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Abstract. This paper studies oscillation and asymptotic behavior of higher-order nonlinear forced
neutral difference equations. We obtain a series of sufficient conditions for the oscillation and the
asymptotic behavior of solutions of higher-order neutral difference equations.

1. Introduction

Recently, there has been some activity concerning the study of the oscillatory and
asymptotic behavior of the solutions of higher-order neutral delay difference equations
(see, for example, [1-10] and the references cited therein).

In particular, Graef et al. [3] studied the following difference equation:

Am[yn—m+1 + Pn—m+1}’n—m+l—k] +8F(n, yn—l) =0.

Zafer [10] studied a more general difference equation of the form
Ala@®a™ ' x@) + pOxE@®N]+ Ft, x(c()) =0, t €,

where I is the discrete set {0, 1, 2,...} and A is the forward difference operator
Ax(t) =x(@+ 1) —x(@).

In this paper, we are concerned with a more general nonlinear forced difference
equation of the form

A" (x, — pn-xn—t(n)) - Z Qi(n)fi(xn-—ai(n)) =hy. (€))

i=1
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Here, m > 2 is even, {p,} is a positive real sequence, {Q;(n)} is a non-negative real
sequence, {t(n)} is a given positive sequence of integer with lim, . — t(n)) =
00, {o0i(n)} are non-negative sequences of integer with lim,_, .. (n — t(n)) = oo for
i=1,2,...,s. {h,}is areal sequence which is oscillatory. Moreover, there is at least
an integer j, 1 < j < k, such that j(n) > Oand 7(n) > 0, fi(u) € C(R, R) and
non-decreasing, uf;(u) > Oforu #0andi =1,2,...,5.

By a solution of (1), we mean a real sequence {x,} which satisfies Eq. (1) forn > 0.
A solution {x,} of (1) is said to be eventually positive if x, > O for all large n, and
eventually negative if x, < O for all large n. It is said to be oscillatory if it is neither
eventually positive nor eventually negative. We will also say that (1) is oscillatory if each
of its solution is oscillatory.

Throughout this paper, we assume that there exists an oscillatory sequence {r,} such
that A"r, = h,forn=1,2,..., and lim,_ o r, = 0. Set

Zn = Xpn — PnXn—1t(n) —"n. 2)

By convention, empty sums will be taken to be zero.
In this paper, we will give some sufficient conditions of oscillatory and asymptotic
behavior of solutions of Eq. (1) by using a method which differs from [3,9].

2. Main Results

Lemma 1. [1] Let {y,} be a sequence of positive real numbers in N = {0, 1,2, ...},
and A™y, < 0. Let A™y, be of constant sign with Ay, not being identically zero on
any subset {ng,ng + 1, ...} of N. Then there exists an integer [, 0 <1 < m — 1, with
m + 1 odd for A™y, <0, and m + 1 even for A™y, > 0 such that

I <m — 1 implies (~1)"**A*y, >0, forall n> N, I <k <m -1,

and
= impliesAky,, >0, forall n>N, 1 <k<Il-1.

Lemma 2. LetQ < p, < Bforn > ngand some positive constant B. Assume that there
is at least an integer j, 1 < j <s, such that fo;no Qj(n) = <. If {x,} is a bounded
solution of Eq. (1) and {x,} is eventually positive (or negative), then lim,_, oc z, = 0.
Moreover, for all large n, we have (=DkA*z, > 0(or<0)fork=1,2,... ,m.

Proof. Let {x,} be an eventually positive bounded solution of Eq. (1) (the proof when
{x,} is eventually negative is similar), and without loss of generality, we may assume
that x, > 0, xy—r(n) > Ofori =1,2,...,sandn > n; > no. Since {x,} is bounded
and lim,_, 7, = 0, so that, by (2), there is a ny > n; such that {z,} is bounded for
n > ny. By (1) and (2), we have

A2y =Y Qi(M) fi(Kn—o,(m) > 0 forn > na. 3
i=1
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It follows that A¥z, (k =0, 1, ..., m — 1) are strictly monotone and are eventually of
constant sign. Since {z,} is bounded, we may set lim,_, 2, = L (—00 < L < 00).
First, suppose —0o0 < L < 0. In view of lim,,_, 1, = 0, then there exists a constant
¢ > 0andansz > ny,suchthatz, < —c < Oforn > n3.Sincen > n3, A"z, > 0,7z, <0

and {z,} is bounded, set y, = —z,. Thenasn > n3, y, > 0, Ay, = =A™z, < 0
and {y,} is bounded. Observe that m is even. By Lemma 1, there exist an4 > 13 and an
integer! € {1,3,5,...,m — 1}, such that, as n > ng4,

Afy, >0fork=0,1,2,...,1—1,

and
(=D A%y, > O0fork=1,14+1,... ,m—1. “)

Since {yn} is bounded, we may show that [ = 1. Otherwise, if / > 3, then, by (4), we
have y, > 0, Ay, > 0 and A%y, > 0 for n > ns. So Ay, is strictly increasing, hence,
there exist a ns > n4 and a constant ¢ > 0, such that Ay, > ¢ > 0 forn > ns. By
summing from ns to n and letting n — oo, we have lim,_, o y, = 00, which contradicts
the fact that {y,} is bounded. Hence, I > 3 is impossible. So ! = 1 holds. From (4), we
have, as n > n4, yp > 0 and (—1)**'A¥y, > Ofork = 1,2,...,m — 1, that is, as
n>n4, 7, < 0and (—1)FA¥z, > Ofork = 1,2, ..., m—1.Inparticular, A" "1z, < 0
for n > ny4. Since {x,} is bounded, we set lim,_, o, inf x, = a (0 < a < 00). We wish to
show that a > 0. Otherwise, if a = 0, then there is an integer sequence {rn;}, such that
lim; , o n; = 00 and lim,_,  inf x, =a = 0.
By (2), we have

Xn,+1(n;) = Zni+1(m:) + Pritc()Xn, + T'njtt(ny)-

So let i — oo, we have lim;_, o, inf Xn +r(n) = d < 0. This contradicts x,, > O for
n > ni. Hence, a > 0 holds, that is, lim,,_, o, X, = a > 0. It follows that there are a
constantc; > Oand ans > n4, suchthatx, > ¢y > Oand x,_s,(n) > ¢1 > Oforn > ns.
So, by (3), as n > ns, we have

A"z 2 3 Qi) filer) = b Qi(m) = bO; (), )
i=1

=\

where b = minj<;<{fi(c1)} > 0.

By summing (5) from ns to n and letting n — 00, we have lim,_, A" lz = 0.
This contradicts A” 1z, < 0 for n > n4. Hence, the inequality —oo < L < 0 cannot
occur.

If 0 < L < o0, then there exist a constant ¢ > 0 and any > ny, suchthatz, > ¢ >0
for n > n3. Since n > ny, A™z, > 0, and {z,,} is bounded, observe that m is even. By
Lemma 1, there exists a n4 > n3 and [ = 0, such that (—1)¥A¥z, > 0 forn > n4 and
k=0,1,2,...,m—1.Inparticular, A" 1z, < Oforn > n4. Observe thatz, > ¢ > 0
forn > n3 and lim,_, o 1, = 0. Hence, there exists a constant ¢; > 0 and ns > n4, such
that z,+ r, > c; > 0 for n > ns. By (2), we have x,, > z,+r, > ¢ > 0 forn > ns.
So we may take a ng > ns, such that x, 5,y > c1 > 0forn >ngandi =1,2,...,s.
From (3), we obtain

A"zn 2 Y Qi) filer) 2 by Qi(n) > bQ;(n), n > ne, ©6)
i=1 i=1
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where b = min;<;<.{fi(c1)} > 0.

By summing (6) from 7 to # and letting n — 00, we have lim,_, o A" 1z, = oo.
This contradicts A™ !z, < 0 for n > n4. Hence, 0 < L < oo is impossible. So L = 0
holds, that is, lim,_, o 2z, = 0.

Since lim,_, o z, = 0, it is not difficult to show by contradiction that lim,_, o A¥z,

=0fork=1,2,...,m—1.Since A"z, > Oforn > ny and m is even, hence, it is easy
to see that, for sufficiently large n, (—l)kAkz,, >0fork=0,1,2,...,m. The proof
is complete. .

Theorem 1. Assume that the following conditions are satisfied:

(c1) 0 < p, < B forn > ng and some positive constant B,0 < B < 1.
(c2) There exists at least an integer j, 1 < j < s, such that

Y. Qi) = o0,

n=ng

Then every bounded non-oscillatory solution of Eq. (1) tends to zero as n — o0.

Proof. Let {x,} be a bounded non-oscillatory solution of Eq. (1). Without loss of
generality, assume that {x,} is eventually positive (the proof when {x,} is eventually
negative is similar). By Lemma 2, we have lim,_, o z, = 0. Since lim,_, 7, = 0, s0
limy,, 50 (2, +rn) = 0. Observe that {x,} is bounded, hence, we set lim,,—, o, SUp x, = a,
then0 < a < 0o. We wishtoshow thata = 0. Otherwise,ifa > 0, then there is an integer
sequence {ny}, such that limy_, oo nx = 00 and limg_, o X5, = lim,, o SUp X, =a > 0.
Since {x,} is bounded, so {x,,—(s,)} is bounded. Hence, there exists a sequence
{ni;} C {nk}, such that lim ny, = oo and lim;, oo Xn,, —7(n,) €Xists. By (2), we have

Zny, + Tri, = Xny, — Py, Xy, —1(ng;) Cer Xny, — anki —t(ny)»
so that
0= lim (zp, +75.) > lim x,, — B lim x,, _¢(,)
i—>00 0 ' i—>00 ! i—00 ' g
=a—B .lim x"ki-'f(nki)'

=00
Hence, we have lim; _, oo Xny —t(n) = @ /B > a. This contradicts lim,_, » Supx, = a.

13

Hence, a > 0 is impossible, and so a = 0 holds, that is, lim,_, . supx, = a holds.
Observe that x,, > 0 eventually, so that lim,_, « X, = 0. The proof is complete. [ ]

Theorem 2. Let (c1), (c3) be satisfied. Moreover, assume that the following conditions
hold:
(c3) There exists a positive constant A, such that

fi(u)

liminf —= > A fori =1,2,...,s,
u—0 u

(ca)

n
lim sup Z w” ™ Qj (Wrw—g;w) = 00,
n—>oo =
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(cs)

n
lim inf w™1Q; (Wry—g;w) = —00.
n—o0
w=no

Then every bounded solution of Eq. (1) oscillates.

Proof. Let {x,} be a bounded non-oscillatory solution of Eq. (1). Without loss of
generality, we may assume that x, > 0, Xp—z(n) > 0, Xp—g,(») > 0( =1,2,...,s) for
n > n1 > ng (the proof when x,, < 0, n > ny is similar). By (2) and Lemma 2, there is
anp > ni, such that

(-1)*A*z, >0 for n >ny and k =0,1,2,... ,m. )
By Theorem 1, we have lim, 00X, = 0, and so lim, 00 X4—0,(n) = O for i =
1,2,...,s. By (c3), there is a n3 > ny, such that as n > ns,
JiGn-ae) 53 S0 fori=1,2,...,s 8)
Xn—oi(n)

From (1), (2), and (8), we have

m. - fi(xn—a,»(n))
A"z, = Z Qiny———— - Xn—ao;(n)

Xn—o;
im1 n—o;(n)

s
> A Qi ¥n—gym) = 2Qj (W) Xn—g;n) forn > n3. ©)
i=1
From (2), we have
Zn +tTn = Xy — PnXn—z(n) < Xn .
By (7), we have z,, > 0 for n > n3. So again, we have x,, > z, +r, > r, forn > ns.

Hence, we take a n4 > n3, such that

Xn—o;(n) > Tn—o;(n) forn > ny. (10)
From (9) and (10), we have
A"z, > AQj(M)rn—g;m) for n>ny. 11)
We multiply both sides of (11) by n™~! and then, summing it from ng4 to 7, we obtain
14
Fo—Fo, =2 Y 0™ Qj(w)ru—q;w), (12)
W=Hny
where
m
Fp=n" A" =Y (=D m = D(m —2) - (m — 1+ Dn" A",
=2

By (7), F, < 0 for n > n4. Hence, it follows from (12) that

Z F,
Z wm_le(w)rw—a,-(w) =< _%s
w=ny

so that .
F,
lim sup Z w'”_le(w)rw-aj(w) <-=.
n—>oo w=ng A’

This contradicts condition (c4), and the proof is complete. |
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Theorem 3. Let conditions (c1), (c3) be satisfied. Assume that the following conditions
hold:

(c6) There exists at least an integer j, 1 < j < s, such that oj(n) is non-increasing and
asn > no, 0j(n) > 0. Moreover; there exists integer sequences {n;} and {n }, with
limy _, o0 1 = 00, limg; o0 1}, = 00, such that

Ny

— 1!
Y w-wrig > 2
w=n;—0;(n)

ni (Hl)
Z Qj(w)rw—aj(w) >0.
w=n;—0j (1)
i — 1!
3 - wigwy > LD

A' 9
w=n,—0;(n,)

, (Hy)

7

Z Qj(W)ry—g;w) < 0.

L w=n;—a0;(n,)

Then every bounded solution of Eq. (1) oscillates.

Proof. Let {x,} be a bounded non-oscillatory solution of Eq. (1). Without loss of
generality, we may assume that x, > 0, Xp—z(n) > 0, Xp—6,m) > 0( =1,2,...,5) for
n > ny > ng (the proof when x, < 0 is similar). Observe that o;(n) is non-increasing,
so that there exist a constant 0 > O and a T > ng, such that0 < oj(n) <o forn > T,
and so ny — o < nx —0j(nx) < w < ny for n; > T. Hence, we obtain

Ny

Yo m—wymlgiw) o™t Y gw).

w=n;—~o;(n;) w=n;—0;(n;)

By (H;), we have

—1
> gwsT,

w=n;—0o;(ng)

It follows that

Y Qiw) =00

w=ny

As in the proof of Theorem 2, we have that (7)-(9) hold for n > n3. By (2), we have
Xn > Zn + 1y for n > n3, and so we take a nq > n3, such that

Xn—c;(n) > Zn—o;(n) + Tn—a;(n) forn > ng4.
Combining (9) with the last inequality as n > ny4, we have

Amzn > A-Qj (n)[Zn—aj(n) A rn—cfj(n)] = )‘-Qj (n)zn—aj(n) Sc Aij (n)rn—o’j(n)~ (13)
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By discrete Taylor’s formulas [1], set ns < w < ng. From (13), we have

m—1 ,i
Alzy ~ 5 .
A"z 2 Q@)Y — T (w — gy w) - g + 0 (m)®
i=0 ’

w—oj(w)—m

1 _ m=1) \m
I=ny—0;(ny)
+AQ; (w)rw—a,-(w) . (14)
From (7) and (14), and observe that o} (n) is non-increasing, we obtain

Y
m SO Ty
e gy

By summing (15) from niy — oj(nk) to ny — 1, we obtain

A A" 2oy (e — W)V Q5 (W) + AQ; (W ryoywy.  (15)

- -1
A™ IZ"k - A" Lng—0;(nx)

-1
—A B R A r
2 Ym0 D (e —w)" 1 Qj(w)
’ w=n;—0; (n;)
nk—l

+2 Y QiwWru—gw -

w=ng—0; (ne)
Applying (H,) to the above inequality, we have
Am_lznk s Am_lZ'lk—Uj(’lk) E _Am_lz"k_”j("k)’

so that A"~ !z, > 0 for ny > n4, which contradicts (7), and the proof is complete. ®

Theorem 4. Let condition (cy) in Theorem 1 be replaced by
(¢)) 1 < By < pp < B for n > ng where By and B are two positive constants.
Then every bounded non-oscillatory solution of Eq. (1) tends to be zero as n — 0.

Proof. Let {x,} be a bounded non-oscillatory solution (1). Without loss of generality,
we assume that {x,} is eventually positive (the proof when {x,} is eventually negative
is similar). By Lemma 2, we have lim,_,o 2, = 0. Since lim,_, o, 7, = 0, therefore,
limy, s o0[2n + 4] = 0. Observe that {x,} is bounded; we may set lim, . supx, = a
(0 < a < o). We wish to show that a = 0. Otherwise, if a > 0, then there exists an
integer sequence {ny} with limy_, oo 1y = 00, suchthatlimg_, o x,, = lim,_ o SUp X, =
a > 0. Since {x,} is bounded, {x,,+z(n,)} is also bounded. Then there is a {ny,} C {nx}
with lim; _, o ¢, = 0o and such that lim; oo Xy, +1(n,) exists. From (2), we have

Ly, +r(ng) + Tng+1(ny;) = Xny, +rlng) — leﬂk, g

Letting i — o0, we have lim;_, e Xn,+2(n,) = Bia > a, which contradicts

lim,_, o, supx, = a. Hence, a = 0 holds. Observe that x,, > O eventually, hence,
limy,—, 00 X, = 0. The proof is complete. [

Using Lemma 2 and Theorem 4, and following the proof of Theorems 2 and 3, we
have



230 Xin-Ping Guan and Jun Yang

Theorem 5. Let condition (c1) in Theorem 2 be replaced by (c). Then every bounded
solution of Eq. (1) oscillates.

Theorem 6. Let condition (c1) in Theorem 3 be replaced by (c'). Then every bounded
solution of Equation (1) oscillates.

Example. Consider the equation
1
A% (2 — Ex,,_l) — x> =, B =02, o (16)

Hence,m =4, p, = 1/2,r(n) = 1. o(n) =2, Q(n) =24, and f(u) = u. Itis easy to
verify that the conditions of Theorem 2 are satisfied. Therefore, (16) has an oscillatory
solution. For instance, {x,} = (—1)" is such a solution.
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