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Abstract. Necessary and sufficient conditions for the stability of the Karush - Kuhn -
Tucker point set in a general indefinite quadratic programming problem are obtained
in this paper.

1. Introduction

Given matrices 4 € R™*? F ¢ R**" D ¢ R™ ", with D being symmetric,
and vectors ¢ € R®, b € R™, d € R*, we consider the following general indefinite
quadratic programming (QP for brevity) problem QP(D, A,c,b, F,d):
{ Minimize f(z) := 127Dz + Tz (11)

subject to z € R", Az > b, Fz > d F

Here the superscript T denotes transposition. In what follows the pair (F,d) is
not subject to change. So the set A(F,d) := {z € R" : Fz > d} is fixed. Define
A(A4,b) = {z € R” : Az > b} and recall that # ¢ A(A,b) N A(F,d) is said to
be a Karush - Kuhn - Tucker point of QP(D, A, ¢, b, F,d) if there exists a pair of
Lagrange multipliers (i, 7) € R™ x R* such that

AZ>b, a>0,
Fi»d, ©>0,
aT(AZ —b) + 0T (FE~d) =0

The set of the Karush-Kuhn- Tucker points and the set of the solutions of
problem QP(D, A, ¢,b, F,d) are denoted, respectively, by S(D, A, c,b, F,d) and
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sol (D, 4, ¢, b, F,d). It is well known [5] that sol (D, A, ¢, b, F, d) CS(D,A,c,b, F,d)
and, moreover, every local solution of (1.1) is a Karush - Kuhn - Tucker point.

If s = n, d = 0, and F is the unit matrix in R"*", then problem (1.1) has
the following canonical form:

{ Minimize f(z) := 327Dz +c"z (1.2)

subject toz € R®, Az >b, £ >0

For simplicity of notation, in the case of the canonical problem, we write
S(D,A,c,b) instead of S(D,4,c,b, F,d), and sol (D, A,c,b) instead of
sol (D, 4, ¢, b, F,d). The upper semicontinuity of the multifunction

pl — S(p’), pl = (D,,A’,C,,bl) € Rgxn X Rmxn % Rn X Rm’ (13)

where R} *™ C R™*" denotes the subspace of all the symmetric matrices of order
n, has been studied in [10] and [12]. This property can be interpreted as the
stability of the Karush - Kuhn - Tucker point set S(D, A, ¢, b) with respect to the
change in the problem parameters. In this paper we are interested in finding out
how the results in [10] and {12] can be extended to the case of problem (1.1).
Namely, we wish to obtain some necessary and sufficient conditions for the upper
semicontinuity of the multifunction

pl — S(pI,F, d)’ P' = (DlvAlvcl,bl) S ]Rgx" x R™*™ x R™ x R™, (14)

which include the corresponding results of [10} and [12] as a special case. As in
the canonical problem, the obtained results can be interpreted as the necessary
and sufficient conditions for the stability of the Karush-Kuhn-Tucker point set
S(D, A, c,b, F,d) with respect to the change in the problem parameters.

Our proofs are based on several observations concerning the system of equal-
ities and inequalities defining the Karush - Kuhn - Tucker point set. We wish to
stress that the proofs in [10] and [12] cannot be applied directly to the case of
problem (1.1). This is because, unlike the case of the canonical problem (1.2),
A(F,d) may fail to be a cone with nonempty interior and the vertex 0. In order
to deal with the general problem (1.1) we have to use some new arguments.
However, the proof schemes proposed in [12] and [10] also work for the case of
problem (1.1).

The paper is organized as follows. In Sec. 2 we will establish two necessary
conditions for the u.s.c. property of the multifunction (1.4). Theorem 2.1 can
be used for the case where A(F,d) is a polyhedral cone with a vertex zo, where
zo € R™ is an arbitrarily given vector. Theorem 2.2 works for the case where
A(F, d) is an arbitrary polyhedral set, but the conclusion is weaker than that of
Theorem 2.1. Several sufficient conditions for the upper semicontinuity of the
multifunction (1.4) are given in Sec. 3. The obtained results are then compared
with the corresponding ones in [10], and two illustrative examples with non-
convex QP problems are considered.

The reader is referred to [12] for a detailed review on the research on stability
of quadratic programs. To our knowledge, up to now [1]-{7] and (9] are among
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the key references in the field. Some recent results on continuity properties of
the solution map and the local-solution map in indefinite quadratic programming
can be found in [8] and [11].

Now we explain some notations which will be used throughout the paper.

For any positive integer r, R is equipped with the Euclidean norm I l;
vectors in R are understood as columns of r real numbers. The norms in the
space of matrices R™*" and in the product space R® x R™ x R*, respectively,
are defined by the following formulas:

M| = max{||Mz|| : z € R", ||| =1},
(@, w, o)l = llell + lull + llvll ¥ (2,u,v) € R* x R™ x R°.

For any M € R™*" and ¢ € R", the set {z € R* : Mz > q} is denoted by
A(M,g). For F € R**™ and A € R™*", we abbreviate the set

{(u,v) eR™ x R* : ATu+ FTy =0, u2>0, v>0}
to A[A, F), and the set
{(&n) €R™ xR*: £Tu+1nTv <0 V(u,v) € A[4, F]\ {(0,0)}}

to int (A[4, F])*. (The second set is nothing but the interior of the dual cone to
the first one.)

2. Necessary Conditions for the Stability

Two sufficient conditions for the upper semicontinuity of the multifunction (1.4)
will be obtained in this section.

Definition 2.1. Let p = (D, A,c,b) € RI*™ x R™*" x R® x R™. The mul-
tifunction (1.4) is said to be upper semicontinuous (u.s.c. for short) at p if,
for any open subset @ C R™ containing S(p, F, d), there ezists § > 0 such that
S(p', F,d) C Q for everyp' = (D', A',¢,b) € RE*™ x R™*" x R™ x R™ satisfying

max{||D' — DY}, |4’ - Al lIc' ~ el|, ||t - b]}} < .

The following two remarks clarify some points in the assumption and con-
clusion of Theorem 2.1 below.

Remark 1. If there is a point zo € R™ such that Fz, = d. Then A(F,d) =
Zo + A(F,0), hence A(F,d) is a polyhedral convex cone with the vertex zg.
Conversely, for any zo € R and any polyhedral cone K with the vertex 0, there
exists a positive integer s and a matrix F' € R**" such that 2o + K = A(F,d),
where d := Fay.

Remark 2. If A(F,d) and A(A,b) are nonempty, then A(F,0) and A(4,0),
respectively, are the recession cones of A(F,d) and A(A,b). By definition,
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S(D, A,0,0, F,0) is the Karush - Kuhn- Tucker point set of the following QP
problem:

minimize z7 Dz subjectto z € R*, Az >0, Fz >0,
whose constraint set is the intersection A(A4,0) N A(F,0).
Theorem 2.1. Assume that the set S(p, F,d), p = (D, A, c,b), is bounded and

there exists zo € R™ such that Fzo = d. If the multifunction (1.4) is upper
semicontinuous at p, then

S(D, 4,0,0, F,0) = {0}. (2.1)

Proof. This proof follows a scheme given in the proof of Theorem 2.3 in [12]. Sup-
pose, contrary to our claim, that there is a non-zero vector Z € S(D, 4, 0,0, F,0).
By definition, there exists a pair (&%, 7) € R™ x R? such that

Dz — ATa - FT5 =0, (2.2)
Az >0, 420, (2.3)
Fz>0, 920, (2.4)
4T Az + 97 Fz = 0. (2.5)
For every t € (0,1), we set
g 11 j
Ty =g + D w=gh u=sh, (2.6)

where zg is given by our assumptions. We claim that there exist matrices D, €
RG*™, A; € R™*™ and vectors ¢; € R®, b; € R™ such that

max{||D; — D, |4 — Al|, lle: — ], [lb: = b]|} = 0 ast— 0,

and
Dizy — ATuy — FTu, 4 ¢, =0, (2.7)
Agzy 2 by, up 20, (2.8)
Fzy >d, v 20, (2.9)
ul (Aexy = b;) + vF (Fzy - d) = 0. (2.10)

The matrices D;, A; and the vectors c;, b; will have the following representations

Di=D+tDy, A =A+tdy 2.11)
¢t =c+tcg, by =0b+thg, (212)

where the matrices Dy, Ag and the vectors cg, by are to be constructed. First we
observe that, due to (2.4) and (2.6), (2.9) holds automatically. Clearly,

Agzy — by = (A + tAq) (zo + %) —~ (b + tho)

1
= t(Aozo — bo) + ?Af + AoZ + Axg — b,
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and

ul (Aezy — b)) + vf (Fzy - d)
aT i _ o7 7
= [t(Ao:co —bo) + ?A:c + AoZ + Az ~ b] + T[F (C’?o + ?) — d]

=T
=Ty =gyt tiz(aTAf +07F2) + = (Ao + Ay - b).
So, by (2.3) and (2.5), if we have
AoZ + Azg —b=0 (2.13)

and
Ao.’l:o = bo = 0, (214)

then (2.8) and (2.10) will be fulfilled. By (2.2),

Dz, - AtT’U,t = FT‘Uz + ¢

= (D +1Do) (20 + %) ~ (A +1t45)T2

=~ FT2 4 e+ tey
t t

L e AT- _ pTs o aT-
=?(Dz—A @~ F*9) + t(Dozo + co) + Dzo + Do — AT@ +c,
=t(Doa:o+co)+Da:0+D05:—Ag'i1+c.

Therefore, if we have
D20+D05—Ag‘ﬁ+0=0 (215)

and
Dozo + co = 0, (2.16)

then (2.7) will be fulfilled.

Let & = (&1,...,8.)", where 2 # Ofori € T and ; = Ofori ¢ I, I C
{1,...,n}. Since Z # 0, I is nonempty. Fixing an index iy € I, we define A, as
the m xn matrix in which the igth column is :T:,.'o1 (b~ Azg), and the other columns
consist solely of zeros. Let by = Aozo. One can verify immediately that (2.13)
and (2.14) are satisfied; hence conditions (2.8) and (2.10) are fulfilled. From
what has been said it follows that our claim will be proved if we can construct a
matrix Do € RG*" and a vector ¢y satisfying (2.15) and (2.16). Let D, = (dij),
where d;; (1 <4,j < n) are defined by the following formulas:

dii = 7' (AT — Do ~- c), Viel,

dioj = djip = 23, (A§@— Dao—¢), Vi€ {1,...,n}\ ],
and d;; = 0 for other pairs (i, j), 1 < i,j < n. Here (AT@~Dzy—c);, denotes the
kth component of the vector AT@ — Dzy — c. It is clear that Dy is a symmetric
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matrix, hence Do € RG™™. If we define cg = — Doz then (2.16) is satisfied. A
direct computation shows that (2.15) is also satisfied.

We have thus constructed matrices Do, Ag and vectors cg, bg such that for
Ty, Uy, Vg, Dy, Aty ct, by defined by (2.6), (2.11) and (2.12), conditions (2.7)-
(2.10) are satisfied. Consequently, z; € S(D;, A¢, ¢, b, F, d). Since S(p, F,d) is
bounded, there is a bounded open set 2 C R™ such that S(p, F,d) C Q. Since
max{||D; — D||, [JA: — Al et — ell, ||b: — b||} — 0 as ¢ — 0 and the multifunction
p' — S(p',F,d) is us.c. at p = (D,A,c,b), z; € Q for all sufficiently small
t. This is impossible because ||z:|| = ||zo + Z/t|| & o0 as ¢ = 0. The proof is
complete. ™)

Remark 3. If d = 0, then A(F,d) is a cone with the vertex 0. In order to
verify the assumptions of Theorem 2.1, one can choose 7o = 0. In particular,
this is the case of the canonical problem (1.2). Applying Theorem 2.1 we ob-
tain the following necessary condition for the upper semicontinuity of the mul-
tifunction (1.3): If S(p), p = (D, A,c,b) is bounded and if the multifunction
p'— S), ¢ = (DA, c\b), is us.c. atp, then S(D, A,0,0) = {0}. Thus,
Theorem 2.1 above extends Theorem 2.3 in [12] to the case where A(F,d) can
be any polyhedral cone in R", merely the standard cone R7.

In the sequel, S(D, A) denotes the set of all £ € R™ such that there exists
u = u(z) € R™ satisfying the following system:

Dz — ATu =0,
Az >0, u>0,
uT Az = 0.

Remark 4. From the definition it follows that S(D,A) = S(D, 4,0,0, F,0),
where s = n and F =0 € R**",

Theorem 2.2. Assume that A(F,d) is non-empty and S(p, F,d), p= (D, A, ¢,b),
is bounded. If the multifunction (1.4) is upper semicontinuous at p, then

S(D, A) N A(F,0) = {0}. (2.17)

Remark 5. Observe that (2.1) implies (2.17). Indeed, suppose (2.1) holds. The
fact that 0 € S(D, A) N A(F,0) is obvious. So, if (2.17) does not hold, then
there exists £ € S(D,A) N A(F,0), £ # 0. Taking @ = u(%), o = 0 € R,
we see at once that the system (2.2)-(2.5) is satisfied. This means that # €
S(D, A,0,0, F,0) \ {0}, contrary to (2.1). Note that, in general, (2.17) does not
imply (2.1).

Remark 6. If there exists zo such that Fzo = d. Then z¢o € A(F,d) =
{z € R" : Fz > d}. In particular, A(F,d) # 0. Thus, Theorem 2.2 can be
applied to a larger class of problems than Theorem 2.1. However, Remark 5
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shows that the conclusion of Theorem 2.2 is weaker than that of Theorem 2.1.
One question still unanswered is whether the assumptions of Theorem 2.2 always
imply (2.1).

Proof of Theorem 2.2. Assume that A(F,d) is non-empty, S(D, A,c,b, F,d) is
bounded and the multifunction S(-, F, d) is u.s.c. at p but (2.17) is violated. Then
there is a non-zero vector & € S(D, A) N A(F,0). Hence, there exists 7 € R™
such that

Dz - ATa =0, (2.18)
Az >0, @20, (2.19)
aT Az = 0, (2.20)
Fz > 0. (2.21)

Let zo be an arbitrary point of A(F,d). Setting
B [ SN 1
Tt = T tI, Uy = tu

for every t € (0, 1), we claim that there exist matrices D; € R}*", A4, € R™*"
and vectors ¢; € R?, b, € R™ such that max{||D, ~ D||,||4: — All, ||t = ell,
|b: — blj} =+ 0 ast — 0, and

Dizy — ATuy — FT0O +¢, =0,
Az 2 b, u 20,

Fz; > d,

ul (Aszs — by) + 0T (Fz; — d) = 0.

The matrices D;, A; and vectors c;, b; are defined by (2.11) and (2.12), where
Do, Ao, co, b are constructed as in the proof of Theorem 2.1. Arguing similarly
s in the preceding proof, we shall arrive at a contradiction. ]

i. Sufficient Conditions for the Stability

“he following theorem gives three sufficient conditions for the upper semicon-
inuity of the multifunction (1.4). These conditions express some requirements
n the behavior of the quadratic form z7 Dz on the cone A(4,0) N A(F,0) and
he position of the vector (b, d) relative to the set int (A[A, F])*.

‘heorem 3.1. Suppose that one of the following three pairs of conditions

sol (D, 4,0,0, F,0) = {0}, (b,d) € int (A[4, F])*, (3.1)

sol (=D, 4,0,0,F,0) = {0}, (b,d) € —int (A[4, F])*, (3.2)
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and
S(D, A,0,0,F,0) = {0}, int (A[4,F])" =R™ x R®, (33)

is satisfied. Then, for any ¢ € R™ (and also for any b € R™ if (3.3) takes place),
the multifunction p' — S(p', F,d), p' = (D', A',c', V'), is upper semicontinuons
at p=(D,A,cb).

Proof. On the contrary, suppose that one of the three pairs of conditions (3.1)-
(3.3) is satisfied but, for some ¢ € R™ (and also for some b € R™ if (3.3)
takes place), the multifunction p’ — S(p', F,d) is not u.s.c. at p = (D, 4, ¢, b).
Then there exist an open subset & C R™ containing S(p, F,d), a sequence py =
(D, Ak, cx, bi) converging to p in RF*™ x R™*" x R™ x R™, and a sequence
{z«} such that, for each k, zx € S(pi,F,d) and z; ¢ Q. By the definitiom
of Karush-Kuhn-Tucker point, for each k, there exists a pair of multipliers
(uk, vk) € R™ x R® such that

Dyzy — A?;uk - FT’Uk +cr =0, (34)

Agz 2 bk, ux 20, (335
Fzp>d, v 20, 3
u{(Ak:rk = bk) + U',l; (F:ck = d) =0.

If the sequence {(T,uk,vx)} is bounded, then the sequences {zi}, {ug}. f8
are also bounded. Therefore, without loss of generality, we can a 1
the sequences {zx}, {ur} and {vx} converge, respectively, to some pe __
R", ug € R™ and v € R’, as k — oo. Letting k — oo, from (3.4) - (3.7), we

Dzog— ATu—-FTy+c=0,

Al‘o Z b, Uo 2 0,

Fw.O Z da Vo Z 01

ul (Azg — b) + v (Fzo — d) = 0.
Hence, 2o € S(p, F,d) C Q. On the other hand, since z; ¢ Q for each &
must have zo ¢ §2, a contradiction. We have thus shown that the seg
{{zk, uk,vk)} must be unbounded. By considering a subsequence, if =
we can assume that ||(z, uk, vk)|| = oo and, in addition, ||(zk, us, )i 74
all k. Since the sequence of vectors =

(zk, vk, vE) . ( Tk uk Uk
1(zx, wr, vi)ll (ks we, ve)ll Nl (2k, wis i) Il [k, ui, v Yl

is bounded, it has a convergent subsequence. Without loss of generality, 1
assume that

(Tky Uk, V)

= 2 (7,4,7) € R* xR™ x R®,  ||(Z,4,9)|| = 1
e ue o) - &®9 1z, 9)l|
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Dividing both sides of (3.4) - (3.6) by [|(x, uk, vi)|l, both sides of (3.7) by [|(zk, w, vi)lI?,
and letting k — oo, by (3.8) we obtain

Dz~ ATa - FT5 =0, (3.9)
Az >0,42>0, (3.10)
Fz>0, 920, (3.11)
aTAz + 57 Fz =0. (3.12)

We first consider the case where (3.1) is fulfilled. It is evident that (3.9) -
(3.12) imply
iTDz =0, Az>0, Fz>0. (3.13)

If  # 0, then, by taking into account the fact that the constraint set A(A4,0)N
A(F,0) of QP(D, A,0,0, F,0) is a cone, one can deduce from (3.13) that either
sol (D, 4,0,0,F,0) = Qor Z € sol (D, A4,0,0, F,0). This contradicts the first
condition in (3.1). Thus & = 0. Then it follows from (3.9) - (3.12) that (@,7) €
A[A, F]1\ {(0,0)}. (See Sec. 1 for the definition of the set A[A, F]). Since (b,d) €
int (A[4, F])* by (3.1), we have

aTb+97d < 0. (3.14)
Consider the sequence {uTby + v7 d}. By (3.4) and (3.7),
2T Diay + cf ok = uj by + v d. (3.15)
If, for each positive integer %, there exists an integer k; such that k; > ¢ and
u;ﬂ.bk,. + 'ukT..d >0, (3.16)
then, by dividing both sides of (3.16) by lI(zk, , uk,, vk, )|l and letting 5 — oo, we

have
aTb+07d >0,

contrary to (3.14). Consequently, there must exist a positive integer io such that
ulby +vid <0 for every k > io. (3.17)

If the sequence {zx} is bounded, then, by dividing both sides of (3.15) by
I(zx, uk, vk)|| and letting k — oo, we get @Th + vTd = 0, contrary to (3.14).
Thus {zx} is unbounded. We can assume that ||zx|| = oo and ||zx|| # O for each
k. Then {zx/||z||} is bounded. We can assume that

2k, & with [|#]| =1.

Nzl
Combining (3.15) with (3.17) gives

eI Dy + crop <0 for every k > 4. (3.18)
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Dividing both sides of (3.18) by ||zx||? and letting k¥ — oo, we obtain
#TD& <0. (3.19)

By (3.5) and (3.6),
Axzy > by, Fzp >4

Dividing both sides of each of the last inequalities by |lzx|| and letting k — oo,

one has
Az >0, Fz>0. (3.20)

Combining'(3.19) with (3.20), we assert that sol (D, 4,0,0, F,0) # {0}, contrary
to the first condition in (3.1). We have thus proved the theorem for the case
where (3.1) is fulfilled.

Now we turn to the case where condition (3.2) is fulfilled. We deduce (3.13)
from (3.9)-(3.12). If z # 0, then, from (3.13), we get sol(—D, 4,0,0, F,0) #
{0}, which contradicts the first condition in (3.2). Thus, # = 0. From (3.9) -
(3.12) it follows that (%,7) € A[A, F1\{(0,0)}. By the second condition in (3.2),

aTb+v7d > 0. (3.21)

Consider the sequence {uf bx + v d}. We have (3.15). If there exists a positive
integer ip such that (3.17) is valid, then, by dividing both sides of (3.17) by
[|(zk, uk, vi)|| and letting k — 00, we obtain @7b+ 57 d < 0, contrary to (3.21).
Therefore, for each positive integer ¢, one can find an integer k; > ¢ such that
(3.16) holds. If the sequence {zx} is bounded, then, by dividing both sides of
(3.15) by ||(zk, uk, vi)ll and letting k — oo, we have aTb+57d = 0, contrary to
(3.21). Thus, the sequence {z)} is unbounded. We can assume that |lzk|] = o0
and ||zx|| # O for all k. Since the sequence {zx/||z||} is well defined and bounded,
without loss of generality, we can assume that
Pk 3 with |2 = L.

llzkl
Combining (3.15) with (3.16) gives
T T :
Ty, Dy, zy; + Cjp Thi > 0 for all . (3.22)

Dividing both sides of (3.22) by ||k, |* and letting i — o0, we obtain 2TD% > 0
or, equivalently,
£T(-D)z < 0. (3.23)

By (3.5) and (3.6),
Ak;zk.' Z bk.’, F:Ck.' 2 d. (324)

Dividing both sides of each of the inequalities in (3.24) by ||zx,|| and letting

i = 0o, we have
A3 >0, Fi2>0. (3.25)
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Combining (3.23) with (3.25) yields sol (~D, 4,0,0, F, 0)

she first condition in (
ulfilled.

Now, let us consider the last case where (3.3) is assumed. From (3.9)-(3.12)
ve have £ € S(D, 4,0,0, F,0). By the first condition in (3.2), z = 0. Then it
ollows from (3.9) - (3.12) that

# {0}, contrary to
3.2). This proves the theorem in the case where (3.2) is

ATa+FT5=0, >0, 5>0, ||(0, @,9)|| = L.

“herefore, (@,7) € A[4,F]\ {(0,0)}. Since aTa + #T5 > 0, then (@,7) ¢
1t (A[A, F])*. This contradicts the second condition in (3.3).

We have thus proved that if one of the pairs of conditions (3.1)-(3.3) is

lfilled, then the conclusion of the theorem must hold true. n

We now proceed to show how the sufficient conditions (3.1) and (3.2) look
\ the case of the canonical problem (1.2). As in [10], for any A € R™*™, the
aal of the cone A[4] := {A € R™ : —ATA > 0, X > 0} is denoted by (A[A)])*.
y definition, (A[A])* = {¢ € R™ : AT£ <0 VA € A[A]}. The interior of (AlA])"
denoted by int (A[A])*. One has

int (A[A])" = {€ € R™: ATE <0 VA e A[4]\ {0}). (3.26)

:mma 3.1. Suppose that, in problem (1.1), s=n, d = 0, and F is the unit
atriz in R"*". Then the following statements hold:

1) If b€ int (A[A])*, then (b,0) € int (A[A, F])*;

2) Ifsol(D, A,0,0) = {0}, then sol (D, A,0,0, F,0) = {0};

1) Ifbe —int (A[A])*, then (b,0) € —int (A4, F])*;

1) Ifsol(=D, 4,0,0) = {0}, then sol (=D, 4,0,0, F,0) = {0}.

oof. If b € int (A[A])*, then, by (3.26),
Mo <0 forall A € A[A]\ {0}. (3.27)
»any (u,v) € A[A, F]\ {0}, we have
ATu+FTu =0, u>0, v>0.

is yields
-ATu=v>0, u>0, u#0,

ce u € A[A4]\ {0}. By (3.27), bTu + 0Tv = bTu = uTb < 0. This shows that
)) € int (A[A, F])*. Statement (a,) has been proved. It is clear that (a3)

>ws from (a;).
For proving (a2) and (a4) it suffices to note that, under our assumptions,
sol (D, 4,0,0) =sol (D, 4,0,0, F,0)

sol(-D, A,0,0) = sol (-D, 4,0,0, F, 0).
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The following result follows directly from Theorem 3.1 and Lemma 3.1.

Theorem 3.2 (cf. {10, Theorems 2.2 and 2.3]). For the canonical problem (1.2),
the following statements hold:
(e1) If sol (D, A,0,0) = {0} and if b € int (A[a])* then, for any ¢ € R", the
multifunction (1.83) is upper semicontinuous at p := (D, A, ¢, b);
(a2) Ifsol(—D,A,0,0) = {0} and if b € —int (A[a])* then, for eny c € R™, the
multifunction (1.8) is upper semicontinuous at p := (D, A, c, b).
From what has been said we can conclude that Theorem 3.1 extends The-
orems 2.2 and 2.3 in [10] to the case of the general problem (1.1).

Let us consider two illustrative examples which show that our results can
be applied to some classes of non-convez QP problems.

Example 1. (cf. [10, Example 3.1]) Consider the problem QP(D, 4, c,b, F,d)
where

o[ Janefy oan [ omnes ().

_ 10 _ 0 _ T 2
P=o 3] a=(0) == (3) em

We have A(4,0) N A(F, 0) = {0}, hence sol (D, 4,0,0, F,0) = sol (D, 4,0,0) =
{0}. Since b € int (A[A])* then, by Lemma 3.1, (b,0) € int (A[4, F] . By The-
orem 3.1, the multifunction (1.4) is upper semicontinuous at p := (D A, c,b).
(Note that the objective functions f(z) = 1/2(-z? - 22) and f(z) =
(1/2)(x% — 22) of the corresponding QP problems are non-convex.)

Example 2. (cf. [10], Example 3.2) Consider the problem QP(D, A, c,b, F,d)

where
D= [(1) _01}, A=[0,-1], b=(-1), c= (8)

= 1 0 = 0 el T 2
Pefo 3] = (0) - () em

An easy computation shows that
S(D,A,0,0,F,0)=S(D, A,0,0) = {0},
sol(-D, A4,0,0) = {0}, and b€ —int(A[A])*
By Lemma 3.1,
sol(-D, A4,0,0,F,0) = {0}, (b,0) € —int (A[4, F))*
Then, by Theorem 3.1, the multifunction (1.4) is upper semicontinuous at p :=

(D, A,c,b). (Note that the objective function f(z) = (1/2)(z? — z2) of the
corresponding QP problem is nonconvex.)




Stability of the Karush - Kuhn - Tucker Point Set 79

Several other illustrative examples can be found in [10] (Sec. 3).
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