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Abstract. We define in this paper two length functions qM,x(n) and Jy,r(n) in d-variables
n : ( n t
Some properties of these functions are given, and thereby some relationships between them and the
structure of M are clarified. We can also calculate these functions for seneralized Cohen-Macaulav
modules.

1,. Introduction

This paper is concerned with the following submodule:

Qu@) - fJttr l+t, . . ., *to+r)M : xtt, ..., x'a),
t > 0

where M is a finitely generated module over a Noetherian local ring (A, m) and r -

(xr . ' ..xa) is a system of parameters (s.o.p. for short) on M.lf M is a Cohen-Macaulay
module, it is known by Hartshorne [10] that Qu@_) : (xr xDM. The submodule

Qu@) is also used for studying the monomial conjecture with respect to x as follows:
We say that the system of parameters x : (xt xD of M satisfies the monomial
conjecture It xtr...*tdM f (*'r*' *to+\u for all r > 0 (see t11l).Clearly, x
satisfies the monomial conjecture if and only It Qm@) + M, i.e., l(M /Qu@_)) # 0.
This suggests the studying the lengths

Qu.y@) -  ( ' (M /au@@D)

Ju, r (n )  -  n r '  '  ' nae(x ;  M)  -  eu ; , (n )

as functions in n - (nr n6), where x(n) - (*l' *:'). The aim of this paper
is to study the behavior of these functions and some relations between them and the
structure of the module M.
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This paper is divided into the following: In Sec. 2, we give some basic properties of
the functioa erut,*@).It should be mentioned that, by [4], this function is just the length
of generalizedfractions defined in [16]. Thus, all results in this section are known in the
case M : A (see [l3]), but our proofs, even in the general case, are more elementary.

In Sec. 3, we will show that the determinantal map

3 :  M / Q u ( D  +  M / Q u j )

is an injective homomorphism, where x, y are two systems of parameters on M such that
(y)A c (t)A. This result, whose proof is quite simple, is a useful tool in the paper. As
a first application, we give an uniform bound for the monomial conjecture for modules
(Theorem 3.3). We consider in Sec. 4 the non-negative function

Ju, r (n )  -  n r .  .  .  nde@; M)  -  eu ; * (n ) .

Using the determinantal map in Sec. 3, we prove that the function Ju,r(n) is bounded
above by a polynomial of degree < drm M - 2. Moreover, the least degree of all
polynomials in n bounding above the function f y,*(n) is independent of the choice
of the system of parameters x (Theorem 4.4).The last section is devoted to calculate the
function Jm,*(n) when M is ageneralized Cohen-Macaulay module (Theorem 5.1).

2. Function eu*@)

Throughout this paper, let (A, m) be a Noetherian local ring and M afinitely generated
A-modu le  w i th  d imM :  d .Le t  x  :  (x r , . . . , xd)  be  an  s .o .p .  o f  M and n  :
(nt, . . . , nd) a d-tuple of positive integers. We set

x ( n ) - ( r l . ' , . . . , * : o ) ,

Qu@) -  U (( r i * t  * 'o+t)u :  x I . . . * r ) ,
t > O

and

Qm@-,n) :  au( t@)) .
Consider now the leneth

qM,x(n) - l t (U I Q *@-, a.))

as a function in n.For simplicity, we write qM,x(n) - qru@) when nr :. . . _ nd - l.
The following simple lemma is helpful in the sequel.

Lemma 2.1. With the aboye notions, the following statements are true:

(1) LetM - M/N,where N isei theranart in iansubmoduleof M orN -(0:7,a x) .
Then x is an s.o.p.of M and

qM,L@) : Q1,4,r(n).

(11) Let fu U" the m-adic completion of M. Then

eu,r(n) :  ef i ,*(n).
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Proof. (i) It is easy to check that

Qn@):  Qu@)/N,

and this implies (i).

(ii) follows immediately by the fact that i'is a faithfully flat A-module. r

Letnma 2.2. With the above notations, there exists an epimorphism

,b ,  M' /Qu,@') + M/Qy@)

def inedbyr l r (u '*  Qm,@.'))  -  u* Qu@)foranyu € M,where M' :  M/*rM, ut is
the image of u in M' and x' : (xz, .. . , xd).

Proof. It is trivial that ry' is surjective. One can easily check that rlr is really a
homomorphism. r

Lemma 2.3. With the notations as above,

qu@) < e@; M).

Proof. We do it by induction on d.lf d - 1, by Lemma 2.1(1), we may assume that
depth M > 0. Therefore, M is a Cohen-Macaulay module. Hence, qM@) - e@; M)
since Qu@) : xrM.

Now, let d > 1.By Lemma 2.1(1), we may assume that depth M > 0 and.rr is a
non-zerodivisor of M. Set M' -- M /xtM.By the inductive hypothesis and Lemma2.2,
the epimorphism

{ r : M ' / Q u , ( * ' ) + M / Q u @ )

implies that

qM@) 1Q14'r(* ' )  'e(x ' ;  M')  -  e(x;  M)

as required. r

The following criterion of Cohen-Macaulayness, which is an easy consequence of
Lemma 2.3, it not directly linked to the main object of this paper, but it came up while
working on it.

Corollary 2.4. The following statements are equivalent:

(i) M is Cohen-Macaulay;
(i i) Qu@) : xM,for any s.o.p.x of M;
(iii) There exists an s.o.p. x of M such that
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Qu@) -- xM.
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Proof. (i) + (ii) follows by [10].
(ii) + (iii) is trivial.
(iii) + (i) Assume that there exists an s.o.p. x of M such that Qu@) : xM. Then

t o(M I am@)) - te(u tU) > e(x; M). By Lemma 2.3, we have (.n(u 1su) =
e(x; M). Therefore, (.n(M /xM) : e@; M). So M is a Cohen-Macaulay module. r

3. Determinantal Map

Let x : (xr xn) be a sequence of elements in m. Let y - (yt h) be another
sequence of n elements such that (yr !)A C (xr xr)A. Then there exists a
mat r ix  B  - (b i i ) ,  b i i  €A,  L< i ,  j  <n  suchtha t

+ ,
Yi -  

LDi ix i .
j : l

Put 6 - det B. It easily follows from Crammer's rule that 6(x)A c (y)A.Therefore, we
obtain a canonical map

6:  M/ (x )M +  M/ (y )M.

By [ 1 5, 5. 1. 1 5], we also have 6 Q u @) c Q u 0). Therefore, we obtain a homomorphism

6 :  M / Q m ( x )  +  M / Q u j ) ,

which is independent of the choice of the matrix B by [15,5.1.141. The map 3 is called
the determinantal map. The following lemma is the key lemma of this section and also
often used in next sections.

Lemma 3.1.  Letx:  (xt , . . .  ,xa)and!:  (yt  yDbetwosystemsofparameters
of M such that (y)A c @)A. Then the deterrninantal map

3 :  M / Q u @ )  +  M l Q u j )

is injective.

Proof. Since 6(Anna (M)) - 0, without any loss of generality, we may assume that
Ann4 (M) : 0. Then the ideal (y)A is m-primary; so there exists a positive integer k
such that (t(k))A c (y)A. Therefore, we have a commutative diagram

M/Qnt@l -5

\ 6 2
MlQm@&))

where 6,61,62 are determinantal maps. It is easy to see that d2 is the map defined
by multiplication Ay *f-t . . .*r-'. Therefore, 6z is injective. Thus, d is injective as
required. r

An immediate consequence of Lemma 3.1 is the following corollary which will be
often used in this paper.

M  /  Q u j )
/ 3 r
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be two systems ofC o r o l l a r y  3 . 2 .  L e t  x  _  ( x t , . . . , x d )  a n d  y  _  ( y , . . . , y a )
parameters of M such that (y)A c (x)A.Then

euk) < quj) .

In Conjecture 1 of [11], Hochster conjectured for the case M - A that, for every
system of parameters x : (xt, ... , xD of A, one has

x t 1 .  .  .  * ' d  e  @ ' J t ,  .  .  . ,  * t o + \ A

for all / > 0. Hochster proved in [11] that this monomial conjecture is true for high
powers of systems of parameters. He also gave an example which shows that the
monomial conjecture is not true for modules. However, for a given system of parameters
x - (xt x) of M, we say that x satisfies the condition of monomial conjecture
(MC) if

x l .  .  . * tdM f  ( r t * t  * )+ r )u

for all / > 0. Then it is easy to see that a system of parameters x satisfies the condition
(MC) if and only if Qm@) + M.By the counterexample of Hochster mentioned above,
we cannot show, in general, that every system of parameters of M satisfies the condition
(MC). But we can give a uniform bound for high powers of all systems of parameters of
M satisfying condition (MC) as follows:

Theorem 3.3. There exists a constant N such that, for every system of parameters
x - (xr xD of M, x(n) - (*l ',... , xfro) satisfies the condition (MC) for au
l l l ,  . . .  , / t d  >  N .

Proof. First, we show that, for every system of parameters x : (xt x4), there
always exists an no (possibly depending on .r) such that x(n) - (rl' , . . . , ,;o) satisfies
the condition (MC) for all nr, . . . , ltd > ny.In fact, it is well known that

where the map

rg u tfri *bu = HA(M) + 0,

M/(xT x f t )M r2ryn u / ( r i *k , . . . , * ; *o)M

is induced by multiplication by ("r . . . xd)k .Thus, there exists an no such that, for all
n t n0 and all k > 0, the map fn,n+k is non-zero. Therefore, we have

( * l * n , . . . ,  * I * o ) M  :  ( x r . . .  * D k  +  M .

Fromthis,wecaneasilyverifythatQy,l6(D # Mforallnr,... ,ftd > ny.Therefore,the
system (rl' , . . . , *:o) satisfies the condition (MC). Thus, we can now assume that there
exists a system of parameters y : (yr
(MC). Moreover, without loss of generality, we may assume that Anna (M) :0. Thus,
there exists ar > 0 such that mr c (y)A. Therefore,

( *1 " . . .  , x f ; o )A  c  ( y )A
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foranysystemofparametersx : (rr xa)andforall f lr, ... ,nd > rd.SetN : rd.
Then

te(u /eue)) < (.e(u /gr,{u>)
f o r  a l l  f l t , . . .  , n d
[e(M/QuQ)) > 0. It follows that tt(U/Q*,r@)) t 0 , and so x(n) satisfies the
condition (MC) for all nr, . . . , nd > N. r

Remark. It should be noted that Strooker in [ 1 5 , 1 1 .2] has also proved an analogous result
to Theorem 3.3 for the case M - A. But this proof used deep results on the annihilators
of local cohomology. Our proof of Theorem 3.3, even for modules, is more elementary.
On the other hand, since the monomial conjecture is not true for modules, so we cannot
show that the integer N in Theorem 3.3 is equal to 1. So it is may be worth finding upper
bounds for this integer N.

4. Function Jm*@)

Keep all notations in the previous section. Let x : (xr
difference

Ju, r (n )  -  n r .  .  .nde@; M)  -  eu , *@) ,
which is non-negative by Lemma 2.3, can be considered as a function in n. First, we
need the following two auxiliary lemmas:

Lemma 4.1. The following statements are true:
(i) Ju,{a-) : Jfr,*(n) - Ju/np.fu>@), where fu is the m-adic completion of M.

( iD  Ju , , (n )  <  n r .  .  .naJu@).

Proof. (i) follows from Lemma2.l.
(ii) We denote by cy the d-tupel of integers (cv, 1, ... , 1). Then the map

a :  M/ Qu,*@ * I )  + M/ Qu,*@)

def inedby  O(z  *  Qu, ,@* l ) )  -u l  Qu,* (a ) ,  u  e  M, isanep imorph ism.Onecan
easily check that the map

, l r :  M/Qru(x) + kerO

defined by V(u * Qm@D - xlu I Qu,,(u * l), u € M, is a monomorphism. It
follows by induction on a that

te(u / eru,,(a * r)) - (.a(m /Qr,r@)) + (.e(ker Q)
> ty(u /Qr,o@) + to(u /o*@))
> (a * r)( .A(M /Qu@)).

Since our proof is independent of the order of sequence .r, we finally obtain

eu , * (n )  >  n r  " ' naqm@).

Thus,
J u , * ( n )  < n L . . . n a J u @ ) .

I

We set, for simplicrty, Jv,a(x) : Ju,*(n ) when nr :. . . - fld : l.
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L e m m a  4 . 2 .  L e t x :  ( x t , . . . ,  x d - t , x a ) a n d ! :  ( x t  x d _ r , W ) b e t w o s y s t e m s
of parameters M such that (y)A c ({)A. Then

Ju@) S Juj).

P r o o f . W e u s e i n d u c t i o n o n d . I t i s t r i v i a l f o r t h e c a s e d : 1 . S u p p o s e d >
By Lemma 4.1(i), we can assume that depth M
of M. Let M :  M/rrM and A _ A/*rA. We put d _ ( i2, . . .  , id- t , i6)  and
y' : ( iz, . . . ,Id-r, yi l.Since (y')A c @')A,weobtain,bylemma 2.2,acommutative
diagram

0 --> kers + u/QV@') 3 M/Qu@) + 0

l d '  1 5  l a
1, \4.

ker{ -+ Pt/Qn(l_') 3 MlQm(l_) + 0,0 +

where the rows are exact sequences and d,6 are determinantal maps. Therefore, by
Lemma 3.1, the induced homomorphism d/ is injective. It follows from the inductive
hypothesis that

J u @ ) - J u @ ) * t e ( k e r e )

:?;,1;* 
t6(ker{,)

The lemma is proved. r

Corol lary 4.3.  Thefunct ion Jy,*@) is ascending, i .e. , forn --  (nr , . . . ,n4),  m:
( m t ,  . . . , m a )  w i t h n ;  )  r r r i ,  i  :  l ,  . . . ,  d ,

Ju,*@) > Ju,r(m).

Proof. Straightforward. r

By Lemma 4.1(ii), we see that the function Ju,"(ry-) is bounded above by polynomial
nr, . . . , ndJu@_). More generally, we can show the following theorem:

Theorem 4.4. The least degree of all polynomials in n bounding above the function
Ju,*@) is independent of the choice of the s.o.p. x.

P r o o f . B y L e m m a 4 . | ( 1 ) , w e c a n a S s u m e t h a t A n n a ( M ) : 0 a n d d e p t h M >
Let y : (yr,. .. ,!a) be an s.o.p. of M. From [15, 8.2.5], there exists an s.o.p.
z - (zt zD of M and positive integers rr, . .. , rd such that

( * l ' , . . . , r | ) e c  k r , * L ' , . . . , r ' f ) e  c . ' .  c  ( z r  z D A  c . . .
c ( z r  z a - r y i A c . . .  c ( z r , ! 2 , . . . , y a ) C ( y r  y i A .

Note that, if (xr, . . . , xd-r, yd)A c (xt xd-r, xa)A,then



266 NguyenTu Cuong, NguyenThai Hoa, and NguyenThi Hong l-oan

for all t Z I. Therefore, applying Lemmas 4.l(ii) and 4.2 to the ascending sequence of
ideals above Zd-times. we obtain

Ju,y(t)  <

for all t > I. Similarly, there exists also a positive integer k such that

d

(fl ' ')r'o 1,,,(t)
i : l

for all r > 1. This shows
bounding above Jy,r(t) rs
follows from Corollary 4.3.

Remark. It should be mentioned that, by using the theory of modules of generahzed
fractions of [19], Minh in [13] has defined a function

J e @ ; n )  :  n r , . . .  , n y e ( x ;  A )  -  L A ( A ( | / ( * | , ' , . . .  , * : 0 ,  1 ) ) ) .

By [4, 2.3f, we see that the length of generalized fractions le(eQ16i',... ,*Xo,
t))) is just equal to the function qA,x@). Therefore, the function,Ia,"(n) is nothing
else but the function Ja@; n) defined by Minh as above. Thus, Theorem 4.4 rs an
extension to modules of the main result in Theorem 1.1 of [13]. However, the injective
determinantal map in Lemma 3.1 enables us to obtain quite a simple and elementary
proof for Theorem 4.4.

Following [6], we denote the new invariant defined in Theorem 4.4by pf (M). For
convenience, we stipulate that the degree of the zero-polynomial is equal to -oo. The
following corollary is an immediate consequence of Lemma 4.1.

Corollary 4.6. Let fu U, the m-adic completion of M. Then

pf (M) - pf (M/nTru>) - pf (fu).

Proposition 4.7. Suppose drm M - d, ) l. Then

p f ( M ) < d - 2 .

Proof. We prove by induction on d. ln the proof of Lemma 2.3, we see that, if
d _ l, pf(M) _ -oo and so the proposition is true in this case. Assume that
d > 2. By [4, 2.5f, there exists an s.o.p. x : (xt x6) of M such that the length
t o(H*-' (M) / xi '  Hd-r (W) is f inite and independent of n1, e(x', Mn,) - e(x; M) and
the sequence

0 + H(- t  (pt)  /* i '  Hd-r  (M) + M,, /Qr, , , / ( r ' )  -  M /Qu,t(d -+ 0

is  exac t  fo r  a l l  / r r , . . .  , / td  >  0 ,  where  Mr ,  -  M lx l t  M,  /  -  (x2 , . . .  , xd . ) ,  n '  :
(nz,  .  .  . ,  na).Therefore,

Jm,*( t )  < kJy,r( t )

that the least degree of all
independent of the choice

polynomials of one variable r
of x. Now, the theorem easily

I

J u,t@-) - J M,r t (r') * [ e(n(-,-t (M) / xi' Hd-r (w) .
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If d - 2, since JMn,,*,@') :0, by (2.3), it follows that

J u,{D - (. e(n(,-t (M) I *i '  Hd-t (W)

is independent of n1. Thus, pf (M) < 0. If d > 2, by (4.l)(ii), we have

267

Ju,{ry)  < nr J M,, , r ,  (n ' ) .

Therefore,

Ju, t@-) .  r , ( t r , , r (n ' )  *  [e(n(- , - t (M)/x i 'Hd-t  ( l l r ) ) ) .

Hence, the proposition follows from the inductive hypothesis. I

We have shown in the previous section (Theorem 3.3), by using the non-vanishing
of the highest local cohomology module nA(U), that the high powers of any system
of parameters of M satisfy the condition (MC). Below, we will give a more elementary
proof of this result by virtue of Propositron 4.7 .

Corollary 4.8. Let x : (xt x) be any system of parameters of M. Then there
e x i s t s a p o s i t i v e i n t e g e r k s u c h t h a t t h e s y s t e m o f p a r a m e t e r s x ( n ) - ( r i t , . . . , r : o )
satisfies the condition (MC) for all nt na > k.

Proof. ByProposition4.T, Ju,r(n) isboundedabovebyapolynomialof degree d -2,

andnote thate(x(n); M) is apolynomialin n of degreed.Therc exists aconstantk such
that

kde(x;  M) > Ju, , (k) .

Therefore,
t ,  e(m /  e nt  (x,  ry))  r_ t -  e( tw /  Q u (x,k))  r  0,

fo r  a l l  f t r , . . . , r rd tk .  Thus ,  x (n )  sa t is f ies  the  cond i t ion  (MC)  fo ra l l  f l r , . . . ,n4>k .  1

5. Generalized Cohen-Macaulay Modules

The concept of generuhzed Cohen-Macaulay modules was first introduced in [7]. A
module M is called a generalized Cohen-Macaulay module if and only if the ith local
cohomologymodule Hl"(M)isf in i te lygeneratedforal l l :0, . . . ,d- l .Animportant
tool for studying generalized Cohen-Macaulay modules is the notion of standard systems
of parameters defined in [20] as follows. A system of parameters x : (xr x) of
M rs called a standard system of parameters rf

tn(u 1yu) - ,(*; M) : ro(tut lt(2)M) - e@(2): M).

Then M is a generalized Cohen-Macaulay module if and only if M admits a standard
system of parameters. Note that standard systems of parameters are also used to
characterize Buchsbaum modules (see ll7D. A module M is Buschsbaum if and only if
every system of parameters of M is standard.
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Let M be a generaltzed Cohen-Macaulay module and x : (xt xd) a system of
parameters. Sharp and Hamieh have shown in [16] that, for flr, . . . , fld.large enough,

' d - l  / ,  r \
rm,*(n)  -  t  ( i  _ i  I to(nkru>) .

i : l  \ "  ^  /

The main result of this section is relatively close to the above theorem of Sharp-Hamieh.

Theorem 5.1. Let M be a generalized Cohen-Macaulay module and x : (xt, . . ., xd)

a standard s.o.p. of M.Then

f o r a l l f l ! , . . . , f l d 2 1 .

Proof. We prove by induction on d.For d - l, we see in the proof of Lemma 2.3 that

Ju,t(A): 0, so in this case, the theorem is proved. Since M /(0 :u xt) is generalized

Cohen-Macaulay, without loss of generality, we can assume by Lemma 4.1(i) that x1

is anon-zero divisor of M. Suppose now thatd > l.Put Mn, - Mlxl 'M, x' :

(xz,  . . .  ,xd.) ,andd :  (nz,  . . .  ,nd).Then Mnrisagainageneral izedCohen-Macaulay

module and x' is a standard system of parameters of Mnr. Moreover, by [9], every standard

system of parameters is an unconditioned strong d-sequence. Therefore, by 19,2.3f,we
have

ru,t@):E( -i)'^@:,w))

d

Qu@_,n ) :  I t { " i " . . .
i : l

d

- f[{'i" "'
i : I

,  x f , o )M :  x ; l  *  ( r l ' ,  . . . ,  x f i o )M

, xfio)M : xi)

n i
. . f r ' . . . .' t

l l i
. . I . ' .  .  .  ., l

and
d

,  |  / r  F . r  Z r
Qu, , ( t  , t t ' )  :  LL \ * ; ' ,  . . .

i :2
d

r y  \ l . ,  n r
- 

1-rL\x1' ,  " '
i :2

On the other hand, the exact sequence in (2.2)

0 + ker  l r  +  Mnr/Qu, ,@' ;d)

, * ! ' , . . . , x T t ) M n r i x i f

, * ,  . . . ,  x f i o ) M  :  x i l l x l t  M .

{r;  M / Q m @ , n )  +  o

implies

Ju,t@) - JMn,4@) + ('ilker tlr)'
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But, by f9,2.3,2.4f,we can show that

d

k e r {  = | l - l , i ' ,  . . . ,  * ,  . . . ,  ) c ; o ) M  :  x i l /
i : l

d

I t t " i ' , * ; '  . . . , * l ' ,  . . . ,  x f ; o )M  :  x i )
i :2

= t@i ' ,  . . . ,  x f ;^)ut  :  x f l l l (x i " . . . ,  x f to)M :  x)
d

n I t ( r i ' ,  * l '  * , . . . ,  x f ro)M:  x ; l l
i : 2  

d

i :2

- l(*l' xft')u : xi/l(x?n', .. . , *1"\M : *;' . . .r:'1.

Thus' bY [14' 3'31' 
ker {r = H,-r @) '

Therefore, for all flt, . .., n4 ) 0,

Ju,t@) : JM^,/d) + U(n*-' (W).

No te tha t , fo r  a l l i  -  0 , . . .  , d  - l , La (H[ (M) )  <  oo  andx lH l . ,@) :0 ,  s incex  i sa
standard system of parameters. Thus, by simple calculation, we can check that

i  f  t ,- :)  z, 1a; @)):T(, -?\t^(u:,(u,)) + to(n?-'@)).
. . l \ ,  L , /f i \ i - r )  , : z

Finally, by the inductive hypothesis, we thus obtain

J u,t@) - J Mnr,l @') * r e(n(,-t (w)

d - 2  t ,  o \- f ( ", 
- 

i l t^(n:.(u,)) + to(n(,-' @))
- \ t _ L /

d _ l / -

: l  ( , - l ) r^ @:.rut) ,
; \ t - L /

f o r a l l / t 1 , . . . , n d  > O a s r e q u i r e d .  r

Since every system of parameters of a Buchsbaum module is standard, Theorem 5.1
leads immediately to the following consequence.

Corollary 5.2. Suppose M is a Buchsbaum module. Then

d - 1

ru,*(n): t (t, - l  )r^ @:.@))
; \ t - L /

for any system of parameters x andfor all nt na > l.
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Corollary 5.3. Suppose M is a Buchsbaum module. Then

e@;M),TP, - l ) r^  @k@))
- \ L _ L f

for every s.o.p. x.

Proof. By Corollaary 5.2, we have

( - ! / s - r \
e(x; M) - Le(u I e*@l) + D (", _ i l t^(nl,,tu>)

- i : l \ ' - r ' l

for all s.o.p. .r. Since every s.o.p. of the Buchschaum module M is standard, then, by

19,2.31,
re(ulQu(')) = 0,

and the corollary is proved. r

Corollary 5.4. Suppose M is a Buchsbaum module. Then

t a(u 1xu) = i (?) u@t"1nq

for every s.o.p. x.

Proof. Since M is aBuchsbaum module,

d - l  / , r - t \
ts(u1xu) - e(x; M) +I ( " ; '  I  U(ni1W).

t ' : o \  
o  

/

Therefore, we have, by Corollary 5.3,

t 4(u14u) = i (i _i) r^@:-@))+ 
E ( ; ') n^@:-ru>)

- ( 1  ( a \ ,: I( ; /  u(ni"1u1)

as required. r

It is easy to see that the invariant ne(M) defined in [18] by

t ( n ( M / x M ) t  _  _ l
nn(M) - sup 16 | x is an s.o.p. ot Ml

is finite if M is a generalized Cohen-Macaulay module. We give an upper bound of

ne(M) for a Buchsbaum module as follows:
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C o r o l l a r y 5 . 5 . S u p p o s e M i s a B u c h s b 4 u m m o d u I e w i t h d e p t h M : k >
k < dim M - d.Then

n A ( M ) < 1 + d - k .

Proof. Put

and

Since M ts aBuchsbaum module, by Corollary 5.3' we have

r (M) :E( ; ' ) r^@h<ut )

r(M):EG -i)'^@rru>)

le(M lx M)
t(- '  M) 

-

for all s.o.p. x. It follows from

that

as required.

r (M) < (d - k)J (M)

n e ( M ) < 1 + d - k
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