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Abstract. We consider a model of a predator-prey population with the action of a parasite in the
periodic case. We establish a uniform persistence criteria for the model. This is a generalization
of a result by Freedman [1] from the autonomous case to the periodic one.

1. Introduction

In [1], Freedman considered a mathematical model of a predator-prey population in
which each member of prey may or may not be infected by a parasite, but the predators
are all infected. That model was described by a system of three autonomous ordinary
differential equations and conditions for persistence of all populations were given (see

[1]). Our concern in this paper is with the more general case in which the model is
depending on time r periodically. Such a generalization seems to be natural considering
the oscillations to which any ecological parameter might quite naturally be exposed (for
example, those due to seasonal effects of weather, food supply, mating habits, hunting
or harvesting seasons, etc.).

The model considered in this paper is described by the following system of non-
autonomous ordinary differential equations:

s : B(r, x) - VP - [f l0i4 a fue)y]s - sP1(t '  x)Y
X

I - lBse) + flt(r)vls - I D(t' x) '"u;x)Y 
,

f  -Y  
[ - t , , ,  

Y )+ r r , r !W* IP2Q ' " ' ] ,

( 1 . 1 )
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where S, I, X - S*/, Y arethe susceptible, infective, totalprey andpredatorpopulation
densities, respectively; 8 , D, Pt, P2,l : R x [0, *oo) -+ R are continuous, Z-periodic
in the first variable (T > 0) and continuously differentiable in the second variable; and
fl0, flt, c : R + (0, *oo) are continuous and Z-periodic.

The case of functions B, D, Pt, P2,1, Fo, ft, c not depending on t-variable was con-
sidered in [1]. Further assumptions on the functions of the system (1.1) are given below,
which are based on those in [1]. In the following, we denote bV Bk, Dk, PIx, P;x,l'y
the partial derivatives of the functions B , D, Pr, Pz, f , respectively, with respect to the
second variable.

The function B(/, X) is the birth rate of the prey population at time t and is assumed
to be independent of parasite infection. Further, it is assumed that the birth rate increases
with increasing population. Hence,

(Hr )  B( t ,O) :0and n ' *Q,  X)  >  0 fo r r  e  [0 ,  Z ]  andX e  [0 ,  *oo) .

The function D(t, X) represents the "natural" death rate of the prey population at time
t,that is, death due to any occurrence other than predation. It is also assumed that the
death rate increases with increasing population. Hence,

( H z )  D ( t , O )  - 0 a n d  D ' * ( t , X ) >  0 f o r r  e  [ 0 ,  Z ]  a n d X  e  [ 0 , * m ) .

In the system (1.1) all prey members are born into the susceptible class and may be
subjected to parasitism immediately after birth. The natural death rate corresponding to
each prey class are proportional to the relative densities of that class, r.e., (S / X)D(t, X)
and (IlX)D(t,X) are the natural death rates of the susceptible and infective prey
populations, respectively.

If there are no predators and parasites, the prey population can be described by the
following equation (see Eq. (1.1)):

X -  Xg(t ,  X), (r.2)

where g(t,X) - lB(t,X)-D(t,X)l/X isthespecificgrowthrateofthepreypopulation
at time r. Due to limited resources at time t, the specific growth rate is decreasing with
increasing population. Eventually, it becomes negative since food supply can support
only a finite population. Therefore,

(Hs) g(t, X) is continuous on R x [0, *oo); gU,0) > 0 and g(t, .) is strictly decreasing
for any fixed r e [0, Z]; and furtherrnore, there exists a Z-periodic function
k(t)  > 0 such thatK !-  sup7.1s,r1k(t1 < +oo, g(t ,k( t ) )  < 0for al l t  e [0,  Z] .

The function Pr (t, X) (i - 1, 2) is the predator functional response of the susceptible
and infective populations, respectively. It is assumed that owing to the action of the
parasites, the infected prey has an increasingly higher functional response than the
uninfected prey. Hence,

(Hq) Pi(r,0) - 0, Pl.xQ, X) , PlxG, X) > 0 for all (t, X) e [0, Z] x [0, *oo).

The function f (r, Y) is the density dependent death rate of the predator in the absence
of prey, which should be increasing with increasing population. Hence,

(Hs)  f  ( r ,0 )  >  0and f ' rQ,Y)  >  0 fo r r  €  [0 ,  f ]  andY e  [0 ,  *oo) .

The following hypothesis is needed for a technical mathematical reason.
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(Ho) All functions in System ( 1.1) are so sufficiently smooth that the Cauchy problem for
( 1 . 1) with the non-negative initial values has a unique solution which is continuable
for all positive time.

The function c(r) represents the proportion of prey that is converted to predator
biomass. The function BsQ) represents the infection rate of susceptible prey in the
absence of predators, the function frt(t) is the rate per unit predator of prey infection
due to parasitic reproduction in the predator population. In the system (1.1), we assume
that all predators are infected. Hence, susceptible prey infected by parasites are removed
from the susceptible class at a specific rate of flo(t) * fu(t)Y, and an equivalent number
of prey are added to the infected class.

For the ecological significance of system (1.1), the reader is referred to [1].
Persistence in mathematical models of population dynamics corresponds to the

survival of populations and thus it represents an important qualitative property for such
models.

depend on positive initial conditions, then (1.1) is said to be uniformly persistent.
For a survey of permanence theory (i.e., uniform persistence and dissipativity), the

reader is referred to [4].
In the next section, we discuss an equivalence of persistence between periodic

differential equations and discrete semidynamical systems coffesponding to them, and
recall some well-known results on persistence in discrete semidynamical systems. In
Sec. 3, we prove a persistence criteria for system (1.1).

2. Preliminaries

2.1. Persistence in Periodic Differential Equations

We consider the following equation:

i  -  f  ( t , x ) ,

3tl

(2.r)

where f : R x R{ --> Rd (d > 1) is continuous and Z-periodic in r-variable; and
R ( : -  { ( x r ,  .  . . ,  x d )  ;  x i  t  0 ,  i  -  1 , 2 ,  . . . , d } .  W e  a s s u m e  t h a t

(i) the Cauchy problem for (2.1) with the initial condition x(td - xo e RIi (rs e R)
has a solution which is unique and continuable for all t . to;

(iD system (2.1) is dissipative, i.e., there exists a compact neighborhood "4 of the origin
such that, for each solution x(t) to (2.1) with x(td e RI for some /s € R, there
exists tt > to such that x(t) e Afor allt Z h.

By (l), we may introduce for any t > to the Cauchy operator G(t,til; it is defined
on R{ and maps the initial datum xs into the solution x(t) at time r. Sffaightforward
properties of G are: G is continuous and r-differentiable for / > to; G(t, s)G(s, /o) :

G(t, ts), t > s > to; G(t lT, to +T) - G(t, to), t > to; G(t,tdRI c RIfor t > to;
and G(rs, /o): Id (the identity).
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Let H(r) : G(T * r, r) (z e R). We have the discrete semidynamical system:

IN x R{ ) (n,-{) r> H" (r)x .  R+. (2.2t)

Definition.
(i) System (2.1) is said to be persistent (with respect to 0R!) if liminfy--..ee d(x(t),

ARb > O, for any solution x(t) to (2.1) with initial conditions x(ts) e int(R{).
It is unifurmly persistent if liminfl--1- d(x(t), aR{) > e for some positive e not
depending on positive initial condition x(td - (xor , ..., xod).

(ii) H(r) (or (2.2r)) is said to be persistent (with respect to AR{) if liminfTr--..ee
d.(H" (r)x, A RI) > 0 for all x e int(R1.). It is uniformly persistent if there exists
€ > 0 such that liminfr--16o d(H"(r)x, AR+) > e for al| x e int(R{).

We shall prove the following:

Theorem 2.1.

(i) System(2.1)ispersistentif andonlyif,foreach z e [0, T], H(r)ispersistent.
(11) System (2.1) is unifurmly persistent if and only if, for each z e [0, Tl, H(r) is

unifurmly persistent.

Before proving Theorem 2.l,we prove the following lemma:

Lemma 2.2. Thefunction d(r) - infr.6114a;{l iminf,---,-* d(H"(r)x, aRl)} is con-
tinuous on 10, Tl.

Proof. Let M > 0 be such that M2 - E/:, sup, el0,rl,xeAlfiQ,x)1. we shall prove
that ld(t) - 6(r') l < Mlr - r ' l for r,r '  e l0,Tl.It suffices to show that, for any
xl e int(R{), th... exists x2 e int(R{.), such that

t lg+$ d(Hn(r)*t,aRI) - 
|rE+$ d.(Hn(r ')*2,aRI)l  < Mlr - r '1. (2.3)

Let x(t) be the solution to (2.1) with x(t) - x1. Put x2 : x(T t t ') and x3 : x(T * t).
Let t1 > r be such that x(t) e Afor all t > /r. We have that

Letns e INbe suchthat noT I r > tt andnsT I r ' > /1. Since x(t) e Afor allt > t1,
it follows that, for n ) fly,

l iminf  d . (H"(r )*3,0nI)  -  l im in f  d(Hn+t( r )* t ,anI )
n - + * o o  t '  n - + * @

- tim inf d(H" (t)*r , aRI).
n-->-t@

ld.(H" (r)*3, a RI) - d.(H" (t')*2, a RL)l < llH" (t)*3 - H, (r)xz I

:  l l x ( (n  +  l )T  *  r )  -  x ( (n  * l ) f  +  z ' ) l l  <  M l r  -  r t l .

We claim that
E - € ' l < M l t - r ' 1 ,

(2.4)

(2.s)

(2.6)

where f : lim infr--1* d.(H" (t)*3, 3 RI), 6' : lim infn-*+oo d.(H" (t')*2, a Rb.
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Suppose the claim is false. Then there exist two sequences {np} and {n'p} of {n } such

that

6 - o!f* 
d.(17"0 (r)*3 , aR{*),

6/ - . l im d(H"o(r')*2, aR+),- 
k--+*oo

l € - € ' l > M l r - r ' 1 .
Without loss of generality we may assume € > €' .By going to a subsequence if necessary,

we may assume that limr-* +n d(Hnr,(r)x3 , aRI) : 6r. Clearly, 6r > t , €' . Thus,

i t fo l lowsf rom (2 .5 ) tha t i l -€ '  <  Ml r  - r t l ,wh ichcont rad ic ts f r  -  t ' ,  €  -€ '  .

Mlr -z' l.Thus,theclaimisproved, and(2.3)followsfrom Q.Qand(2.6).Thelemma
is proved. I

Proof of Theorem 2.1. Proof of Part (i). Necessity.It is obvious.

Sfficiency. Suppose it is false. Then there exists a solution x(t) to (2.1) with x(ts) e

int(R{) (for some /6 € R), and a sequence {t"l?:t c [ro, +oo) t *oo such that

l im,,-r- , .6e d(x(t) ,AR+):  0.  Letrn -  tn - l t " /TlT for  n Z 1,  where l tn/Tl  -

sup{k  e  Z :k  <  tn /T} .Then q  e f0 ,  Z l  fo r  a l ln  >  l .Bygo ing toasubsequence i f
necessary, we may assume rn ) zs € [0, z] as n --> @.Let7n:: 70 +lt"/7]2. Then

Tn + *oo as n + *x.Let7 > /s be suchthat x(t) e Afor allt >7,andno be such

that7, > 7 and t, > 7 for all n ) fly.Thus, for n >-n6, we have

ld(x(t,), anll - d(x(7,),an{+)l s l lx(r,) - x(7)l l  = Mlt" -7,1

:  M l tn  -  to l ,

and it follows that ld(x(t,),0R!) - d(x(lr),0R{;; + 0 as n -> *oo. Hence,

l i m n * - . q o d ( x ( 7 ) , a R h : 0 , a n d s o l i m i n f n - - - . - 6 9 d ' ( H " ( t d x G t + T ) , a R + ) <
0, (here, we take 7t * T to make sure that 7t * T
lim infr- +* d(H" (rdx(T t + T), A RI) > 0. Therefore, system (2.1) is persistent.

Proof of Part (ii). Necessity.It is obvious.

Sufficiency. By Lemma2.2,6(z) is continuous. Since 6(z) > 0 on [0, T),it follows

that 6s :- infze [0,r1d(z) > 0. We claim that liminfn--16p d(x(t), ARfi > ds for any

solution to (2.I) with x(ro) e int(R{) for some /s € R, which implies the uniform

persistence of the system (2.1).
Suppose it is false. Then there exists a solution x(r) with x(td € int(R{) for

some /s € R such that l imr*1*d(x(t),AR|) _ y

sequence {trf ir C (lo,+oo) t *oo such that 1im7--'a*d(x(tn;,an{.) _ y.Prrt

rn: tn- l t r /TlT.Clear ly,rn e [0,  Z] .Bygoingtoasubsequencei f  necessary,wecan

assume thatrn + r0 e [0, I]. Put7, - 70 * lt"lTlT,thentn t *m asn -+ 
t*.By

the same argument given in the proof of part (i), we have limn-- +* d(x(i),0R!) : Y.
Thus, 6s < liminfn-*.'6p d(H"(tdx(Tt + T), Anil < y < ds. This contradiction

implies the claim. Thus, the theorem is proved. I

2.2. Persistence for Maps

For the sake of convenience, we now recall some definitions and well-known results on
persistence for maps.
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LetV be ametric space withmetric d andletW beaclosed subset of V .Let F : V + V
be continuous such that F(W) C W and F(V\W) c y\W.We denote by Flyz the
restrictionof F on W. Denote Zthesetofintegers and Z+ thesetofnon-negativeintegers.
Recall that a sequence {unlnez+ ({u-rlnez+, respectively) of points in 7 is said to be a
positive (negative) orbitthroughu e V if uo: u and Fun: un11 (Fu_n_r : u_n)
for all n e Z+ ; a sequenc e {u n} nez with ug - u afld F u, : u n+L for all n e Z is called
an orbit through a. A positive (respectively, negative) orbit is said to be compact if the
sequence, when considered as a subset of V, is precompact. Denote by It+ ({unln.7*)
or Ar(z) (respectively, A- ({u-nlrez+)) the omega limit set (the alpha limit set) of
the positive (negative) orbit through u (see l2l). F is said to be dissipative if the set
S2(F) : U{A+(u) : u e V} is precompact.

LetM CV.Mispositivelyinvariant(respectively,invariant)(under F)1tF(M) C nt
(respectively, f (M) - M).

A non-empty, closed invariant subset M rs anisolated invariant set if it is the maximal
(under the order of inclusion) invariant set in some neighborhood of itself.

Let M be an isolated invariant set. A compact positive orbit {unlnez+ is said to be in
the stable set of M (under F) (in notation, {un}nez+ e W (M)) if A+ ({urlnez*) C U;
a compact negative orbit {u-r}neZ+ is said to be in the unstable set of M (in notation,
{u-nlnez+ e W- (M)) i f  A- ({u-n}nez) c M.

For two isolated sets M1 and M2 we say that M1 is chained to M2, in notation
Mt + M2, if there exists an orbit {urlnez withup # Mtu Mz for some k e Z such
that {u-"}neZ* € W- (M) and {un}n.z+ e W+ (Mil.A finite sequence Mr, ..., M1, of
isolated invariant sets will be called a chain if Mt + Mz + . . . + Mt (Mt --> M1 If
k - 1). The chain is a cycle if Mr - M1. A covering II : {Mr, ..., Mr} of O1f'1 w) :_
the closure of S) (Flw) is called an isolated covering of Fl y7 if M1, ..., Mk are pairwise
disjoint, compact, and isolated invariants (under F); the isolated covering fI is called an
acyclic covering if no subsets of lI form a cycle for Flys in W

The following theorem is a special case of Theorem 4.2 inl3l.

Theorem 2.3. Suppose

(i) F is dissipative;
(ii) FIW has an acyclic covering fl : {M1, ..., Mtl.

Then F is unifurmly persistent with respect to W (i.e. there exists e > 0 such that
lim infrr fto d(F"u, W) > e for all u e y\W) if and onty if the fottowing condition
holds:

(H) There is no positive orbit {u,}nez* in y\W such that {unlnez+ e W+(M) for
s o m e  i  e  { 1 , 2 , . . . , k } .

Theorem 2.4. [4, Theorem 6.31 suppose v - R+, w - 0R{ and F is unifurmty
persistent and dissipative. Then F has afixed point in int(n{).

3. Persistence for System (L.L)

We now consider system (1.1). First, it is easy to see that the Y-axis is invariant
and solutions initiating on the Y-axis approach the origin 0(0,0,0) as r + *oo,
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representing starvation of the predator in the absence of any prey. Also, the S/-plane is
invariant and the subsystem in this plane represents the prey population in the absence
of predators:

.  S D(t.  X\
S - B ( t , X ) - - X  - f l o G ) S ,

:  ^  I D ( I , X )
I  - f l 0 ( t ) s - - x

(3 .1 )

Adding the two above equations, we obtain Eq. (1.2) in the first section. For Eq. (1.2),
the following lemma follows directly from Corollary 2 in [5].

Lemma 3.1. Equation (1.2) has a unique strictly positive, T-periodic solution X<t).
Moreover if X(t) is any solution to (1.2) with X(ts) > 0 for some ts € R, then
limT-*-,-ee lX(t) - X(t)l :0.

For system (3.1), we have the following result.

Theorem 3.2. System(3.1)hasauniqueT-periodicsolutiont^1tl), i1t71*t trhsatisfies
tha tS(D >  0 ,  i1 r ;  >  0 fo ra l l t  e  [0 ,2 ] .Moreoue4  ̂i1 r l+  i1 t1  -  *Q) ,where*1 t1
is the positive T-periodic solution to (1.2), and (S(t),1(t)) is asymptotically globally
stable with respect tu R2+\{(0, 0)}.

The following lemma is needed for proving Theorem 3.2.

Lemma 3.3. Let a(t) andb(t) be contiru,totts, strictly positive, andT -periodicfunctions.

Then the equation
* - a G ) - b ( t ) x , (3.2)

has a unique T -periodic solution X0 (t). Moreoven that solution is strictly positive and
asymptotic ally globally stable.

Proof. The solution of (3.2) satisfying X(0) - Xs e R is

f t  f s  f r

X(t)  -  [Xo * 
J,  

U<tVl ,  
o\ ' )d '  

dsfe- Jo a(s)ds 
.

Clearly, X(/) is Z-periodic if and only if XQ) - Xo, thus if and only if

Xo : I l - e- [or ats'tds 
r- ' ,- ff a(s\cts 

[ '  ut >rl, 
aG)dr 

o, .- J o

Therefore , (3.2) has a unique Z-periodic solution , say Xo (t). It is easy to see that Xo Q)
is strictly positive and asymptotically globally stable. The lemma is proved. I

Proof of Theorern 3.2. Existence.By Lemma 3.3, the equation

i -  a  f n u . * a l l  l -
s - B ( t , x ( r ) ) - |  ' ^ ' " + B s ( r ) | s ,  ( 3 . 3 )

L x(t) I
has a unique positive Z-periodic solution, ray ,31r;, and the equation

,-  a ntt .  *t t l l  -
I  - B s ( t ) S ( r ) -  # 1 ,

x(t)
(3.4)
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has a unique positive Z-periodic solution, ruy i1r;. We now consider

a r  D(t .  X(t \ \  -
X : B ( t , X ( t ) ) -  

' ;  " ' X .
x(t)

(3.s)

It is not hard to see that X(t) and S(/) t I (t) np positive Z-periodic solutions to (3.5).
The uniqueness in Lemma 3.3 implies X(r) - S(t) * I (t) for all t e lO, Tl.

Attractivity and Uniqueness. Suppose that (S(r), I (t)) is any solution to (3.1) with its
initial conditions satisfying S(ro) > 0, 1(ro) > 0, and S(ro) + /(ro) > 0 for some
/s € R. Since X(t) - S(r) + /(r) is a solution to (1.2), we have, by Lemma3.I, that
liml--a6s lX(t) - X(r>l : 0. From (1.1) and (3.3), we obtain

d

nls 
- sl(r) - -u(t)lS(t) - s(r)l t u(t),

,  D(t ,  * t r l l
where u(t) - 

6 
* flo(t), and

l^i(r,) - S(2,)l - mix l^itr l  - s(r)1.
S,  ( l  (S r - . 1

u(t) - n1t, *1t11 - B(t, x(t)) *l ou=try" - nG,x(t)) 
I 'ur.- \ - / /  

L x( t )  x@ _l  
- ' ' ' '

Clearly, LtL : inf164 {u(t)} > 0.It is nothard to seethat S(r) < X(t) < max{K, X(ro)}
for all t > to.Thus, since liml---.sq lx(t) - *@l : 0, wehave u(r) + 0 as r + *oo.

We claim that limr--+- lS(r) - S(/)l : 0.
Indeed, there are two exhaustive possibilities:

(a) there exists h > to such that d/at6@ - S(/)l l0 for t > t1, rnd.
( b ) t h e r e e x i s t s a S e q u e n c e { s , } B 1 i n [ r o , + o o ) s u c h t h a t f o t n >

d/dt(^i - S)(sn) :0 and s, + +oo as /? + oo.

If (a) holds, then limr--+*(3 - D(r) exists. If liml--1*(S - S)(/) I 0, thensince
u(t) > uL ) 0 and u(t) + 0 as / + *oo, (3.6) implies the existence ofnumbers cy > 0
andtp > /1 such thatld /dtt^i- Sl trl | > ufor all t > tz.This contradicts the boundedness
of (^3 - D(r) on [/s, *oo).Therefore, if (a) holds, then limy-*** 1,3(r) - S(r)l :0.

If (b) holds, let q € [s,r, sn+r ] be chosen for each n > | such that

(3.6)

(3.7)

(3.8)

Since dldt6- D(s,) - 0 for n ) l,it follows that d/dt(S - D(r,) : 0 for n > l.
Therefore, by (3.6), ̂3(r,) - S(zn) - u(r) /u(zr). Since u(r) > uL > 0 and u(r) -+ 0
aS / -+ *Oo, we have

l im (S(2") - S(zn)) - g.
/r-++oo

Since rn ) *oo as n + 6, (3.7) and (3.8) imply that^3frl - S(r) -+ 0 as r -+ *oo.
Since (a) and (b) are exhaustive, the claim is proved.
Thus, since X(t) - X(t) + 0 as r -+ *m and X(r) _ S(r) + 1(/), we have

that I(t) - I(t) + 0 as / + *oo. The attractivity is proved. The uniqueness is the
consequence of the attractivity.
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Stability. Making the change of variable (X, 1) - (S + I , I) in (3.1), we obtain

*  -  Be,x)  -  D( t ,x) ,

i - f r oe ) ( x -  D - ID ( : : x ) .X

(3.e)

(3.10)

( 3 . 1 1 )

Thus, (X(t), /(r)) is a Z-periodic solution to (3.9). Since the stability of (3.1) is
equivalent to the stability of (3.9), it suffices to show that (X(r) , I (t)) is a stable solution
to (3.9). For (3.9), the variational system at the solution (X(t),1(/)) is

zt : Itkrr, x(t>> - Dk1t, *1t11f 21,

Zz :fro,,, - f G)n'oG' *QD 
* 

f @o-G ' *@)l ,,
L-"-' x(t) x'(r) -l 

'

l - ^ . .  D ( t , * t r l l l -- 
lfloa> 

* -i(,)')t,

Let Z(t) be the matrix solution to (3.10) with Z(0) - Id - the identity matrix. Then
some elements of Z(t) are

Ztr( t )  -  exp

ZzzQ) - exp

Thus, Z(T) has two eigenvalues lr - Zn(T): Lz: Zzz(T). Clearly, lLzl < 1. Since
Eq. (I.2) is scalar, Lemma 3.1 implies that X(r) is an^asymptotically stable solution
to (1.2).  Thus, 0 < l l r l
linearization arguments. The theorem is proved. I

The boundedness of solutions to (1.1) is shown by the following lemma.

L e m m a 3 , 4 , T h e s e t A  -  [ ( S ,  I , Y )  €  R l  :  c y ( S  + / ) + Y  <  L ] , w h e r e c M :
rn4Xs<1<7 c(t) and L : cu K *cu rrrarxs<1<7^;0<X<K {B(t, X) - D(t , X)}/ min6.t.T I
(r, 0), is strongly attractive with respect to Rr*.

Proof. Let (S(r), I (t),Y(t) ) be any solution to (1.1) with (,t, 1, Y)(td € Rl for some
/e € R. We have

d .
i l r*x(r)  + Y(t) ]  < cMlnG, x(r))  -  D(t ,  x( /)) ]  -  r (r ,  Y(t))Y(t)
c l t '

< cMln?, x(t)) - D(t, x(t))l - f (r, O)v(r). (3.r2)

lf cyX(t) + Y (t) > L for some t 2 to, then either X(t) > K or X(t) < K and
Y (t)
cttX(t) + Y (t) > Z. This proves the lemma. r

The following is an extinction result for the predator.
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Theorem 3.5. Let
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Ir' l- 
r(r,0) * c(r) lpr(,, *(,>) * p2(t,*trll] 

lat . o, (3.13)

where *Q) tt the positive T-periodic solution to (1.2), hold, thenlim,--r+oo Y(r) - 0
foranysolut ion(S(r) ,  I ( t ) ,Y(t))wi th(S(ro),  I ( tO,Y(td) € Rl  forsomel6 € R.

Proof.  Let  us set  b(t ,e)  : -  - f  ( r ,0)  + c(r) t  PrQ, *@ + e) + PzQ, *(r)  *  e)1.  By
(3.13), there exists a positive number €e > 0 such that [d b|,es)dt < 0. Suppose
that (S(r),l(t),Y(t)) is any solution to (1.1) with (S(rs),1(td,Y(td) € Rl for
some /s € R. We have *(r)
Lemma3.1andthes tandardcompar isontheorem, thereex is tsa /1>
x(t) < *@ + e6 for allt > /1. Therefore,tlt l  < Y(t)b(t,€l), fort > /1. This
implies thatY(t) < Y(t)exp1:,b(s,es)ds), for t > tr. Since b(t,es) is Z-periodic,
liml-*1se Y(t) - 0. The theorernis proved. r

For system (1.1), we also denoteby G(t, /s) the Cauchy operator, (t > to), and put
H ( r )  - G ( r , T  * r ) ,  f o r z  e  [ 0 ,  f ] . L e t u s s e t R l :  [ 0 , * o o ) ,  E r :  { ( 0 , 0 ,  Y ) : Y  e
R + ) ,  E z -  { ( S ,  / , 0 )  :  S  e  R a ,  1  e  R a } ,  a n d  E  -  E 1 U  E z .

Remark. It is clear that solutions through points in Onl\E' all move directly into the
interior of R] from outside R|. Thus, in order to prove H (t) is uniformly persistent, it
suffices to show that H (r) is uniformly persistent with respect to E.

Our main result is the following:

Theorem 3.6. Let

*e) dt > O (3.14)

hold. Then system (1.1) is unifurmly persistent.

Before proving Theorem 3.6, we need some lemmas. By Theorem3.2, system (1.1)
has only two Z-periodic solutions in E, which are 1^31r;, f(r), O) and (0, 0, 0).

Lemma 3.7. The characteristic multipliers of the linear variational system correspond-
ing to the trivial solution (0,0, 0) to (1.1) have moduli dffirentfrom 1.

Proof. Making the change of variable (X, I , Y) : (S + I , I, Y) in (1.1), we obtain

X - B(t,  X) - D(t,  X) -
(x - I) h(t, x)Y + I Pz(t, X)Y

X )

)lPr(t, X(t))S(/) I P2(t, X(t))I (t

l '  [-tt 
t 'o) + c(t)

i - 7Bs1t) + Fi,/,yr(x - D - 
ID(t' x) I P2(t'X)Y

X X ,

Y - Y L - . r r , Y ) + c ( t ) L  x  
- l

(3.1s)
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Since the stability character of (1.1) is equivalent to that of (3.15), we consider (3.15)

instead of (1.1). The change of variable makes the trivial solution (0, 0, 0) to (1.1) into

the trivial solution (0,0,0) to (3.15). For (3.15), the variational system at the trivial

solution is

Z1

Z2

Zz

- lBkQ , o) - D'xQ , o)lzr,
- BsQ)Zt - lFoQ) + D'xQ,0)f22,
:  - f  ( / ,0 )zz .

(3.16)

Let Z(t) be the matrix solution to (3.17) with Z(0) - Id. Some elements of Z(t) arc

(3.r7)

)

zrr(t)- exp I fr' lt;(z, o) - D'*(z, o)]drl,

zzz(t)- exp [- Ir ' [Bo(r) 
+ D'"(r,o)]dz],

Zzs( t ) -  exp { -  l r ' r ( r ,  
o)dz} ,

ZnQ) -  Zn(r )  -  Zy( t )  -Q.

Thus, ZQ) has three eigenvalues i"1 - Zn(T), Lz: Zzz(T), L3: Zzz(T). Clearly,

l lz l  <  1 and l f : l  <  1.  S ince n l?,o)  -  Dk(r ,0)  -  g( t ,O)  > 0,  l l r l  >  1.  Thus,  the
lemma is proved. r

Lemma 3.8. Let the inequality (3.14) hold. Then the characteristic multipliers of the

linear variational system corresponding to the solution 131t1, i(r), O) have moduli
dffirent from l.

Proof. By the same argument given in the proof of l-emma 3.7 , tt is enough to consider

system (3.15) with its f-neriodic solution (X(t),1(r),0). For (3.15), the variational

system at the solution (X(t), /(r), 0) is

S(r)Pr ( t ,  X(t))  + I  ( t )  P2(t  ,  X(t))  _
u

x(t)
3 t

t D (

*
'.t) 

I

+ i

'.t)

i(

Zr

fe

i

i(rll

'li

+

2

X

))

)

Z

t ,

t ,  tQ))

23,

(r) )

)

X

x(t

P2

)

(t ,
' ( t )

r ) F

Y(t

Pzl

X

i(,
x<t>

( t ,

(3.18)
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Let Z(t) be the matrix solution to (3.18) with Z(0) - Id. Some elements of Z(t) are

t f tZt(t) - exp I I fu;G, *GD - D'*1t, *1ty1]atl,_  r . / o  , .

zzzQ)-exp 
I- Irfnor,l . '#] ,,7- "  t '

i( ')l

z y ( t ) - 2 3 2 ( t ) - z n G )

Pr(r ,  * (O)+f  ( r )pzk,  *zzz4)- exp 
{l't-r(z, 

o) *c(r)
(*( ')  -

- 0

(z)) I- t
x(r)

(3.1e)
Thus, ZQ) has three eigenvalues lr - Zn(T), Lz: Zzz(T), L3: Zzz(T). Clearly
lLzl < 1. By the same argument given in the proof of Theorem3.2, we obatin lf r | < 1.
By (3.14), )ql > 1. Thus, the lemma is proved. r

Proof of Theorem 3.6. By Theorem 2.1 and Remark before Theorem 3.6, itis enough to
prove that H(r) is uniformly persistent with respect to ^E for all z e [0, f].Let us fix
z e [0, Tl.ltis nothard to see that H(r)E c E and H(r)(n]\ D c Rltr. we shall
use Theorem2.3 to prove the uniform persistence for H(r). Lemma 3.4 implies that
H (t) satisfies the hypothesis (i) in Theorem 2.3 with y - R1 andW - E.By Theorem
3.2,t2(H(t) lz ' )  :  {O, Q,} ,  where O is rhe or ig in md Q, -  (^ i (z) ,  i ( t ) ,0) . I r fo l lows
from Lemmas 3.7 and 3.8 that {O} and {Qrl arc isolated invariant sets under H(r).
Thus, fI : {{ O}, {Q'}} is an isolated covering of H(r)ls. Furthennore, by Theorem
3.2, n is acyclic. We shall prove that H (r) satisfies the hypothesis (H) in Theore m 2.3
for the acyclic covering f[.

Suppose that it is false. Then at least one of the two following alternatives is met:

(a) there exists {H" (r)u\f,0 C int(Rl) such that limn-*16o llH" (r)ull - 0;
(b) there exists {H" (t)u}Po C int(Rl) such that lim,--,1* llHn (t)u - erll : 0.

If (a) holds, then by theArzela-Ascoli theorem, the sequence of continuous functions
{(S, /, Y)(t + r * nT)}f,0 on [0, Z] converges uniformly to (0,0,0) as n + @,
where (,S, 1, Y)(t) is the solution to (1.1) with (^S, 1, Y)(t) : u,. This implies that
liml-r1ee(,S, 1, Y)(t) : (0, 0, 0). Let e > 0 be such that

i4f- s(/,0) - e sup 
"('=:=*) 

, o.
r€ lo . r l  ( r , x )e to . r l x to .K l  x

(H3), (H+), (1.1) imply that *Q)
whenever Y(r)
liml-*1*(^S, 1, Y)(t) : (0, 0, 0). Thus, (a) cannot happen.

If (b) holds, then by the same argument given above, we obtain

lim ls(r) - ^31r;; - ti* lr(t) - f 1t11 - lim ly(r)l - 6,
/ -++oo l -++oo'  / -+*oo

where (,S, 1, Y)(t) is the solution to (1.1) with (,S, 1, Y)(t) - u.Let us set

b(t,  e)- -f  (r,  €) + c(t)GQ) 
- e)prQ, *Q) - 2e) + ( i( t)  -  e)pz(t,  *Q) - Ze) 

.
x(t) + ze
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By (3.15), there exists a positive number es

suchthat ls(r)  -  ^ i ( r ) l  = eo, l I ( t )  -  i ( t ) l
(1.1) implies that, for t > h, (d/dt)Y(t) >

321

such that Id b!,ejdt > 0. Let t1 > r be
< €s &nd lY (t)l < es for all t > /1. Then
Y (t)b(t, es). Thus, for t > t1,

Y(t) > Y(r1) exp

Since b(t, es) is Z-periodic, it follows that limy* +*Y(t) _ {oo, which contradicts
liml-raep Y (t) - 0. Thus, (b) cannot happen.

Since (a) and (b) are exhaustive , H (r) satisfies (H) in Theorem 2.3. The theorem is
proved.

Corollary 3.9. Let (3.14) hold. Then (1.1) has at least one T -periodic solution whose
components are strictly positive.

Proof. Since H(0) is uniformly persistent and dissipative, by Theorem 2.4,1/(0) has
at least one fixed point, say P, in int(Rl). Clearly (S(/), I(t),Y(t)) - G(t,0)P is a
Z-periodic solution to (1.1) which is in int(Ri).fne corollary is proved. I

Aclcnowledgement. The authors express deep gratitude to the referees for their valuable comments.
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