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Abstract. We study the semilinear wave equation of the form: Eu*ulllulP-ry, -

lulq-ru. When 1 1Q 1p, a solution exists globally in all time and when 1 < p < q,
the local solution blows up in finite time for negative initial energy.

1. fntroduction and Results

Let O be a bounded domain in RN(N 2 1) with a smooth boundary dO. We
are concerned with the following initial boundary value problem for semilinear
wave equations with da,mping and source terms

( 1 . 1 )

where E = 0? -X[, 0210x! is the D'Alembertian operator, a,b,c > 0, p,q ) t,
and the initial data us(c) e I#(O) and u1(c) € ,2(O). In our case, we always
put a = b = c = I in the equation of (1.1).

For problem (1.1), many authors have studied a variety of examples. More
precisely, when c = 0, the decay properties of solutions of the Cauchy problem
of (1.1) was studied by Matsumura [8]. In the case of o = b= 0, problem (1.1)
was studied by many authors (see [1-3]), where the local solution blows up in
finite time. When b = 0, the problem (1.1) was studied by Ikehata-suzuki [6]
and Ikehata [5], and they proved that the local solution blows up in finite time
by the concepts of stable and unstable sets due to Sattinger [10].
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( au + aq + blulp-ru1= slulc-r, in (0, m) x o,

{ 
,(0, x) = uo(x),u1(0,x) = ur(c) for c € O,

I  u( t ,o)  = 6 for  t  )  0 ,o € do,
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Recently, Georgiev-Todorova [4] treated the case when a = 0, b = 1, and
c = L, and proved that if 1 1 q (p, a solution exists globally in all time. On
the other hand, they also proved that if 1 < p < g, the local solution blows up
in finite time for sufficiently negative initial energy

1  
, - .  , r z  ,  1 t t - - .  t t 2  1 '  r r - .  r r q * lt(0) = 

,llurllL,s+ rllvuollL"(o) 
- 

q+ lllrolllTi,rol.

Ono [9] also treated the case when o = 0, b ) 0, and c = 1, and he proved
that if I < p ( q, the local solution blows up in finite time for negative initial
energy. Thereby, our main objective is to combine Iinear damping term ur and
non-linear damping term lurle-tur with the source term lule-tu to show that
in some domain the solution exists globally in all time, and in some domain the
local solution blows up in finite time.

In this paper, we mainly study the global existence of a solution to problem
(1.1) for the case 1 < g < p. On the other hand, the local solution blows up in
finite time for the case I < p < q with negative initial energy.

Now we state our results.

T h e o r e m  L . L .  S u p p o s e l < q  S  N / ( N  - 2 )  i l  N >  3  a n d q ) l  i l N  5 2 .  A
1 < q < p, then problem (1.1) hos unique global solution in the class

u  €  c ( [ 0 , r ) ; r o 1 ( o ) )  ,  u t €  C ( [ o , r ) ;  L ' ( q )  n . L p + l ( ( 0 , " )  x  o )

for any positiae T.

Before we state another result, we first define the energy for the problem
( 1 . 1 )  b v

t ( t)  = 
| lu,{t , .) l l?,rnr + } i l  v u(t , .) l l?,ror -  

*t t" t , , . ) l l11i,(o) 
(1.2)

T h e o r e m  L . 2 .  S u p p o s e l 1 q  S  N / ( N  - 2 )  i f  N  >  3  a n d q )  I  i f  N  5 2 .  I f
1 < p < q, then the local solution to problem (1.1) blotus up in finite time lor
negatiae initial energy (t(0) < 0).

Rematk 1. If, a = 0, Theorem 1.1 coincides with the global existence result
of Georgiev-Todorova [ ]. So Theorem 1.1 will become a kind of extension of
Georgiev-Todorova [4].

Rema.rk 2. If a = 0, Theorem 1.2 improves the blow-up result of Georgiev-
Todorova [a]. So when o f 0, our Theorem 1.2 is new.

The plan of this paper is as follows: In Sec. 2, we discuss the local existence
and global existence of solutions to problem (1.1), and by combining the ideas
of Georgiev-Todorova [a] and Ono [9] we will give the proof of Theorem 1.2 in
Sec. 3.
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2, Local and Global Existence of Solutions

Throughout this paper, the function spaces are the usual Lebesgue and Sobolev
spaces over O. For our convenience, we use ll.l l- instead of ll.l l;-1ny, where O
is a bounded domain in RN(,lf > 1) with a smooth boundary 0O. We introduce
the natural energy space f/ = flj(O) x 12(O) for the problem (1.1).

First of all, we have the following local existence theorem introducing the
linear damping term u1 in the well-known local existence theorem of Georgiev
and Todorova [4].

Theorem 2 ,1 .  Suppose l  <q  S f f i (N  -2 )  r f  N  >  3  ,  q>  I  i l  N  32  ond
p > L Then, for ony initiol data

there exists some positiue T such that problem (l.I) admits a unique solution in
the class

(  / r ' \  . )
U e  X r  =  \U  

-  |  . l  |  ;  U  e  C( [O ,T ] ;H ) ,u1  e  LP+ t ( (0 , " )  r  O )  ] .(  \ u t ' l '  
'  \ \ "  ' )

Proof ol Theorems 2.1 and /.1. The proof of Theorems 2.1 and 1.1 is almost
the same as in [4], because Ialurl'd, ) 0 is well defined. Roughly speaking, for
the uniqueness of a solution, by using the fact that (ur1s - wzt * lwrtlp-Lwtt -

lwzrlo-'.zr,urt - wzt) ) 0, we can apply directly the well-known Georgiev-
Todorova local existence theorem.

As mentioned above, Ialurl'a, ) 0 is well defined and the linear damping
term u6 allows one to derive a prion estimates for the global existence purpose.
Therefore, we omit the detailed proof of Theorems 2.1 and here. For the detailed
proof of Theorems 2.1 and l.l, we refer to Theorem 2.1 of [ ] (see also Theorem
3.1 in [7]) and Theorem 1.1. r

3. Blow-Ups of Solutions

Before proving Theorem 1.2, we first need the following two propositions.
By multiplying the equation in (1.1) by u1, and integrating over o € O, we

can get easily from (1.2)

8'(t) +ll"ll3+ ll",lll l l = o.

(il) . ",

Thus from (3.1), we get

(3 .1)

(3.2)r(r) s r(0).

Proposition 3.1. Let A(t) = llull|. Then it satisfies the following inequality:

A" (t) >, {*Al 
- M (- t (t))o -, 

i lu,llz+ t t ", I l l l l ) },
(3 .3 )
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where M, p are positiue constants which are defined later ond K(t) is d,ef,ned, by

rc(il : z|u,|? - 2eu) + 
#;il"il|+l > 0. (3.4)

Proof. Wom the definition of "4(t) and using the equation multiplied by u, we
get from (1.2)

.4" (t) - zllurll| + z 
ln(nuu 

- I)tu - lullP-t u1u + lult+r)d,x

= anutnZ- +(ln"dn+ ]rrv "tB- #l"n#l)
,  2 (q  -  1 )  r r . . r r q+ t  n  f
+ 

f;f llul[ii -' J nfu,u 
+ lu1lp-L uP)da

= z 
{2p413 

- 2€(t)* 
fitt"tt; Ii 

- 
lnt",, + lulp-Lu2u)o'} .,. ,,/  (3.5)

Now, we estimate the last two terms on the right-hand side of (3.5). By the
Htilder inequality and the assumption p 1 e, we have

| | nfurl' 
- rr"arl sc | | u | | oa 1 | | us I lf *, S c | | u | | 0..,. 1 | | u1 | lfu ,

= c I l" I I l; lo+t) / (P+ t) 
nutllf,*, ; 1 u ; ; 

(fi t ) / tr+ t l,
(3.6)

where C is a positive constant. Since C(0) < 0, then from (1.2) and (3.2) we get

l lul lc+r >- ?eplyttc+r) > (-e 1o;;tt to+r) > 0. (3.7)

Since 1/(q+ 1)- Ll@+ 1) < 0, then from (3.7) we get

l lul l l l l t t / te+r)-1l(p+r)) = l l" l l l i {o*t) /@+t1 S (_e1t;;rt tc+r)-1l(pa11

S ( -e1O;1t l (c+t ) - r71Pa11.  (3 .8)

The Young inequality implies

cllu4l,pnllullffi')rto+'1 s 19) 
b+r)/p 

ll,,lllll + ep+rllullffl (s.g)^  -  
\ e /

f o r a n y e > 0 .
Thus from (3.6), (3.8), and (3.9), we arrive at

| | nv,lo-',,,a,1 
s ( : )'* 

" " ( - f, (t 1 ; r / tc+ r ) - r / (p+r ) | t,, I l i i I

{ 6p*r (_e 1o;;tuto+r)-rl(p+r) llrl l l l i . (3.10)
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' 
By the Schwarz inequality and Hrilder inequality and by the assumption I < q,' 
we have

l t  I

llr","orl< 
cllull2llulllilo*')/'ll"ll[';'tr,. (3.11)

Since 1/(q + 1) - l12 <0, then from (3.7) we have

l lu l l l i l ( t / (o*r)-r /2)=l l r l l l ; {o* ' ) / rSee(q)t / (c+t)- t /zS(_e1o;; 'uk+tt- t /2.
(3.12)

The Young inequality implies

cllu' l l , l lul l l f1"" s (;) '  W,tt:,+efr;1ug;;] i  (3.r3)

for any €s ) 0.
Thus from (3.11)- (3.13), we arrive at

ll,"**l= ( *)' r- r r,,r',,'+t) -'r /2 null
+ efr1-eloyytt?+t)-r/2llullq l. (3.14)

Therefore, from (3.5), (3.10), and (3.14), we arrive at

.t'lt) >_z{zilu,ll - 2t(t) +Flf f "f f #l
r n:,  b*L)/p

(;) FePlltrto+l)-rib+l)l lu' l l#l

- r*t (-C(0))1/(q+t) -t l(o*t) 
l lr l l l l l

t  n r , 2

( ;,) ? e 1t11t r tt+t) -t /2 llullT

- e3(-s(o))r l(c+r-t/2lluryIl) (8.1b)

Now we define (f,(O) < 0)

eP*r = 
ffiet(o))t/tP+tl-t/(a+r) 

1g'

4=  f f i ?eP11 ' r ' - r / ( a+ t )  ,  o ,

*"  = (?)@+r)/o,  o and u,  = (J) ' ,  o '

Then (3.15) becomes
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(3.16)

(3.17)

A" (t) > z{211u,11} - 2eQ) + ffill"ll;+i
- MoG t (t))t  /  (q+r) -t /  (p+t) |  lr ,  I  l i  |  -  Ure e (t))r /  (q+t) -r t ,  |  1", I  13 ) .

Define

p - r = * o { + - + . + -  * }  e < 2 p < 2 ) ,^ I q + 1  p * 1 ' q * r  z )

M - max{Ms,M1},

and then finally we arrive at

A,' (t) >-z {rc1t; 
- Mee$))o-' ( l l", l l3 * tt",16 l) },

which is our desired inequality (3.3). r

proposition 3,2. Let | 1p < q and t(0) < 0. Then we haue the following two

inequalities

B'( i l  >-#,
BQT||o < M'K(t),

where B(t) = (-t(t))p + p,4'(t) lM and M' is a positiue constant as defined later.

Proof. By the definition of B(t), and using (3.1)' (3.3)' and I < 2p <2, we have

B'(t) = p?€1t11c-t(-t'(t)) + ft"t" 1t1

2 pFe$Do-'( l l", l l? + l lr ' l l l l i )
* #lr{"trl 

- M(ep1lo-r1llr13 + 1,,uil l)}]
2 p ,  r ( t \= frrc(t)r_'#,

which is our desired inequality (3.16).
By the definition of ,,4(t), Schwarz and Young inequalities imply

1 ,4 ' ( t ) l  <  C l lu l lo , .1 l lu1 l l2 .  (3 .18)

Owing to the definition of B(t), the H6lder inequality, assumption | 12p < 2,
and inequality (3.18)' we have
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B(tyr/o sz{-eal. (ry) " '} = , {-rt)+ (cl lut1z1u1o*,),/o}
1  

'  
\  M  /  ) -

s r {-e1,y +z1us1}*f,n"fili:-'\, (3.1e)

where in the last line of the two terms we have used a19t-t 1 1a * (t - l)0
for all a,F )- 0 and 1 ) I ) 0, and L < 2p < 2. For 1 < g, we see that
zlQp - 1) < C * 1 and the assumption C(0) < 0. Then we have from the
inequality (3.7)

1 S (-t(0))-t/(q+t) l lul lc+r s (-e 1011-tt-z/((2p-t\(q+tl l l l lul l l l l -2/(20-t),

and then we have

l l" l l?{?o-,)S(-r(o))-tt-2/((2p-t)(qattrl l ;ullf l l . (s.20)

Thus from (3.19) and (3.20), we have

,  (  -  a  - , , ' )
B(r; * 4 2 

|2lluill| 
- e U) + 

! t -e tol I 
-tt -2 / ((2 p -t)tc+tll 

I I u1 1[]l 
]

(
sz\2llull? - 2eG)

*  9 - l  r " , r q + t C ( q + I ) , -
2(q ;f t  l lurt i+r -?T t-t (o; ;  

-tr - '711"-t110+t111 
)

3 u, 
{211u,17 

- 2eQ)+ #l,lfil },
where

M, = 2 max{ t, 
ffi 

(-e1o;;-tt-r711rr-t110*'111 
} 

.

This completes the proof of Proposition 3.2. r

Now we are in a position to prove Theorem 1.2.

Proof of Theorem /.2. F\om (3.16) and (3.4), we have

B,(t)  >#, -ceo) > -cr(o) > o,

a n d t h e r e e x i s t s a ?  >  0 s u c h t h a t  B ( t ) >  0 f o r  t  2  ? .  T h e n o w i n g t o t h e
Proposition 3.2, we have for t 2 ?

fi (nat'-\/o) = o -r-n6-'/pB'(t) =ffid =T. (8.21)



24 Md. Abu Naim Sheikh

Since (p -t)lp < 0, then (3.21) leads to

B(t)  > (u1r1rr- ' r ,  o * 
c(p :  t )  

(r  -  
"))  

p/(p-t)  
G.22)

\  p  
. ' /

for any t > T. Thus, there exists a finite ?. so that the right side of (3.22) tends
to infinity as t -+ ?*. FYom (1.2), we have

-2t(t) + llu,llTs frf f "tt;il and llu,lt1, s;fttt"il;ii,

and then from inequality (3.r7), we have B(t)L/e S Cll"ll l l l Thus, we have
llullc+r --+ oo as t + T*. Therefore, the local solution blows up in finite time.
This completes the proof of Theorem 1.2.
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