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Abstract. We define in this paper two length functions gps x(n) and Jpx(n) in d-variables
n = (ny,...,ng) associated to a system of parameters x = (xp, ..., xg) of an A-module M.
Some properties of these functions are given, and thereby some relationships between them and the
structure of M are clarified. We can also calculate these functions for generalized Cohen—Macaulay
modules.

1. Introduction

This paper is concerned with the following submodule:

ou@ = J@i .M k),

>0

where M is a finitely generated module over a Noetherian local ring (A, m) and x =
(x1 - - - x4) is a system of parameters (s.0.p. for short) on M. If M is a Cohen—Macaulay
module, it is known by Hartshorne [10] that Oy (x) = (x1, ... , x7)M. The submodule
QM (x) is also used for studying the monomial conjecture with respect to x as follows:
We say that the system of parameters x = (x1, ..., xg) of M satisfies the monomial
conjecture if x| ---x,M ¢ (xi“, P ,xfi“)M for all ¢+ > O (see [11]). Clearly, x
satisfies the monomial conjecture if and only if QO (x) # M, ie., £L(M/Qp(x)) # 0.
This suggests the studying the lengths

qm.x (@) = £(M/Qu(x 1))
Jux(m) =ny---nge(x; M) — qux(n)
as functions inn = (ny, ... , ng), where x(n) = (x;", . ,x;"’). The aim of this paper

is to study the behavior of these functions and some relations between them and the
structure of the module M.
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This paper is divided into the following: In Sec. 2, we give some basic properties of
the function g . (n). It should be mentioned that, by [4], this function is just the length
of generalized fractions defined in [16]. Thus, all results in this section are known in the
case M = A (see [13]), but our proofs, even in the general case, are more elementary.

In Sec. 3, we will show that the determinantal map

§:M/Om@) — M/Qu(y)

is an injective homomorphism, where x, y are two systems of parameters on M such that
(y)A C (x)A. This result, whose proof is quite simple, is a useful tool in the paper. As
a first application, we give an uniform bound for the monomial conjecture for modules
(Theorem 3.3). We consider in Sec. 4 the non-negative function

Iux(n) =ny---nge(x; M) — qu;x(n).

Using the determinantal map in Sec. 3, we prove that the function Jis . (n) is bounded
above by a polynomial of degree < dim M — 2. Moreover, the least degree of all
polynomials in n bounding above the function Ju x(n) is independent of the choice
of the system of parameters x (Theorem 4.4). The last section is devoted to calculate the
function Jy x (n) when M is a generalized Cohen-Macaulay module (Theorem 5.1).

2. Function gy, (n)

Throughout this paper, let (A, m) be a Noetherian local ring and M a finitely generated

A-module with dimM = d. Let x = (x1,...,x4) be an s.o.p. of M and n =
(n1, ... ,ng) ad-tuple of positive integers. We set
x(n) = (' .., xp0),
on@ = J(&ft ... XM xf - x),
t>0
and

Om(x,n) = Ou(x(m)).
Consider now the length
amx(@) = £a(M/Qu(x, 1))

as a function in n. For simplicity, we write gu,x (n) = gm(x) whenn; = --- =ng = 1.
The following simple lemma is helpful in the sequel.

Lemma 2.1. With the above notions, the following statements are true:

(i) Let M = M/N, where N is either an artinian submodule of M or N = (0 :py x1).
Then x is an s.o.p. of M and

qm (M) = 937 , @).
(i) Let M be the m-adic completion of M. Then

amx®) = q57 ,@.
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Proof. (i) It is easy to check that
037 = @u)/N,

and this implies (i).
(ii) follows immediately by the fact that Aisa faithfully flat A-module. [

Lemma 2.2, With the above notations, there exists an epimorphism
¥ M/Qux) > M/QuX)

defined by (W' + Qu(x")) = u+ Qm ) foranyu € M, where M' = M/x\M, u' is
the image of u in M’ and x’ = (x3, ... , X4).

Proof. 1t is trivial that v is surjective. One can easily check that v is really a
homomorphism. u

Lemma 2.3. With the notations as above,

qu(x) < e(x; M).

Proof. We do it by induction on d. If d = 1, by Lemma 2.1(i), we may assume that
depth M > 0. Therefore, M is a Cohen—-Macaulay module. Hence, gp(x) = e(x; M)
since Qup(x1) = x1 M.

Now, let d > 1. By Lemma 2.1(i), we may assume that depth M > 0 and x; is a
non-zerodivisor of M. Set M’ = M /x; M. By the inductive hypothesis and Lemma 2.2,
the epimorphism

MO ) = M/Qux)
implies that
gu®) < qux) < ex's M) = e(x; M)
as required. -

The following criterion of Cohen—Macaulayness, which is an easy consequence of
Lemma 2.3, it not directly linked to the main object of this paper, but it came up while
working on it.

Corollary 2.4. The following statements are equivalent:

(i) M is Cohen—-Macaulay,
(i) Omx)=xM, foranys.o.p.xof M;
(iii) There exists an s.o.p. x of M such that

Omx) =xM.
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Proof. (i) = (ii) follows by [10].

(ii) = (iii) is trivial.

(iii) = (i) Assume that there exists an s.0.p. x of M such that Q(x) = xM. Then
£a(M/Qu@)) = €a(M/xM) > e(x; M). By Lemma 2.3, we have £4(M/xM) <
e(x; M). Therefore, £ 4 (M /xM ) = e(x; M). So M is a Cohen—-Macaulay module. =

3. Determinantal Map

Let x = (x1, ... , x,) be a sequence of elements in m. Let y= (y1, - - - » yn) be another
sequence of n elements such that (y1, ..., y.)A € (x1,..., x,)A. Then there exists a
matrix B = (b;;), b;j € A, 1 <i, j < n such that

n
Yy = Zb,‘ij.
j=1

Put § = det B. It easily follows from Crammer’s rule that §(x)A € (y)A. Therefore, we
obtain a canonical map
§:M/(x)M — M/(y)M.

By[15,5.1.15],wealsohave § Oy (x) € QM(X)' Therefore, we obtain a homomorphism

§:M/Ou(x) = M/Qu(y),

which is independent of the choice of the matrix B by [15, 5.1.14]. The map § is called
the determinantal map. The following lemma is the key lemma of this section and also
often used in next sections.

Lemma 3.1. Letx = (x1,...,xg) andy = (y1, ... , Ya) be two systems of parameters
of M such that (y)A < (x)A. Then the determinantal map

§: M/Qux) — M/Qu(y)
is injective.

Proof. Since 8(Anny(M)) = 0, without any loss of generality, we may assume that
Anng (M) = 0. Then the ideal (X)A is m-primary; so there exists a positive integer k
such that (x(k))A S (y)A. Therefore, we have a commutative diagram

M/Qu® > M/Qu()
N 82 v 81
M/Qum(x(k))
where 8, §1, 8, are determinantal maps. It is easy to see that §; is the map defined
by multiplication by x’l"1 . ~x§_1. Therefore, 8> is injective. Thus, § is injective as
required. [ |

An immediate consequence of Lemma 3.1 is the following corollary which will be
often used in this paper.
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Corollary 3.2, Let x = (x1,...,xq) and y = V1, ... ,Y4) be two systems of
parameters of M such that (y)A C (x)A. Then

gm(x) < qm(y).
In Conjecture 1 of [11], Hochster conjectured for the case M = A that, for every
system of parameters x = (x1, ... , x4) of A, one has

t+1 t+1
xi-~xf1¢(x1+ ,...,xd"' A

for all ¢+ > 0. Hochster proved in [11] that this monomial conjecture is true for high
powers of systems of parameters. He also gave an example which shows that the
monomial conjecture is not true for modules. However, for a given system of parameters

X = (x1,...,xq) of M, we say that x satisfies the condition of monomial conjecture
MC) if
xbooxiM ¢ (et xiThM

for all # > 0. Then it is easy to see that a system of parameters x satisfies the condition
(MC) if and only if Qs (x) # M. By the counterexample of Hochster mentioned above,
we cannot show, in general, that every system of parameters of M satisfies the condition
(MC). But we can give a uniform bound for high powers of all systems of parameters of
M satisfying condition (MC) as follows:

Theorem 3.3. There exists a constant N such that, for every system of parameters
x = (x1,...,x) of M, x(n) = (x{', ..., x%) satisfies the condition (MC) for all
ny,...,nqg > N.

Proof. First, we show that, for every system of parameters x = (xi,...,xz), there

always exists an ng (possibly depending on x) such that x(n) = (x]", ... , x;*) satisfies
the condition (MC) for all ny, ... , ng > ng. In fact, it is well known that

Lim M/ (xf, ... . xpM = HY(M) 0,

where the map

M/}, ..., x"M i M/ Y M

is induced by multiplication by (x - - -xd)k. Thus, there exists an ng such that, for all
n > ng and all k > 0, the map f;, »+« is non-zero. Therefore, we have

G M -k £ ML

From this, we can easily verify that Q y x (n) # M forallny, ..., ng > ng.Therefore, the
system (x{'1 R x;"‘) satisfies the condition (MC). Thus, we can now assume that there
exists a system of parameters y = (y1, ... , y4) of M such that y satisfies the condition
(MC). Moreover, without loss of generality, we may assume that Anns (M) = 0. Thus,
there exists a » > 0 such that m" C (y)A. Therefore,

(. X NAS (A
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for any system of parameters x = (x1,...,xg)andforalln;,... ,ng > rd.SetN = rd.
Then

£A(M/Qu(y)) < €a(M/Qu ()
for all ny,...,ng > N by Corollary 3.2. Since y satisfies the condition (MC),

€a(M/Qu(y)) > 0.1t follows that £4(M/Qpu.x(n)) > 0, and so x(n) satisfies the
condition MC) for all ny, ... ,ng > N. ]

Remark. 1t should be noted that Strooker in [15, 11.2] has also proved an analogous result
to Theorem 3.3 for the case M = A. But this proof used deep results on the annihilators
of local cohomology. Our proof of Theorem 3.3, even for modules, is more elementary.
On the other hand, since the monomial conjecture is not true for modules, so we cannot
show that the integer N in Theorem 3.3 is equal to 1. So it is may be worth finding upper
bounds for this integer N.

4. Function Jy ,(n)

Keep all notations in the previous section. Let x = (x1, ..., xz) be an s.0.p. of M. The
difference

Inx(m) =ny---nge(x; M) — qu (1),
which is non-negative by Lemma 2.3, can be considered as a function in n. First, we
need the following two auxiliary lemmas:

Lemma 4.1. The following statements are true: _
0 Jmx(m) = Jiix () = Jyymo (my(®), where M is the m-adic completion of M.
1) Jm @) <ny---ngJy(x).

Proof. (i) follows from Lemma 2.1.
(ii) We denote by « the d-tupel of integers (e, 1, ... , 1). Then the map

D :M/Qpil@+1) = M/Quy (@)

defined by ®(u + Qu,x(@+ 1)) = u + Qum.x (@), u € M, is an epimorphism. One can
easily check that the map
Vi M/Qux) — ker

defined by ¥ (u + Qu(x)) = x{u + Omx(@+ 1), u € M, is a monomorphism. It
follows by induction on « that

La(M/Qumx(a+1)) =£a(M/Qumx(@) + £a(ker ¢)
> La(M/Qwmx @) + 4 (M/Qu(x))
> (@ + 1)ea(M/Qu ().
Since our proof is independent of the order of sequence x, we finally obtain
gmx(m) = ny - naqu(x).
Thus,
Im () < ny--ngdy(x).

We set, for simplicity, Jy (x) = Ju x(n) whenn; =---=ng = 1.
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Lemma 4.2. Letx = (x1,... ,%4—1,Xg) and y = (x1, ..., X4—1, ya) be two systems
of parameters M such that (y)A C (x)A. Then

In @) < Ju(y).

Proof. We use induction on d. It is trivial for the case d = 1. Suppose d > 1.
By Lemma _4.1(i), we can assume that depth M > 0 and x; is a non-zerodivisor
of M. Let M = M/xiM and A_= A/xlé. We put x’ = (%2,...,%4_1, X4) and
Y = (%2,..., X1, ya).Since (y')A € (x")A, we obtain, by Lemma 2.2, a commutative
diagram 1n

0 — kerg — M/Qz() > M/Qu@) — O

18 15 18
F, L4

0 — kery — M/Q0%(G) = M/Qu(y) — 0,

where the rows are exact sequences and 8, § are determinantal maps. Therefore, by

Lemma 3.1, the induced homomorphism &' is injective. It follows from the inductive
hypothesis that

Iu(x) = Ji7(x') + La(ker @)
< J77(0) + Lalker )

The lemma is proved. [

Corollary 4.3. The function Jy x(n) is ascending, i.e., forn = (ny,... ,ng), m =
my, ... mg)withn; >m;, i =1,...,d,

JM,{(E) =2 JM,{(m)-

Proof. Straightforward. [
By Lemma 4.1(ii), we see that the function Jj . (n) is bounded above by polynomial
ni, ... ,ngJy(x). More generally, we can show the following theorem:

Theorem 4.4. The least degree of all polynomials in n bounding above the function
Jum x(n) is independent of the choice of the s.o.p. x.

Proof. By Lemma 4.1(i), we can assume that Anns(M) = 0 and depth M > O.
Let y = (y1,...,yq) be an s.o.p. of M. From [15, 8.2.5], there exists an s.o.p.

= (z1, ... ,2q) of M and positive integers 1, ... , r4 such that
Gty DA C (@, X DA C - C (2, s 2)AC -

SRy 2d-1Y)ACS - C(21,Y2,...,Yd) S O1, ..., Ya)A.
Note that, if (x1, ... ,Xq—1, Ya)A C (x1, ... , X4—1, Xg)A, then

dt t
(A7 M0 M YT ANS o6 ke, Xy DA
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for all # > 1. Therefore, applying Lemmas 4.1(ii) and 4.2 to the ascending sequence of
ideals above 2d-times, we obtain

d
Iy ® = ([Tr)d s

i=1
for all # > 1. Similarly, there exists also a positive integer k such that
T (1) < ki y (@)

for all ¢+ > 1. This shows that the least degree of all polynomials of one variable ¢
bounding above Jy . (t) is independent of the choice of x. Now, the theorem easily
follows from Corollary 4.3. ]

Remark. It should be mentioned that, by using the theory of modules of generalized
fractions of [19], Minh in [13] has defined a function

Jam) =nq, ..., nge(x; A) —LA(AQ/ G, .o x50, 1),

By [4, 2.3], we see that the length of generalized fractions £4(A(1/(x]", ..., x",
1))) is just equal to the function g4 . (n). Therefore, the function J4, JE(_) is nothing
else but the function J4(x; n) defined by Minh as above. Thus, Theorem 4.4 is an
extension to modules of the main result in Theorem 1.1 of [13]. However, the injective
determinantal map in Lemma 3.1 enables us to obtain quite a simple and elementary
proof for Theorem 4.4.

Following [6], we denote the new invariant defined in Theorem 4.4 by pf(M). For
convenience, we stipulate that the degree of the zero-polynomial is equal to —o0. The
following corollary is an immediate consequence of Lemma 4.1.

Corollary 4.6. Let M be the m-adic completion of M. Then

pf (M) = pf(M/HS.(M)) = pf (M).

Proposition 4.7. Suppose dim M =d > 1. Then
pf(M) <d—2.

Proof. We prove by induction on d. In the proof of Lemma 2.3, we see that, if
d = 1, pf(M) = —o0 and so the proposition is true in this case. Assume that
d > 2. By [4, 2.5], there exists an 8.0.p. x = (X1, ..., xg) of M such that the length
£4(HE\ (M) /x] HE~1(M)) is finite and independent of ny, e(x’, My,) = e(x; M) and
the sequence

0 — HEN(M)/x" HE (M) = My, /Qut,, 0 @) = M/Qux (@) — 0

is exact for all ny,...,ng > 0, where My, = M/x]'M, x' = (x2,... ,x3), ' =
(ny, ... ,ng). Therefore,

Inx () = Ty, (@) + La(HE (M) /x} HETH (M),
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If d = 2, since Jy, »(n') = 0, by (2.3), it follows that
Tux @) = La(Hy ' (M) /x] Hy ™' (M)
is independent of ny. Thus, pf (M) <-0.1f d > 2, by (4.1)(ii), we have
Im @) <niJy, »@).
Therefore,
T s @ = 1 (T, 00 + Ea(HA™ /57 HET (00) ).

Hence, the proposition follows from the inductive hypothesis. [ ]

We have shown in the previous section (Theorem 3.3), by using the non-vanishing
of the highest local cohomology module H,‘,ﬁ (M), that the high powers of any system
of parameters of M satisfy the condition (MC). Below, we will give a more elementary
proof of this result by virtue of Proposition 4.7.

Corollary 4.8. Let x = (x1,...,xq) be any system of parameters of M. Then there
exists a positive integer k such that the system of parameters x(n) = (x{', ... ,x}")
satisfies the condition (MC) for allny, ... ,ng > k.

Proof. By Proposition 4.7, Jy,x (n) is bounded above by a polynomial of degree d —~ 2,
and note that e(x(n); M) is a polynomial in n of degree d. There exists a constant k such
that

ke(x; M) > Ty 5 (k).

Therefore,
a(M/Qu(x,n)) = a(M/Qu(x, k) >0,

forall ny, ..., ng >k. Thus, x(n) satisfies the condition (MC) for all ny, ...,nz>k. ®

5. Generalized Cohen-Macaulay Modules

The concept of generalized Cohen—Macaulay modules was first introduced in [7]. A
module M is called a generalized Cohen—Macaulay module if and only if the ith local

cohomology module HY, (M) is finitely generated foralli =0, ... , d — 1. An important
tool for studying generalized Cohen—Macaulay modules is the notion of standard systems
of parameters defined in [20] as follows. A system of parameters x = (x1, ..., xq) of

M is called a standard system of parameters if
La(M/xM) — e(x; M) = £4(M/x(2)M) — e(x(2); M).

Then M is a generalized Cohen—Macaulay module if and only if M admits a standard
system of parameters. Note that standard systems of parameters are also used to
characterize Buchsbaum modules (see [17]). A module M is Buschsbaum if and only if
every system of parameters of M is standard.
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Let M be a generalized Cohen-Macaulay module and x = (x1, ... , Xg) a system of
parameters. Sharp and Hamieh have shown in [16] that, for ny, ... , ng large enough,

.d—1 d—1 ]
Is@ =) (,. 1 )ZA (Hn (D).

i=1
The main result of this section is relatively close to the above theorem of Sharp-Hamieh.

Theorem 5.1. Let M be a generalized Cohen—Macaulay module and x = (x1, ... , Xq)
a standard s.o.p. of M. Then

d—-1 i )
IROEDY (,. T ) 24 (HL (D)

i=1
forallny,... ,ng>1

Proof. We prove by induction on d. For d = 1, we see in the proof of Lemma 2.3 that
Ju x(n) = 0, so in this case, the theorem is proved. Since M/(0 :p x1) is generalized
Cohen-Macaulay, without loss of generality, we can assume by Lemma 4.1(i) that x;
is a non-zero divisor of M. Suppose now that d > 1. Put M,,, = M/x]'M, x' =
(x2,...,%xq),andn’ = (na, ..., ng). Then My, is again a generalized Cohen—Macaulay
module and x’ is a standard system of parameters of M, . Moreover, by [9], every standard
system of parameters is an unconditioned strong d-sequence. Therefore, by [9, 2.3], we

have

d
Om@,m) =Y [ o X g OM ]+ G XM
i=1
d —
=Z[(x;”,... XXM x)
i=1

and

d
i n .
Oum, @1y = Y IG5, %o Xy )My, - xi]
i=2

d
=N LG xS XM /A M.
i=2
On the other hand, the exact sequence in (2.2)
v
0 — kery — My, /Qum, ('s1) > M/Qu(x,n) —> 0

implies
Tu @) = T, v @) + La(ker ).
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But, by [9, 2.3, 2.4], we can show that

ker ¢ = Z[(x AL M i/
i=1 J
Z[(x1 XXM X
= [(x ")M x1]/[((x;2,... ,xZ")M:xl)

ﬂz:[(x1 A% B ,x‘ c s XM ]

d

A (RIS, Y Y SE°N T ) (2% SO, )V T %)
i=2

=[G, ., XM )L™, X OM X

Thus, by [14, 3.3],
ker v = HEY(M).

Therefore, for aliny, ... ,ng >0,
In s (@) = Ty, v @) + La(HE (M)).

Note that, foralli =0,...,d — 1, EA(H‘L(M)) < o0 and ler’;,(M) =0, since x is a
standard system of parameters. Thus, by simple calculation, we can check that

d-1
> (421 eatizon) =5 (477) n () + i ),

i=1 i=2

Finally, by the inductive hypothesis, we thus obtain
Tnx@) = T, o @) + La(HE (M)

2 . .
= Z (l. - )eA(H:n(Mm)) + ea(HS )

E (4t

forallny,...,ng > 0 as required. ]

Since every system of parameters of a Buchsbaum module is standard, Theorem 5.1
leads immediately to the following consequence.

Corollary 5.2. Suppose M is a Buchsbaum module. Then
d—1

s =3 (471 es (thon)

i=1

for any system of parameters x and forallny, ... ,ng > 1.
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Corollary 5.3. Suppose M is a Buchsbaum module. Then
d-1 d—1 ’
e(x; M) >'21: (i e )eA (HL(M))
=

for every s.o.p. x.

Proof. By Corollaary 5.2, we have
. d=1 d 2 .
e(x; M) = £4(M/Qu@) + ) (,. 1 )eA(H;(M))
i=1

for all s.o.p. x. Since every s.0.p. of the Buchschaum module M is standard, then, by
[9,2.3],
La(M/Qu®) > 0,

and the corollary is proved. ]

Corollary 5.4. Suppose M is a Buchsbaum module. Then

ta(M/xM) > Z( )EA (Hu(D)

for every s.o.p. x.

Proof. Since M is a Buchsbaum module,

d—1
ealmysm) = esimn + 3 (471 eaeion).

i=0
Therefore, we have, by Corollary 5.3,

d—1

ea(M/xM) > Z( )eA (5 (M))+Z(dlf1)eA(H;(M))

i=0
d-1
= Z (‘f) £4(HL(M))
i=0

as required. ]

It is easy to see that the invariant 74 (M) defined in [18] by

£a(M/xM)

na(M) = sup | e

X is an s.0.p. of M]

is finite if M is a generalized Cohen—Macaulay module. We give an upper bound of
n4(M) for a Buchsbaum module as follows:
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Corollary 5.5. Suppose M is a Buchsbaum module with depth M = k > 0 and
k <dim M = d. Then

naM) <1+d—k.

Proof. Put
d—1 ) ‘
1(M)=Z( : )eA (Ho (M)
i=0
and

d—1

Jon=3%" (‘l_’: 11) ea(HL (M),

i=]

Since M is a Buchsbaum module, by Corollary 5.3, we have

La(M/xM) UCZ N ()
ex; M) 0 e(x; M) J (M)

for all s.o.p. x. It follows from

(M) < (d —k)J(M)

that
na(M) <1+d-k
as required. ]
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