be an ideal generated by a regular sequence of r forms of
the same degree d. Then )

(i) R(I)a is defined by quadrics if ¢ > d/2 + de.

(ii) R(I)a is a Koszul algebra if ¢ > d(r — 1) /7 + de.

We believe that the bound given in (ii) can be improved and we have raised
the following problem.

Problem. Is R(I)a a Koszul algebra if ¢ > d/2 + de?

It was proved by Backelin [1] that the Veronese subrings of a Koszul algebra
are all Koszul algebras. Since any bigraded algebra can be made a (simply)
graded algebra by considering the total degree, we have also raised the following
problem.

Problem. Let T be a bigraded Koszul algebra. Are all diagonal subalgebras of
T Koszul?
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