Vietnam Journal of Mathematics 27:4 (1999) 309-321 .
Vietmam Jouwrmal

of
MATHEMATICS

© Springer-Verlag 1999

Persistence in a Model of Predator-Prey Population Dynamics
with the Action of a Parasite in Periodic Environment*

Trinh Tuan Anh and Tran Van Nhung

Department of Mathematics, Hanoi National University, 334 Nguyen Trai Str.
Thanh Xuan, Hanoi, Vietham

Received July 28, 1998

Abstract. We consider a model of a predator-prey population with the action of a parasite in the
periodic case. We establish a uniform persistence criteria for the model. This is a generalization
of a result by Freedman [1] from the autonomous case to the periodic one.

1. Introduction

In [1], Freedman considered a mathematical model of a predator-prey population in
which each member of prey may or may not be infected by a parasite, but the predators
are all infected. That model was described by a system of three autonomous ordinary
differential equations and conditions for persistence of all populations were given (see
[1]). Our concern in this paper is with the more general case in which the model is
depending on time ¢ periodically. Such a generalization seems to be natural considering
the oscillations to which any ecological parameter might quite naturally be exposed (for
example, those due to seasonal effects of weather, food supply, mating habits, hunting
or harvesting seasons, etc.).

The model considered in this paper is described by the following system of non-
autonomous ordinary differential equations:

: SD(t, X SPi(t, X)Y
§=B@tX) - —(Xt—) — [Bo(®) + 1 (1)Y]S — %

: IDt,X) 1Pyt X)Y

I=[B®) + pr(Y]S — (;( b 2(; Ly (L.D)
Y=Y[—F(t,Y)+c(t)SPl(t’X);IP2(t,X)],
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where S, I, X = S+1, Y are the susceptible, infective, total prey and predator population
densities, respectively; B, D, P, P>, T" : R x [0, 4-00) — R are continuous, T -periodic
in the first variable (7 > 0) and continuously differentiable in the second variable; and
Bo, B1, ¢ : R — (0, +00) are continuous and T -periodic.

The case of functions B, D, Pi, P>, T, fo, B1, ¢ not depending on z-variable was con-
sidered in [1]. Further assumptions on the functions of the system (1.1) are given below,
which are based on those in [1]. In the following, we denote by BY, DY, Py, P;y, T}
the partial derivatives of the functions B, D, Py, P», I', respectively, with respect to the
second variable.

The function B(z, X) is the birth rate of the prey population at time ¢ and is assumed
to be independent of parasite infection. Further, it is assumed that the birth rate increases
with increasing population. Hence,

(H)) B(,0) =0and B} (t, X) > Ofor ¢ € [0, T]and X € [0, +00).

The function D(z, X) represents the “natural” death rate of the prey population at time
t, that is, death due to any occurrence other than predation. It is also assumed that the
death rate increases with increasing population. Hence,

(H2) D(z,0) =0and D% (¢, X) > Ofort € [0, T] and X € [0, +00).

In the system (1.1) all prey members are born into the susceptible class and may be
subjected to parasitism immediately after birth. The natural death rate corresponding to
each prey class are proportional to the relative densities of that class, i.e., (S/X)D(z, X)
and (I/X)D(t, X) are the natural death rates of the susceptible and infective prey
populations, respectively.

If there are no predators and parasites, the prey population can be described by the
following equation (see Eq. (1.1)):

X =Xg(t, X), 1.2)

where g(t, X) = [B(¢, X)— D(z, X)1/ X is the specific growth rate of the prey population
at time ¢. Due to limited resources at time ¢, the specific growth rate is decreasing with
increasing population. Eventually, it becomes negative since food supply can support
only a finite population. Therefore,

(Hs) g(¢, X) is continuous on R x [0, +00); g(#, 0) > Oand g(z, .) is strictly decreasing
for any fixed ¢+ € [0, T]; and furthermore, there exists a T-periodic function
k(t) > O such that K := sup,cpo,77 k(t) < +00, g(t,k(t)) <Oforallt € [0, T].

The function P;(z, X) (i = 1, 2) is the predator functional response of the susceptible
and infective populations, respectively. It is assumed that owing to the action of the
parasites, the infected prey has an increasingly higher functional response than the
uninfected prey. Hence,

(Hs) Pi(1,0) =0, Pyy(t, X) > Ply(t, X) > 0 forall (z, X) € [0, T] x [0, +00).

The function I'(¢, Y') is the density dependent death rate of the predator in the absence
of prey, which should be increasing with increasing population. Hence,

(Hs) T'(t,0) > 0and T, (2, ¥) > Ofor ¢ € [0, T]and Y € [0, +00).

The following hypothesis is needed for a technical mathematical reason.
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(Hg) Allfunctions in System (1.1) are so sufficiently smooth that the Cauchy problem for
(1.1) with the non-negative initial values has a unique solution which is continuable
for all positive time.

The function c¢(¢) represents the proportion of prey that is converted to predator
biomass. The function By(z) represents the infection rate of susceptible prey in the
absence of predators, the function B;(¢) is the rate per unit predator of prey infection
due to parasitic reproduction in the predator population. In the system (1.1), we assume
that all predators are infected. Hence, susceptible prey infected by parasites are removed
from the susceptible class at a specific rate of Bo () + 81(¢)Y, and an equivalent number
of prey are added to the infected class.

For the ecological significance of system (1.1), the reader is referred to [1].

" Persistence in mathematical models of population dynamics corresponds to the
survival of populations and thus it represents an important qualitative property for such
models.

We say that (1.1) is persistent if lim inf, ., 1o d((S(1), I(2), Y (2)), BR';’,) > 0 for any
solution to (1.1) with initial conditions (S(f), I (1), Y (#y)) € int(Ri_)fthe interior of
R = {(§,1,Y) : § = 0,1 = 0,Y > 0}, where d((S(¢), I(t), Y (1)), 8R}) is the
Euclidean distance from (S(¢), I(t), ¥ (¢)) to BRiﬁthe boundary of Ri.

If, in addition, lim inf,_, 400 d((S(t), 1(t), Y (1)), 0R3) = § > 0 where § does not
depend on positive initial conditions, then (1.1) is said to be uniformly persistent.

For a survey of permanence theory (i.e., uniform persistence and dissipativity), the
reader is referred to [4].

In the next section, we discuss an equivalence of persistence between periodic
differential equations and discrete semidynamical systems corresponding to them, and
recall some well-known results on persistence in discrete semidynamical systems. In
Sec. 3, we prove a persistence criteria for system (1.1).

2. Preliminaries

2.1. Persistence in Periodic Differential Equations

We consider the following equation:

5% = I (2.1)
where f : R x Ri — R? (d > 1) is continuous and T-periodic in ¢-variable; and
RY :={(x1,...,xa) i x; = 0, i = 1,2, ..., d}. We assume that

(i) the Cauchy problem for (2.1) with the initial condition x (fp) = xo € Ri; (to € R)
has a solution which is unique and continuable for all # > #;;

(ii) system (2.1)is dissipative, i.e., there exists a compact neighborhood A of the origin
such that, for each solution x(¢) to (2.1) with x(¢y) € Rff_ for some #y € R, there
exists #; > to such that x(¢) € Aforall ¢t > #.

By (i), we may introduce for any ¢ > o the Cauchy operator G(¢, p); it is defined
on Ri and maps the initial datum x¢ into the solution x(z) at time ¢. Straightforward
properties of G are: G is continuous and ¢-differentiable for ¢ > #o; G(t, s)G(s, tp) =
G(t, 1), t =5 >10; Gt +T,t0+T) = G(t, ), t > to; G(t,10)R% C RY fort > to;
and G(fp, ty) = Id (the identity).
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Let H(t) = G(T + 7, t) (r € R). We have the discrete semidynamical system:

IN x RY 3 (n,x) = H"(t)x € R%. 2.21)

Definition.

(i) System (2.1) is said to be persistent (with respect to d R% ¢ ) ifliminf; , Lo d(x (t)
BRi) > 0, for any solution x(t) to (2.1) with initial condmons x(t) € mt(R )b
It is uniformly persistent if liminf, , , o d(x(¢), dRY %) > € for some positive € not
depending on positive initial condition x(ty) = (x01, Lo

(i) H(z) (or (2. 21)) is said to be per51stent (with respect to R4 ¢) if liminf, . | o
~d(H"(v)x, aR? %) > Oforallx € 1nt(R ). It is uniformly persistent if there exists
€ > 0 such that 11m1nfn_>+oo d(H"(v)x, 3R4 ¢) > eforallx € 1nt(R A

We shall prove the following:

Theorem 2.1.

(1) System (2.1) is persistent if and only if, for each T € [0, T], H(t) is persistent.
(ii) System (2.1) is uniformly persistent if and only if, for each t € [0, T], H(t) is
uniformly persistent.

Before proving Theorem 2.1, we prove the following lemma:

Lemma 2.2. The function §(t) = 1nfxemt(R4){hm inf,_ oo d(H™(T)x, dRY D} is con-
tinuous on [0, T].

Proof. Let M > 0 be such that M? = E;jzl SUpP;c0,7],xe.4 | fi (£, x)|. We shall prove
that [8(t) — 8(z')| < M|t — ©'| for T, 7’ € [0, T]. It suffices to show that, for any
x! € int(R?), there exists x? € int(R%), such that

|limJirnfd(H"(t)x1,3R )~ lim inf d (H" (' 2 9RD)| < Mt -7, (2.3)
n—+o0

Let x(z) be the solution to (2.1) with x(7) = x!.Putx? = x(T+7)andx3 = x(T +71).
Let #; > 7 be such that x(¢) € A for all ¢+ > ¢;. We have that

liminf d(H" (t)x>, 3R? )—llmlnfd(H"+1(1:)x dR%)

n——+00

_hmlnfd(H"(t)x aR? <0k, 2.4)

Let ng € IN be such that ngT -t > #; and noT + t” > #1. Since x(¢t) € Aforallz > 1,
it follows that, for n > ny,

ld(H" (z)x, 0RY) — d(H"(t")x*, 3R{)| < | H" ()% — H" ()«

= lx((n+ DT + 1) —x((n + DT + )| < M|z — 7/|. (2.5)

We claim that
&€ - &' < M|t —7|, (2.6)

where & = lim inf,,_, 400 d(H" (7)x>, 0RY), £’ = liminf,_, 1o d(H" (¢/)x%, 3RY).
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Suppose the claim is false. Then there exist two sequences {n;} and {n}} of {n} such
that
g= Lm d(H™(r)x* 8RY),
k—+o00

g = lim d(H™(t)x* dRL),

k—400
€ —&'| > M|z — 7.

Without loss of generality we may assume & > £’. By going to a subsequence if necessary,
we may assume that limg_, 400 d(H™(1)x3, BR‘i) = &. Clearly, & > & > &’. Thus,
it follows from (2.5) that & — &’ < M|z — 7’|, which contradicts §; — &’ > £ — &' >
M|t — 7'|. Thus, the claim is proved, and (2.3) follows from (2.4) and (2.6). The lemma
is proved. n

Proof of Theorem 2.1. Proof of Part (i). Necessity. It is obvious.

Sufficiency. Suppose it is false. Then there exists a solution x(¢) to (2.1) with x (%) €
int(Ri) (for some 7 € R), and a sequence {t,};0; C [to, +00) T +00 such that
limy,_, o0 d(x(%), 8Ri) =0.Lletz, =t, —[t,/T1T for n > 1, where [t,/T] =
suplk € Z : k < t,/T). Then 7, € [0, T] for all n > 1. By going to a subsequence if
necessary, we may assume 7, — 7o € [0, T]asn — o0. Let tn =19+ [t,/T]T. Then
Ty — +00asn — +oo. Let 7 > o be such that x(¢) € A forall # > 7, and ng be such
that7, > 7 and ¢, > 7 for all n > ng. Thus, for n > ng, we have

ld(x(t,), 0RL) — d(x(@n), IRD)| < l|x(tn) — xEn)|| < Mty — 7]
= len I ‘L'O|,

and it follows that |d(x(%,), BRi) — d(x (@), 3Ri)| — 0 as n — —+00. Hence,
e d(x(?,,),aRi) = 0, and so liminf,_, o d(H" (t0)x(#1 + T),8Ri) <
0, (here, we take f; + T to make sure that £; + T > #), which contradicts
liminf, , oo d(H" (v0)x(#1 + T), BRi) > 0. Therefore, system (2.1) is persistent.

Proof of Part (ii). Necessity. It is obvious.

Sufficiency. By Lemma 2.2, §(t) is continuous. Since §(z) > 0 on [0, T], it follows
that 8o := inf,¢p,778(t) > 0. We claim that liminf,_, ;o d(x(?), BRd+) > §p for any
solution to (2.1) with x(%) € int(Ri) for some ty € R, which implies the uniform
persistence of the system (2.1).

Suppose it is false. Then there exists a solution x(z) with x(f) € int(Ri) for
some fy € R such that lim;_, oo d(x(2), BRfL) = y < §p. Thus, there exists a
sequence {1,}32, C (tp,+00) T +oo such that lim;, ;o0 d(x(t), E)Rﬁj,_) = y. Put
Ty =ty — [t,/ T1T . Clearly, 7, € [0, T]. By going to a subsequence if necessary, we can
assume that 7, — 19 € [0, T]. Put 7, = 70 + [t,/ T1T, then 7, 1 +o00 as n — +o0. By
the same argument given in the proof of part (i), we have lim,_, 400 d(x @ 8Ri) =)
Thus, 89 < liminf,_ 00 d(H"(t0)x(t1 + T), aRi) < y < &p. This contradiction
implies the claim. Thus, the theorem is proved. [ ]

2.2. Persistence for Maps

For the sake of convenience, we now recall some definitions and well-known results on
persistence for maps.
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Let V be ametric space with metric d and let W be aclosed subsetof V. Let F : V — V
be continuous such that F(W) C W and F(V\W) C V\W. We denote by F|w the
restriction of F on W. Denote Z the setof integers and Z* the set of non-negative integers.
Recall that a sequence {up}nez+ ({4—n}nez+, respectively) of points in V is said to be a
positive (negative) orbit through u € V if uo = u and Fu, = upyy (Fu_p_1 = u_,)
foralln € Z*; asequence {uy,}necz with ug = u and Fu, = uny foralln € Z is called
an orbit through u. A positive (respectively, negative) orbit is said to be compact if the
sequence, when considered as a subset of V, is precompact. Denote by At ({un}pez+)
or At (u) (respectively, A~ ({t—n}necz+)) the omega limit set (the alpha limit set) of
the positive (negative) orbit through u (see [2]). F is said to be dissipative if the set
Q(F) = U{At(u) : u € V} is precompact.

Let M C V. M is positively invariant (respectively, invariant) (under F)if F(M) C M
(respectively, f(M) = M).

A non-empty, closed invariant subset M is an isolated invariant set if it is the maximal
(under the order of inclusion) invariant set in some neighborhood of itself.

Let M be an isolated invariant set. A compact positive orbit {1, },cz+ is said to be in
the stable set of M (under F) (in notation, {un }ez+ € W(M)) if AT ({up}nez+) C M;
a compact negative orbit {#_,},cz+ is said to be in the unstable set of M (in notation,
{U—ntrezr € W= (M) if A~({u_n}nez+) C M.

For two isolated sets M; and M, we say that M, is chained to M, in notation
My — M, if there exists an orbit {u,},cz with uy ¢ M; U M, for some k € Z such
that {u_,}nez, € W~ (M1) and {uplrez, € W (M>). A finite sequence Mj, ..., My, of
isolated invariant sets will be called a chain if M| — My — ... — My (M; — M, if
k = 1). The chain is a cycle if My = M. A covering I1 = {My, ..., My} of Q(F|w) :=
the closure of Q(F|w) is called an isolated covering of F |y if My, ..., My are pairwise
disjoint, compact, and isolated invariants (under F); the isolated covering IT is called an
acyclic covering if no subsets of IT form a cycle for F|w in W

The following theorem is a special case of Theorem 4.2 in [3].

Theorem 2.3. Suppose

(i) F is dissipative;
(ii) F|W has an acyclic covering T1 = {My, ..., My).

Then F is uniformly persistent with respect to W (i.e. there exists € > 0 such that
liminf,, oo d(F"u, W) > € for allu € V\W) if and only if the Sfollowing condition
holds:

(H) There is no positive orbit {u,}necz, in V\W such that {u,},c . € WH(M;) for
somei € {1,2,...,k}.

Theorem 2.4. [4, Theorem 6.3] Suppose V. = Ri, V% — 8Ri and F is uniformly
persistent and dissipative. Then F has a fixed point in int(Ri).
3. Persistence for System (1.1)

We now consider system (1.1). First, it is easy to see that the Y-axis is invariant
and solutions initiating on the Y-axis approach the origin 0(0,0,0) as t — o0,
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representing starvation of the predator in the absence of any prey. Also, the S7-plane is
invariant and the subsystem in this plane represents the prey population in the absence
of predators:

S=B({X)— g(}; 2ai" Bo(2)S,

3.1
. ID(, X
i=pBo)s — % :

Adding the two above equations, we obtain Eq. (1.2) in the first section. For Eq. (1.2),
the following lemma follows directly from Corollary 2 in [5].

Lemma 3.1. Equation (1.2) has a unique strictly positive, T -periodic solution X (t).
Moreover, if X(t) is any solution to (1.2) with X (ty) > O for some ty € R, then
limy s 400 | X (1) — X(®)| =0

For system (3.1), we have the following result.
Theorem 3.2. System (3.1) has a unique T -periodic solutwn (S @), I (t)) which satzsﬁes
that §(t) > 0, [(t) > Oforallt € [0, T1. Moreover, S(t) + I(t) = X (1), where X(t)

is the positive T-perzodzc solution to (1.2), and (8(t), I (2)) is asymptotically globally
stable with respect to R? 2\, 0)}.

The following lemma is needed for proving Theorem 3.2.
Lemma 3.3. Leta(t) and b(t) be continuous, strictly positive, and T -periodic functions.

Then the equation ]
X=a@) —b@)X, (3.2)

has a unique T-periodic solution X°(t). Moreover, that solution is strictly positive and
asymptotically globally stable.

Proof. The solution of (3.2) satisfying X (0) = Xo € R is
Tikties hXio s / b(s)els 909 gg1e~ Jy 302
Clearly, X () is T-periodic if and only if X (T) = X, thus if and only if

XO I [1 - e_‘/{-,T a(s)ds]_le_j:a(s)ds / b(s)ef a(‘[)d‘[ds
0
Therefore, (3.2) has a unique T-periodic solution, say X°(¢). It is easy to see that X°(¢)
is strictly positive and asymptotically globally stable. The lemma is proved. [ ]

Proof of Theorem 3.2. Existence. By Lemma 3.3, the equation
Dz, X @)
X(@)
has a unique positive T -periodic solution, say S(z), and the equation

= D, (t))—
gt S == 3.4
Po(®)S(t) — X0 3.4

§=Bu X)) - [ + Bo (z)] (3.3)
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has a unique positive T-periodic solution, say /(). We now consider

X = Bt R(1) — P%X. (3.5)

It is not hard to see that X (t) and S @) + i @) are posmve T -periodic solutions to (3.5).
The uniqueness in Lemma 3.3 implies X @) = S )+ i (¢) forallt € [0, T].

Attractivity and Uniqueness. Suppose that (S(¢), I(¢)) is any solution to (3.1) with its
initial conditions satisfying S(#) > 0, I(tg) > 0, and S(t9) + I(ty) > O for some
to € R. Since X (t) = S(t) 4 I(¢) is a solution to (1.2), we have, by Lemma 3.1, that
lim;, 4 o0 | X (2) — X(t)l = 0. From (1.1) and (3.3), we obtain

& )
EI—[S — SI(t) = —u@®[SE) — S@1+ v(@), (3.6)
where u(t) = 2EX@) | Bo(t), and
0

v(t) = B(t, X(©)) — B, X)) + [D(t’ XN 9P X(t)):| S().

X() X

Clearly, u;, = inf,;cg{u(t)} > 0.Itis not hard to see that S(r) < X(¢) < max{K, X (1)}
for all # > #. Thus, since 11m,_>+00 | X (@) — X(t)I = 0,wehave v(#) = Oast — +o0.
We claim that lim_, o0 |S(2) — S()| =
Indeed, there are two exhaustive possibilities:

(a) there exists #; > f( such that d/dt[S'(t) — S(@#)]#O0fort > 1, and
(b) there exists a sequence {s,}7°, in [fo, +00) such that for n > 1, 5, < sy41,
d/dt(S — S)(s,) =0and s, — +o0 asn — o0.

If (a) holds, then lim;_, 100 (S — S)(7) exists. If lim,_, 4o (S — S)(f) # 0, then since
u(t) >ur > 0andv(t) —> Oast — +o0, (3.6) implies the existence of numbers o« > 0
and fy > fy suchthat|d /dt(S S)(@)| > aforallz > £,.This contradicts theboundedness
of (S S)(t) on [tp, +00). Therefore, if (a) holds, then lim;_, 1 o |S(t) -S| =

If (b) holds, let 7, € [sy, s»+1] be chosen for each n > 1 such that

18() = S| = max 18() = S|, 3.7)

Since d/dt(S‘ — S)(sp) = 0 for n > 1, it follows that d/dt(S’ — 8)(ty) =0forn > 1.
Therefore, by (3.6), 3(1:,,) — S(tn) = v(tn)/u(zy,). Since u(z,) > uy > 0and v(r) — 0
ast — +o00, we have -
lim (S(ty) — S(w,)) =0. (3.8)
n—>4+00

Since 1, & +00 as n — 00, (3.7) and (3.8) imply that 3‘(1‘) — 8(t) > 0ast —» +oo.
Since (a) and (b) are exhaustive, the claim is proved.
Thus, since X(r) — X(t) — O ast — +oo and X(r) = S(r) + I (), we have
that | (t) —I(t) —> 0ast — +oc. The attractivity is proved. The uniqueness is the
consequence of the attractivity.
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Stability. Making the change of variable (X, I) = (S + I, I) in (3.1), we obtain

X = B(t, X) — D(t, X),

. ID(t, X (3.9)
i = Bot)(X — 1) — —(;(—)

Thus, (X(), [(2)) is a T -periodic solution to (3.9). Since the stability of (3.1) is
equivalent to the stability of (3.9), it suffices to show that (X ), I (2)) is a stable solution
to (3.9). For (3.9), the variational system at the solution (X @), L (1)) is

Z1 = By, X®) - Dx(t, Xt 21,
f&)Dt, X)) I@)D@, Xt
= 0 T e
X (1) X2(t)
D@, X(1))
— | o)+ ———— | Z
X (@)

Let Z(¢) be the matrix solution to (3.10) with Z(0) = Id — the identity matrix. Then
some elements of Z(z) are

(3.10)

t A
Zn@ =exp | f Bl (. X(0) - Dy(z, X(e)]dz ),

b o (3.11)

X(T

Zn@) =ewp | - / Ao+ Jaz}. zewy =0

Thus, Z(T) has two eigenvalues A1 = Z11(T), A2 = Zpn(T). Clearly, [A2| < 1. Since
Eq. (1.2) is scalar, Lemma 3.1 implies that X (?) is an | asymptotically stable solution
to (1.2). Thus, 0 < |A1] < 1. Now, the stability of (X ), i (t)) follows by standard
linearization arguments. The theorem is proved. [ |

The boundedness of solutions to (1.1) is shown by the following lemma.
Lemma 3.4. The set A = {(S,1,Y) € Ri eSS+ 1)+ Y < L}, where cyy =

maxg<;<t ¢(t) and L = cy K +cpy maxo<;<1;0<x<k {B(t, X) — D(t, X)}/ ming<;<7 I’
(¢, 0), is strongly attractive with respect to Ri,

Proof. Let (S(t), I(¢), Y(¢)) be any solution to (1.1) with (S, I, Y)(#) € Ri for some
to € R. We have
d
E[CMX(I) + Y ()] < cu[B@, X (@) — D(t, X(1))] =T, Y)Y (2)

<cu[B@, X(®) — D@, X®)] - T¢.0)Y (). (3.12)
If cyX(t) + Y(r) > L for some ¢ > 1, then either X(¢#) > K or X(#) < K and

Y(#) > L — cyK. Thus, (3.12) implies that d/dt[cy X (¢) + Y ()] < O whenever
cu X (t) + Y (t) > L. This proves the lemma. [}

The following is an extinction result for the predator.
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Theorem 3.5. Let
T
/ { —T(t,0) +c)[P1t, X@)) + P21, )‘c(t))]}dr <0, (3.13)
A ]

where X (t) is the positive T -periodic solution to (1.2), hold, then lim;_, 1 o Y (¢) = 0
Jor any solution (S(¢), I(t), Y (¢)) with (S(t), I (tp), Y (1)) € Ri’_for some ty € R.

Proof. Let us set b(t, €) := —I'(t,0) + c(t)[P1(t, X(¢) + €) + P,(t, X(t) + €)]. By
(3.13), there exists a positive number €y > 0 such that fOT b(t, ep)dt < 0. Suppose
that (S(z), I(¢), Y(¢)) is any solution to (1.1) with (S(t), I(t0), Y (tp)) € Ri for
some ) € R. We have X(r) < B(, X)) — D(t, X(t)), fort > ty. Thus, by
Lemma 3.1 and the standard comparison theorem, there exists a #; > #p such that
X(t) < X(t) + € for all ¢ > 1;. Therefore, Y(t) < Y(t)b(t, €p), fort > ;. This
implies that Y () < Y (z1) exp{ fti b(s, eo)ds}, for t > #1. Since b(z, €p) is T-periodic,
lim; 4 o0 Y () = 0. The theorem is proved. ]

_For system (1.1), we also denote by G(t, ty) the Cauchy operator, (¢ > #y), and put
H(t) =G(r,T + 1), fort € [0, T]. Letus set Ry = [0, +00), E; = {(0,0,Y): Y €
Ri},Ey,={(S,1,0):Se Ry, I €eR;},and E = E{ U E>.

Remark. 1t is clear that solutions through points in BRfL\E all move directly into the
interior of Ri from outside Ri. Thus, in order to prove H(t) is uniformly persistent, it
suffices to show that H () is uniformly persistent with respect to E.

Our main result is the following:

Theorem 3.6. Let

P yillig 10 5
L [_Fmo)+dﬂPmuXo»Sa§zfxnxa»un]dt>O AT

hold. Then system (1.1) is uniformly persistent.

Before proving Theorem 3.6, we need some lemmas. By Theorem 3.2, system (1.1)
has only two T -periodic solutions in E, which are (S(¢), 7(¢), 0) and (0, 0, 0).

Lemma 3.7. The characteristic multipliers of the linear variational system correspond-
ing to the trivial solution (0, 0, 0) to (1.1) have moduli different from 1.

Proof. Making the change of variable (X, I,Y) = (S+ 1, I, Y) in (1.1), we obtain

X = B@t X) - D(t, X) = K- DAGDY + IR XY

X
; ID(t,X) IPy(t, X)Y
i= 5o + VI = 1) - 122D TREOY okt
¥ — Y[—F(t, NG S 07,102 §)+1Pz(t, X)il'
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Since the stability character of (1.1) is equivalent to that of (3.15), we consider (3.15)
instead of (1.1). The change of variable makes the trivial solution (0, 0, 0) to (1.1) into
the trivial solution (0, 0, 0) to (3.15). For (3.15), the variational system at the trivial
solution is

Zy = [Bx(t,0) — Dx(t,0)]Z1,

Zy = Po(®)Z1 — [Bo(®) + D (1, 0)1 23, (3.16)

Z3 = —T(t,0)Zs.

Let Z(t) be the matrix solution to (3.17) with Z(0) = Id. Some elements of Z(t) are

Zu() = exp | /0 (B} (z,0) - Dy (z.0de},

t
Zy(t) = exp [ i /0 [Bo(r) + Dy (x, 0)]011'], 3.17)

t
Z33(0) =exp{ —fo I'(x, O)dr},

Z12(t) = Z13(t) = Z23(t) =0

Thus, Z(T) has three eigenvalues A; = Z11(T), Ay = Zp(T), A3 = Z33(T). Clearly,
[A2] < 1 and |A3] < 1. Since B (#,0) — D (t,0) = g(¢,0) > 0, |A;| > 1. Thus, the
lemma is proved. [ ]

Lemma 3.8. Let the inequality (3.14) hold. Then the characteristic multipliers of the
linear variational system corresponding to the solution (S(t) I (1), 0) have moduli
different from 1.

Proof. By the same argument given in the proof of Lemma 3.7, it is enough to consider
system (3.15) with its T perlodlc solution (X ®), I (), 0). For (3.15), the variational
system at the solution (X ), i ®),0) is

S@Pi, X)) + IO P, X(t))

Zy = [Bl(t, X (1)) — Diy(t, X(t)1Z1 — 20 Zs,
o [, iy, X(r)) I®De, X@)
e X(0) X(0)
D, X)) 0P, X(t))
kit i | K7 e e T
[ﬁo( )+ } 2 — i)
G [_F .0 + e SORE @) + TP, X(r))}
X(t)

(3.18)
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Let Z(t) be the matrix solution to (3.18) with Z(0) = Id. Some elements of Z(z) are
t A A~
Zn() = exp | / [Bx(x. (2) - Dy (x. X(e))]de .

D, X(t
Zn(t) = CXP{ / [ﬂ (@)r (t—i))] } s Z31(t) = Z3p(t) = Z12(t) =0

X(t

X(@) = [(@©)Pi(z, X)) +1(x) Pa(x, X(f))]

t
Z i) = [— R c(T
33(t) = exp {](; ['(z,0)+c(7) 20
(3.19)
Thus, Z(T) has three eigenvalues A; = Z11(T), r» = Zn(T), Az = Z33(T). Clearly
|A2| < 1. By the same argument given in the proof of Theorem 3.2, we obatin [A;| < 1.

By (3.14), |[A3] > 1. Thus, the lemma is proved. [ |

Proof of Theorem 3.6. By Theorem 2.1 and Remark before Theorem 3.6, it is enough to
prove that H(t) is uniformly persistent with respect to E for all = € [0, T]. Let us fix
T € [0, T']. It is not hard to see that H(t)E C E and H(‘L’)(R \E) C R3 2 \E. We shall
use Theorem 2.3 to prove the uniform persistence for H(t). Lemma 3. 4 implies that
H (7) satisfies the hypothesis (i) in Theorem 2.3 with V = R_3,_ and W = E. By Theorem
3.2, Q(H(t)|g) = {0, Q;), where O is the origin and @, = (S(z), I (1), 0). It follows
from Lemmas 3.7 and 3.8 that {O} and {Q-} are isolated invariant sets under H (7).
Thus, IT = {{O}, {Q-}} is an isolated covering of H(t)|g. Furthermore, by Theorem
3.2, IT is acyclic. We shall prove that H(t) satisfies the hypothesis (H) in Theorem 2.3
for the acyclic covering IT.
Suppose that it is false. Then at least one of the two following alternatives is met:

(a) there exists {H" (t)u}52, C int(R3) such that limy,—s oo | H"(T)u| = 0;
(b) there exists {H" (v)u}32, C int(R7}) such that lim,_, ;o [|H"(t)u — Q.|| = 0.

If (a) holds, then by the Arzela—Ascoli theorem, the sequence of continuous functions
{(S, 1,Y)(t + © + nT)};2, on [0, T] converges uniformly to (0,0,0) as n — oo,
where (S, I, Y)(¢) is the solution to (1.1) with (S, I, Y)(t) = u. This implies that
lim;—, 400 (S, I, Y) () = (0, 0, 0). Let € > 0 be such that

Pz, X)

inf ¢(1,0) —€ sup — > 0.
t€[0,7] ¢, X)el0,TIx[0,K] X

(H3),(Ha),(1.1) imply that X(z) > B(t, X(2)) — D(t, X (1)) — €P>(t, X(r)) > O,
whenever Y(t) < €, I(f) < K and S(z) < K. This contradicts the fact that

lim;_, 1 (S, I, Y)(z) = (0, 0, 0). Thus, (a) cannot happen.
If (b) holds, then by the same argument given above, we obtain

t_lggoo IS@) —S@®)| = t—1>n-ipoo @) - 1)) = z_lffoo [Y(#)]| =0
where (S, I, Y)(z) is the solution to (1.1) with (S, I, Y)(t) = u. Let us set

(S() —OPi(t, X(t) —26) + ([(1) — P21, X(#) — 26)
X(t)+2e

b(t,e) = —T(t,€) +c(®)
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By (3.15), there exists a positive number €p such that fOT b(t,ep)dt > 0.Lett; > 7 be
such that |S(¢) — S()| < €0, [1(t) — I ()| < €o and |Y(¢)| < €o for all # > #,. Then
(1.1) implies that, for t > #;, (d/dt)Y () = Y (¢)b(t, €p). Thus, fort > 1,

t
Y(t) > Y(t1) exp {f b(s, eo)ds} .

I

Since b(t, €p) is T-periodic, it follows that lim;_, y o ¥ (#) = 400, which contradicts
lim;, o Y (¢) = 0. Thus, (b) cannot happen.

Since (a) and (b) are exhaustive, H (t) satisfies (H) in Theorem 2.3. The theorem is
proved. |

Corollary 3.9. Let (3.14) hold. Then (1.1} has at least one T -periodic solution whose
components are strictly positive.

Proof. Since H (0) is uniformly persistent and dissipative, by Theorem 2.4, H(0) has
at least one fixed point, say P, in int(Ri). Clearly (S(t), I(),Y(t)) = G, 0)P isa
T -periodic solution to (1.1) which is in int(Ri). The corollary is proved. u
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