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Abstract. This is a survey on recent results on the relationship between diagonal
subalgebras and blow-ups of projective spaces.

1. Introduction

Theorem l.l. Let R be the coordinote ring of such an embedded surface. sup-
pose thot dr = deg t 2 dz - d"gg.

' This paper is an extended version ofa lecture given at the 44th Conference ofthe Mathemati-
cal Society ofJapan, Tokyo, August 1999. It was completed when the author visited the Tokyo
Metropolitan University. It was completed when the author visited the Tokyo Metropolitan
University. He would like to tha.nk M. Oka and K. Kurano for arranging this isit and for their
generous hospitality.
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( 1 )  I f  d L -  d 2 = d . ,  c = d + I ,  o n d e = \ '  t h e n  R  i s  d e f i n e d b y S  q u o d r i c s  o n d d

forms of degree d.
(ii) .R is norrnaL

(ii i) R is a Cohen-Macoulay ring if and only i l c>- d1* ed2 - 2'

Moreover, they raised the problem of computing the defining equations for

rR in (i).
Iiiagonal subalgebra was introduced in order to solve this problem [26] and

it turned out that digonal subalgebra is an effective algebraic tool for the study

of embedded rational n-folds obtained by blowing-up Fn-l along a subvariety

[7]. In this paper we will give a survey of the methods and the results of [26]
r"a 121 and we shall see that Theorem 1.1 can be greatly generalized'

we will consider the more general situation of blowing-uP IPn-t at an arbi-

trary subvariety Z. Let 7 denote the obtained rational (n-l)-fold. Then V cafr

be described algebraically as follows.

Let 1c klxl= klrr,." ,o'] be the defining ideal of Z' One can associate

with 'I the Rees algebra: 
R(.I) :: @,>tlut,

which is the subalgebra of k[X, t] generated over ft[x] by the elements f t, f e L

Since .[ is a homogeneous ideal, n(/) has a natural bigraded structure by setting

rR(. I )1" , , ;  -  (1")ut '

for all (u,u) e N2, where (/,)" denotes the,b-vector space of forms of degree u

of .['. Therefore, we can associate with R(/) the projective scheme

BiProj ft(/) =

{P e Spec ft(/)l P is bihomogeneous' P I R(I)s and P V R(I)et},

where.R(/)tri and R(/)12y denote the ideals of .R(/) generated by the homoge'

neous elemenis of degree (u, u) with u ) I and u 2 1, respectively. The following

lemma is more or less a standard fact:

Lemma L.2. V = BiProj ft(/).

Let c and e be two fixed positive integers. we shall see when v can be

embedded into a projective space by the linear system (.I")" of forms of degree

c in the ideal ,I". Let
E := ,b[( /")" ]

be the subalgebra of e[x] generated by the elements of (.I')". since ft is gener-

ated by forms of the same degree, it is a graded algebra and we can define the

projective scheme

Proj.R t-- {p e Specr?l 5c is homogeneous and pV R+},

where Ra denotes the ideal of ,? generated by the homogeneous elements of

positive degree.
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d"rlL:'j '==r,.(.':, ';.-'f ') ' 
where /i is a homogeneous polvnomial with d1 -

d  :=  max{dr  , . .  .  ,d r } .

one can easily prove the folowing relationship between Biproj.R(/) and proj.R:

Lemma 1.3. Biproj ft(/) = proj.R if c > d,e + I.

So we obtain V ! proj g if c > d,e * 1.. In that case, the linear system (.Ie)"corresponds to a very ample divisor of 7 and g is the .""rlir,"r. ring of theembedding of V into a projective space by this very urnpb I;;o,

Now we shalr see. th-at, given two positive integers c, e, one can associatewith every bigraded argebra i subalgebra and rhat i ir.j"i tnis suuatg"bra off t ( I )  i f c l d e + 1 .

-,-- 
t"t A = {(cz, ei)li e 22}. Let $ = o1u,u)€N,s(,,,,) be an arbitrary bigradedrmg.

Deffnition. Giuen any bigraded S_rnodule M we define

M5:=  @;ezMkr rc i )

and we call M6 the A-diagonal or the (c,e)_d.iagonal of M.

It is clear that ,ga is a graded ring and.M6 a graded ,ga_module. We mayconsider the A-diagonal as a functor from the;t.*-, 
"rti,""ied 

algebras tothe category of (simply) graded algebras.
can intepret the algebra R = k[(l")"r as the A-diagonal of the Reesalgebra.R(/) for certain c and e:

Lemma t.4.  R= R(/)a i f  c)  d,e.

This interpretation of the algebra .R provides us with an algebraic tool forthe study of the blow-ups of projictive .pu..r.
We shall see that many properties of ft(I)a can be read ofi from the Reesalgebra ̂ R(r). we would like to mention that the above observations arso hordif we consider the blow-up of any projective variety w at any subvariety Z. Inthis case I is a homogeneous ideal of lhe coordinate .i.rg oi-#.--'
This paper consists of six sections. The next five sections win deal withthe presentation, normalitS locar cohomology coh""-M.;;;;;rr, *a Koszulproperty of ft(f)6, respectively

we will keep the notations of this introduction unress otherwise specified.
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2. Presentation of ft(I)a

Let ,t[X, Y7 = klxt,'. ' ,an,a:t. . . ,9'] be a polynomial ring over ,t. We consider
klK,Yl as a bigraded algebra by setting

d e g c i  =  ( 1 , 0 ) ,  i  =  1 , . . . , f l ,

d e g g i  :  ( d i , l ) ,  j  =  1 , . . . , r .

Mapping yi to t1t we get a bigraded isomorphism

.R(D = klx,YllJ,

where J is a bihomogeneous ideal of klx,Yl.It is clea,r that

n(04 =  k lx ,Y la lJ t .

Thus, to find a presentation for R(/)6 we only need to find a presentation for
klX,Yla and the preimage of J6 in the polynomial ring of the presentation of
klX,Y)a.

The algebra klX,Yld is generated by the monomials oi ' ' . . " i "y! ' ' . 'ab,"
whose exponents satisfy a system of equations

or  *  " '+  @n +  b td l  +  " '  +  b rd ,  -  c i ,

b r * " ' * b , - e i ,

where i can be any non-negative integer. Such an algebra is defined by binomials,
hence one can easily find a presentation for &[X,Y]a.

Let us consider the following case which generalizes Theorem 1'1(i).

C a s e :  d 1  = . . '  =  d r = d , c = d +  1 ,  e  =  1 .

In this case .I is generated by forms of the same degree. Therefore, we can
replace the natural bigrading of R(/) by the simpler bigrading:

R(/)r" , ,1 -  ( I ' )u+aut '  ,

which corresponds to the standard bigrading degr; = (1,0), deggi = (0,1) of
klx,Yl. Since the new bigrading is only a linear transformation of the natural
bigrading, the ideal J remains bihomogeneous.

Now, let  A = {( i ,  i ) l  i  e V'2}.  Then ̂ R(/)6 =,t [ /a+r] .  We have

k [ X , Y ] a  = k @ ; a i l i = 1 , . . ' , n ,  i  =  1 , . . ' , r l

= klrllr2g),

where T = (t;) is an n x r generic matrix and' I2(T) denotes the ideal of k["]

generated by the 2 x 2 minors of ?.



Diagonal Subolgebras and Blow-ups of Projectiue Spoces 5

Proposition 2.1. Let C be an ideal of klTl generated by the preimages of the
elements ol a rninimal set of generators of J6. Then

n ( / ) a  * k l T l l I 2 Q ) + C .

To compute C we only need to find a set of generators of Ja and then
compute their preimages in /c[?]. But such a set of generators for J6 can be
easily determined.

Lemma 2.2, Let J = (Ht, . . . ,Hr),  where H; is a bihomogeneous polynomial
of degree (a;,b;) ,  i  = 1,. . . ,s.  Put ci  = max{a;,b;} .  Then J6 is generated by
elements of the lorms H;M, where M e klX,Y) is a monomial with d,egM =
( c i  -  o i , c i  -  b ) ,  i  =  1 , . . . , s .

Now we will show how to compute a presentation of 8(/)6 in the situation
of Theorem 1.1(i).

Example. Let / = (t,S) C lelx1,x2,ca], where f ,g are two homogeneous poly-
nomials of the same degree d which form a regular sequence (the ideal r need
not to be the defining ideal of a set of points). We have

R(1) -  le lx1, x2, rs,  At,yzl  I  @),

where

In this case,

H := 9Ut -  faz.

T _

is a 3 x 2 generic matrix. Hence,

I2(T) = (tntzz - tntzr,hfisz - tntil,tzttsz - tzztsr)

is generated by 3 quadrics. Since degH - (d,1), (//)6 is generated by elements
of the form Hyiybr, a t b - d - 1. Since there are d monomials yfy! with
a t b = d - I and since the preimages of Hyigl in,t["] is a form of degree d,
the preimage C of (Il)a in ,t["] is generated by d forms of degree d. Therefore,
the defining ideal I2(?) * C of ft(/)a is generated by 3 quadrics and d forms of
degree d. This gives an easy proof for Theorem 1.1(i). Moreover, we can also
solve the problem of computing the defining equations explicitly. For instance,
if | -- x! and 9 = c!, then H = xlyt - *!.az and tifLt\, - tirtlt', a *b = d - r,
is a preimage of. Hyflgb, in e["]. Therefore, we may put

(iii ii)

Hence,

C = ( t ! .2-  tzr t t lL , t r r t f i '  -  t \ r t l r , , . . .  , t f r r t r ,  -  tor r ) .
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ft (4a = k[Tl I (tLfizz - ttztzt, t1.1tsz - tntT, tzfisz - tzzti l,

t ! ,  - t2rt! ;L,trrt fr '  -  tTrtorr ' , . . .  , t fr, tr,  - t lr).

We would like to raise a more general problem as follows.

Problem. Compute the Betti numbers of R(I)5 in terms of I.

3. Normality of ft(/)a

Let S be an arbitra^ry bigraded domain. Let

e(S) = { 4l ,,e are homoseneous, e I o}( e '  )

be the field of homogeneous fractions of S. Then Q(S) is a Z2-bigraded ring.
Let 5 denote the integral closure 3 of ^9 in Q(S). Then 3 aho has a bigraded
structure. Therefore we can define the A-diagonal 36.

Let

q(Sa) = { [ l  ! ,g e Sa,are homogeneous, 9 l0]

be the field of homogeneous fractions of 56. Let ($) denote the integral closure
of 56 in Q(Sa). By degree reasoning we can easily show that

=  3a  o  Q(Sa) .

As a consequence, the normality is preserved by passing to the diagonal sub-
algebra.

Proposition 3.1. If S is a normal dornain, then so is Sa.

This result can also be proved using the notion of Reynolds operator which
is of independent interest. A Reynolds operator of a ring extension r? C ,9 is
an .R-module surjection $ : S -+ rR such that the composition ft C ^9 + .R is
the identity map. In this case, normality carries from S to .R by a result of
Hochster and Roberts [19]. A Reynolds operator exists if and only if .R is a
direct summand of ,5. Therefore, the ring extension Sa C ^9 has a Reynolds
operator.

Now we want to apply the above observation to the diagonal .R(/)6 of the
Rees algebra R(f).

First we will show how to compute the integral closure IEOil of .R(I)a
in terms of /. It is not hard to see that

/ - ^  t rn  . \Q(E( r )a )  =  *  ( ; ,  . . .  , t , r r f  )
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which is the subfield of e(X) generated by the elements azlrt,... ,a4f r1,x1f
for any element t * 0 of (/")"-t.

It is well-known that R(I) = O,€N7tto, where 7d denotes the integral closure
of .I'. Therefore,

ma=, t [ (74)" i l  rex]

which is the subalgebra of k[X] generated by the elements of (1.i)";, i € N.
So we obtain the following formula for the computation of the integral closure
(a-(nt of ̂ R(/)6.

Proposition 3.2. [26] Let I l0 be on arbitrary element in (1")"-1. Then

/ r ^( E ( i l I  = k ( ! 2 , . . . , ' n
\ * r  * L

\ -
, r r f  

) n k l ( 1 " , ) " , 1 i  
€  N l .

Moreover, we can easily generalize Theorem 1.1(ii) as follows.

Let .[ be the defining prime ideal of a collection of points. Then

I  = i i  g t ,

where 6ei are the defining ideals of the points. Assume that -I is generated by a
regular sequence. Then .I" is an unmixed ideal for all t' ) 1. Flom this it follows
that

I, = nj(pj),.

Hence,

B(/ )  = @u>olut"  = f l i  (ou>o ( r r i ) ) .

Note that e,2o(trr) ' is the Rees algebra R(gci) of p1. This Rees algebra is
normal because 5c1 is generated by linear forms. Therefore, as an intersection of
normal rings, ^R(.I) must be normal, too. By Proposition 3.1, this implies that
n(/)a is also normal. So we obtain

Theorem 3.3. [26] Let I be the defining prime ideal of a collection of points in
Pn-r. Assume thot I is generated by a regular sequence. Then R(I) and R(I)6
are nortnal,

4. Local Cohomology of .R(/)a

Let ,5 = k lX,Y)  wi th the b igrading degr;  -  (1,0)  and degyi  = (d i ,1) .  S ince
.R(/) can be represented as a bigraded quotient ring of S, we will consider,
instead of R(/), an a.rbitra,ry finitely generated bigraded S-module ,L.

Let  E be the addi t ivemonoid generated bythe tuples (ot , . . .  ,an,br , . . .  ,  b")  €
N'+' which are solutions of a system of equations

a t  *  " ' +  a n  +  h d t  - l  " '  *  b T d r :  s ' i ,

b r * . . . * b , - e i ,
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where i cau be any non-negative integer.

Let /c[E] denote the semigroup ring of ,E over ,b. Then

S^ = /c[E].

I t  i s  eas i l y  seen  tha t  E  i s  no rma l ,  t ha t  i s ,  i f . r n (a1 , . . . ,Qn ,b1  , . . . , b r )  e  E  fo r

some in tege r  m  )  0 ,  t hen  (o t , ' . .  ,Qn ,bL t . . . , b ' )  €  E '  Hochs te r  [ 18 ]  showed

that in this case, &[E] is a Cohen-Macaulay ring' Moreover' we can compute

the canonical module @rft1s1 of e[E] in terms of E 128). It follows that Sa is a

Cohen-,Macaulay ring with
&,,Sa = (0rSlA.

Hence, there is a canonical homomorphism from Hom5(^L, o5)6 to

Hom5o (tra, urso).

By local duality [14] this canonical homomorphism induces the following

link between the local cohomology module l/,?,tt (r) of .L (with respect to the

maximat $aded ideal ms) and the local cohomology module I/S"o Qt) of. La

(with respect to the ma:cimal graded ideal m5o of 56).

Proposition 4.1. l7l There is a cononicol graded homomorphism

Qqr: H|,o(ra) -+ r4*t(z)o.

To obtain more information on the local cohomology modules of .L4, we
have to consider a minimal free resolution of -L:

0 - r D r - | " ' - +  D 1 + D s - + L .

Taking the A-diagonals we obtain a graded resolution of tr6:

0 + (D1)6 + " '  - )  (Dr)a + (Do)a -+ La,.

Therefore, we may get information on the local cohomology modules of .La from
that of (Dr)a, i  = ! , . . . ,1.  Each module D1 is of the form @S(o,b),  where
.5(o,b) denotes the twisted module S with the degree shifted by (a,b). Since
(Dt)a = @S(a, b)6, we need to know the local cohomology modules of S(o, b)a.
It turns out that the local cohomology modules of S(o, b)6 can be computed by
means of the notion of Segre products of bigraded modules.

Let .A and B be two bigraded algebras over a field fr. Let M be a bigraded
.A-module and N a bigraded B-module. If we set

(M @* N)t r , r )  i=  O(gr1u1 , rz*uz)=(u,rSM1u1 ,u1)  8p N@",r" )

for all (u,u) e 22, then M 8x N is a bigraded module over the bigraded algebra

A E x B .

Deffnition. The Segre product M &d N of M and N is defined by

M &a N :=  (M Or  N)n .
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It is clear that .AEa B is a graded algebra and M8a N is a graded AAaB'
module.

This Segre product of bigraded modules is a natural extension of the usual

Segre product of (simply) graded modules'

Exa.mple. If .4 and B are two graded algebras, we may view .A and B as bigraded

algebras by setting

A6,ol  = Au, 4p,,1 = 0 i f  u )  0,

B1o,o)  =  Bu,  8p , ,1=  0  i f  u  >  0 '

In this case, if we take A to be the (1,l)-digagonal of 22,then A8a I is the

usual Segre product Mg.N of .A and B which is defined by

AgB := @;eroAi gr Bi .

Goto and watanabe [t3], stiickrad and vogel [27] already computed the

local cohomology modules of the Segre products of modules over graded algebras.

Following theii approaches we can describe the local cohomology modules of

MgaN by means of those of M and N. For this we will compute the transforms

of MSaN with respect to the maximal graded ideal of AAa,B which are defined

as follows (see, e.g., [3]).
Given an ideal m of a ring ? and a ?-module -L, we call the module

D!"(L) :- lim Extf (m', L)q

the gth m-transform of L, q 2 0. The m-transforms of tr are related to the local

cohomology modules Hf"(L) of ,L with respect to m by the exact sequence

0 + r / g ( r )  - + L +  D g ( r )  + n l ( I ) + 0

and the isomorphismt 
,1,(r) = Hfllt (r), q ) 1'

We have the following formula for the transforms of the Segre product of

bigraded modules.

Theorem 4.2. 17) Let ma6oB, ma, ond me ilenote the morimal graded ideols

of A@aB, A, and B, resPect iaelY. Then

Dln^eo"(M @a lr) = o Dk^(M) aa Dl,, (N), q Z 0.
i+  j=q

Now let A = klxl and B = e[y] with the bigrading degr; = (0'1) and

deggi = (di ,1).  Then S =.4 8r.8. Hence,

5(o, b)a = A(a,b) e4 B.
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Since A and B axe polynomial rings, we know the local cohomology modules of
.4 and B (which are all zero except Hn"@) and .Ifi, (B)). Using the above the-
orem we can describe the local cohomology modules of 5(o, b) in terms a,b,c,e.
Flom this description we can deduce the following results on the local cohomol-
ogy modules of .L.

Theorem 4.9. l7l Assume that c ) de * 7. Then
(r) Qot is an isomorphism for q < n.

(i1) There is a positiae integer so such that $qt induces on isomorphism

[rfss^ (Ia)]" = [I/st'(r)a]"

for lsl>. ss ond q > n. .

Theorem 4.4, l7 l  AssurnethatdimL6 = dimL-l  for c) e )  0.  Thenthe
following conditions are equiuolent:
( i )  ,a is a BuchsbawnmodulewithHftro(tra),  = 0 for sf  0,  q < dim.[-  I

i l c ) ) e ) ) 0 .
( i i )  I /Ss(tr) t -" ,- , )  =0 for u> u > 0, g < dim-0.

5. Cohen-Macaulayness of E(I)a

It is usually hard to determine when the diagonal of a bigraded algebra is Cohen-
Macaulay, even in the case of Segre products of graded algebras 1L3,271.

If we happen to know a free resolution ofthe given bigraded algebra, then we
can use the knowledge on the local cohomology modules of the twisted modules
of the resolution to find out which diagonal of the bigraded algebra is Cohen-
Macaulay.

Le t  us  cons ider  the  case I  =  (h , . . . , f , ) ,  where  /1  , , . . , f ,  i s  a  regu la r
sequence of homogeneous forms in e[X]. In this case, we have the following
presentation:

,?(/)  = SlIz(M),

where S = k[X,Y] and M is the matrix

( h  r )
\Yt ! .  /

Therefore, the Eagon-Northcott complex gives a minimal free resolution for
R(/) :

0 -r D"-1 -| "' -) D1 + Ds = S -+ ft(/),

where

P

D o = O
m=l  1 ( j r ( ' . . (  j p+ tS r

S ( - ( d i ,  + ' . . +  d j , * r ) , - n ) ,  p  -  1 , . . .  , r  -  1 .
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Using the information on the shifts of the twisted modules of Dp, we can
compute the local cohomology modules of (Dp)A. This led to the following result
which generalizes Theorem 1.1(iii):

Theorem 5 .1 .  [7 ]  Le t  I  =  ( . f t , . . .  , f , )  C  &[ r t , . .  .  , xn ] ,  where  f1 , . . .  , f ,  i s  a
regulor sequence of homogeneous elements of degree d!,.. . ,dr. Let d = ma;r.j dj
and assumethatc>. detL. Then R(I)6 is o Cohen-Macoulay ring if and only
NT

r

' > f d , i + @ - L ) d - n .
j=r

Example. Let .I be as above with n = 3, r = 2. Assume that dr 1 dz. By the
above theorem, R(/)6 is Cohen-Macaulay if and only if c ) dr + ed2 - 3. That
is exactly Theorem 1,1(iii).

Another approach to the Cohen-Macaulayness of the diagonal subalgebras
is the technique of filtration.

Let ,9 be an arbitrary bigraded algebra. Let F be a filtration of bigraded
ideals of S. Then grr(S) also has a bigraded structure and therefore the diag-
onal subalgebra 917(,5)6 . Let Fa be the filtration of .9a which consists of the
A-diagonals of the ideals of f. Then we can show that

grro(Sa) = gre(S)a.

As a consequence, if gre(^9)a is Cohen-Macaulay, then so is Sa.

This technique can be applied to study the Cohen-Macaulayness of A(/)a
when .[ is generated by a d-sequence or when .[ is a straightening closed ideal.
For more information on these notions, we refer to [4,5,20].

Let ,I = (fi, . . . , t,) C ft[X] be generated by forms of the same degree, say d.
Then R(/) can be bigraded by .R(/)t",,1 = (I')oaautu. Consider a presentation

R(/) = klx,YllJ'

Then the lexicographic term order on klx,Yl induces a filtration f of bigraded
ideals of ^R(/) with

gr7(R(/ ) )  = k [x ,Y] lJ '  ,

where J* denotes the ideal generated by the initial forms of the elements of J.
Hence

gr5(.R(I))a = lcIX,Yfu I Q.) a,,

If h,. .. , .f, is a d-sequence or if k[X] is a polynomial ring with straightening
law on a finite poset II and O = {.f1, ... , fr} C II is a straightening closed poset
ideal, where |t,...,/". is a l inea,rization of O, then we can compute J' 116,251.
It turns out that "I* is the intersectiou of ideals 8e' such that each quotient ring
klX,YllQ j is the tensor product of two well-determined algebras. Therefore,
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(J.)6 is the intersection of the ideals (Qi)6 and &[X,Y)tl(Qi)t is the Segre

product of these algebras. Under some mild conditions, the Segre products of

these algebras are Cohen-Macaulay so that we can deduce that ft[X,Y]alQ-)d

and therefore, .R(/)a are Cohen-Macaulay rings. For instance, we can prove the

following result:

Theorem 5.2. 126l Let klXl be o polynomial ring wiih stroightening law on an

upper semirnod,ular semilottice IL Let I = QklXl, where dl is a stroightening

closed ideol intl of homogeneous elements of the same degree such thot rank II \
n > 2. Then the (l, l)-diogonol algebra of R(I) is Cohen-Macaulay.

This theorem is interesting because it contains the case when -I is the ideal

generated by the maximal minors of a generic matrix.

The cohen-Macaulayness of .R(r)6 has been further studied by other au-

thors. Hyry [21] gave a suficient condition for the Cohen-Macaulayness of the

(1, l)-diagonal of a Cohen-Macaulay standard bigraded algebra in terms of the

defining equations. Cutkosky and Herzog [8] studied conditions under which

there is a positive integer t such that R(/)6 is Cohen-Macaulay for c ) te.

Lavila-Vidal [22] proved that if n(I) is Cohen-Macaulay, then there exist Cohen-

Macaulay diagonals ft(/)a. But the culminate point was the following recent

result of hers:

Theorem 5.3. [23] LetV = Biproj R(I). There eaists a Cohen-Macaulay dia-

gonat R(I)6 i! and only if the lolllowing conditions are satisfied:

(i) V rs locolly Cohen-MocaulaY.
( i i )  f (% Ov) = k ond H'(V,Ov) =0 for i  > l .

Moreover, Lavita-Vidal and Zarzuela [24] also studied the Gorenstein prop-

erty of ft(I)a.

6. Koszul PropertY of .R(/)a

In this section we will study the Koszul property of the diagonal subalgebra.

Let A be a positively graded algebra over a field ft' Let M be a finitely
generated graded A-module. Set

t ;(M) := sup{r l  Torf  ( .1,  k) i  l0}

with ti(M) = -oo if Torf (I, k)i = 0' We call

regM := sup{t ;(M) -  i l  i  > 0}

the Castelnuovo-Mumford regula^rity of M, and M is said to have a linear A-

resolution tf. rcg M is equal the least non-vanishing degree of. M . II lc has a linear

.A-resolution, we call ,A a Koszul algebra [2]'
A Koszul algebra is always defined by quadrics. Hence we will first study

the problem when the diagonal algebra is defined by quadrics.
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Let ? be a standard bigraded algebra over &, that is, ? is generated over k
by the elements of ?1r,oy and ?10,11. Let T = S I J be a presentation of ?, where
S = &[X, Y] is a bigraded polynomial ring in two sets of va.riables X - {o;} and
y = {gi} with degc; = (1,0) and deggi = (0,1). It is easy to see that 5a can
be represented as the factor ring of a polynomial ring fr[?] by an ideal generated
by quadrics and we can estimate the degree of the minimal generators of the
kernel of the natural map Sa -+ ?6. As a consequence of this estimation we
obtain the following result.

Proposition 6.1. [7] Let @S(-o;,'bi) + S -+T be a finite lree presentation
of T as an S-module. ThenTa is defined by quadrics if

1
c21m1xai,

Ie 2 ,nyfu'

To study the Koszul property of ?a we need to consider a finite free pre-
sentation of ? as an S-module:

0 -l F" -) ... -) Fr -+ Fo = S -r ?.

It can be shown that ?a is a Koszul algebra if

r e g ( 4 ) a < i + 1

for i = 1, . . . ,s. To estimate reg(.4)a we note that .4 is a direct sum of modules
of the form .9(a, b). The diagonal S(a, b)6 of each of the twisted module S(4, b)
can be written as the Segre product of twisted modules over the graded algebras
,t[X] and &[f]. The Castelnuovo-Mumford regularity of such a Segre product
can be computed and we get

r rgr r9r \r e g S ( a , b ) a  =  m a r . t ,  
. , , ,  

" ,  J ,

where I pl denotes the least integer ) p, Therefore, we can compute reg(Pr)a
in terms of the shifting bidegrees of the twisted modules of Fi. Summing up we
obtain the following criterion for the Koszul property of the diagonal subalgebras.

Theorem 6.2. l7 lT5 is a Koszul algebro i f ,  tor i  = 1,. . .  ,s,

f  . @ .  . b . ' l* o t t f  l , l ; l )  < i + r ,

where (a,b) rans ouer oll shifting bidgrees of the twisted modules of F;.

Corollary 6.3. ?a is o Koszul algebra for c and e large enough.
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Since we know the minimal free resolution of the Rees algebra ,R(/) of a
homogeneous ideal / when .[ is generated by a regular sequence (see Sec. 5), we
can deduce from Proposition 6.1 and Theorem 6.2 the following result. Note
that fi(/) can be made a standard bigraded algebra if .[ is generated by forms
of the same degree.

Corollary 6.4. Let I be an ideal generated by a regular sequence ol r lonns of
the some degree d. Then
(i) ,R(I)A is defined by quodrics if c > dl2 * d,e.

(i i) .R(/)A is a Koszul algebra if c> d(r - L)lr + de.

we believe that the bound given in (ii) can be improved and we have raised
the following problem.

Problem. Is .R(/)a a Koszul algebra if c> dl2 + de?

It was proved by Backelin [1] that the Veronese subrings of a Koszul algebra
are all Koszul algebras. Since any bigraded algebra can be made a (simply)
graded algebra by considering the total degree, we have also raised the following
problem.

Problem. Let T be a bigraded Koszul algebra. Are all diagonal subalgebras of
T Koszul?
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