Asymptotic and Oscillatory Behavior of Higher-Order Nonlinear Neutral Difference Equation

Xin-Ping Guan and Jun Yang
Department of Mathematics, Yanshan University
Qinhuangdo, Heibei 066004, China

Received July 12, 1998
Revised September 19, 1998

Abstract

This paper studies oscillation and asymptotic behavior of higher-order nonlinear forced neutral difference equations. We obtain a series of sufficient conditions for the oscillation and the asymptotic behavior of solutions of higher-order neutral difference equations.

1. Introduction

Recently, there has been some activity concerning the study of the oscillatory and asymptotic behavior of the solutions of higher-order neutral delay difference equations (see, for example, [1-10] and the references cited therein).

In particular, Graef et al. [3] studied the following difference equation:

$$
\Delta^{m}\left[y_{n-m+1}+p_{n-m+1} y_{n-m+1-k}\right]+\delta F\left(n, y_{n-1}\right)=0
$$

Zafer [10] studied a more general difference equation of the form

$$
\Delta\left[a(t) \Delta^{n-1}(x(t)+p(t) x(\tau(t)))\right]+F(t, x(\sigma(t)))=0, \quad t \in I
$$

where I is the discrete set $\{0,1,2, \ldots\}$ and Δ is the forward difference operator $\Delta x(t)=x(t+1)-x(t)$.

In this paper, we are concerned with a more general nonlinear forced difference equation of the form

$$
\begin{equation*}
\Delta^{m}\left(x_{n}-p_{n} x_{n-\tau(n)}\right)-\sum_{i=1}^{s} Q_{i}(n) f_{i}\left(x_{n-\sigma_{i}(n)}\right)=h_{n} \tag{1}
\end{equation*}
$$

Here, $m \geq 2$ is even, $\left\{p_{n}\right\}$ is a positive real sequence, $\left\{Q_{i}(n)\right\}$ is a non-negative real sequence, $\{\tau(n)\}$ is a given positive sequence of integer with $\lim _{n \rightarrow \infty}(n-\tau(n))=$ $\infty,\left\{\sigma_{i}(n)\right\}$ are non-negative sequences of integer with $\lim _{n \rightarrow \infty}(n-\tau(n))=\infty$ for $i=1,2, \ldots, s .\left\{h_{n}\right\}$ is a real sequence which is oscillatory. Moreover, there is at least an integer $j, 1 \leq j \leq k$, such that $\sigma_{j}(n)>0$ and $\tau(n)>0, f_{i}(u) \in C(R, R)$ and non-decreasing, $u f_{i}(u)>0$ for $u \neq 0$ and $i=1,2, \ldots, s$.

By a solution of (1), we mean a real sequence $\left\{x_{n}\right\}$ which satisfies Eq. (1) for $n \geq 0$. A solution $\left\{x_{n}\right\}$ of (1) is said to be eventually positive if $x_{n}>0$ for all large n, and eventually negative if $x_{n}<0$ for all large n. It is said to be oscillatory if it is neither eventually positive nor eventually negative. We will also say that (1) is oscillatory if each of its solution is oscillatory.

Throughout this paper, we assume that there exists an oscillatory sequence $\left\{r_{n}\right\}$ such that $\Delta^{m} r_{n}=h_{n}$ for $n=1,2, \ldots$, and $\lim _{n \rightarrow \infty} r_{n}=0$. Set

$$
\begin{equation*}
z_{n}=x_{n}-p_{n} x_{n-\tau(n)}-r_{n} \tag{2}
\end{equation*}
$$

By convention, empty sums will be taken to be zero.
In this paper, we will give some sufficient conditions of oscillatory and asymptotic behavior of solutions of Eq. (1) by using a method which differs from [3, 9].

2. Main Results

Lemma 1. [1] Let $\left\{y_{n}\right\}$ be a sequence of positive real numbers in $N=\{0,1,2, \ldots\}$, and $\Delta^{m} y_{n} \leq 0$. Let $\Delta^{m} y_{n}$ be of constant sign with $\Delta^{m} y_{n}$ not being identically zero on any subset $\left\{n_{0}, n_{0}+1, \ldots\right\}$ of N. Then there exists an integer $l, 0 \leq l \leq m-1$, with $m+l$ odd for $\Delta^{m} y_{n} \leq 0$, and $m+l$ even for $\Delta^{m} y_{n} \geq 0$ such that

$$
l \leq m-1 \text { implies }(-1)^{l+k} \Delta^{k} y_{n}>0, \text { for all } n \geq N, l \leq k \leq m-1
$$

and

$$
l \geq 1 \text { implies } \Delta^{k} y_{n}>0, \text { for all } n \geq N, 1 \leq k \leq l-1
$$

Lemma 2. Let $0<p_{n} \leq B$ for $n \geq n_{0}$ and some positive constant B. Assume that there is at least an integer $j, 1 \leq j \leq s$, such that $\sum_{n=n_{0}}^{\infty} Q_{j}(n)=\infty$. If $\left\{x_{n}\right\}$ is a bounded solution of Eq. (1) and $\left\{x_{n}\right\}$ is eventually positive (or negative), then $\lim _{n \rightarrow \infty} z_{n}=0$. Moreover, for all large n, we have $(-1)^{k} \Delta^{k} z_{n}>0($ or $<0)$ for $k=1,2, \ldots, m$.

Proof. Let $\left\{x_{n}\right\}$ be an eventually positive bounded solution of Eq. (1) (the proof when $\left\{x_{n}\right\}$ is eventually negative is similar), and without loss of generality, we may assume that $x_{n}>0, x_{n-\tau(n)}>0$ for $i=1,2, \ldots, s$ and $n \geq n_{1} \geq n_{0}$. Since $\left\{x_{n}\right\}$ is bounded and $\lim _{n \rightarrow \infty} r_{n}=0$, so that, by (2), there is a $n_{2} \geq n_{1}$ such that $\left\{z_{n}\right\}$ is bounded for $n \geq n_{2}$. By (1) and (2), we have

$$
\begin{equation*}
\Delta^{m} z_{n}=\sum_{i=1}^{s} Q_{i}(n) f_{i}\left(x_{n-\sigma_{i}(n)}\right)>0 \text { for } n \geq n_{2} \tag{3}
\end{equation*}
$$

It follows that $\Delta^{k} z_{n}(k=0,1, \ldots, m-1)$ are strictly monotone and are eventually of constant sign. Since $\left\{z_{n}\right\}$ is bounded, we may set $\lim _{n \rightarrow \infty} z_{n}=L(-\infty<L<\infty)$. First, suppose $-\infty<L<0$. In view of $\lim _{n \rightarrow \infty} r_{n}=0$, then there exists a constant $c>0$ and a $n_{3} \geq n_{2}$, such that $z_{n}<-c<0$ for $n \geq n_{3}$. Since $n \geq n_{3}, \Delta^{m} z_{n}>0, z_{n}<0$ and $\left\{z_{n}\right\}$ is bounded, set $y_{n}=-z_{n}$. Then as $n \geq n_{3}, y_{n}>0, \Delta^{m} y_{n}=-\Delta^{m} z_{n}<0$ and $\left\{y_{n}\right\}$ is bounded. Observe that m is even. By Lemma 1, there exist a $n_{4} \geq n_{3}$ and an integer $l \in\{1,3,5, \ldots, m-1\}$, such that, as $n \geq n_{4}$,

$$
\Delta^{k} y_{n}>0 \text { for } k=0,1,2, \ldots, l-1
$$

and

$$
\begin{equation*}
(-1)^{k+l} \Delta^{k} y_{n}>0 \text { for } k=l, l+1, \ldots, m-1 \tag{4}
\end{equation*}
$$

Since $\left\{y_{n}\right\}$ is bounded, we may show that $l=1$. Otherwise, if $l \geq 3$, then, by (4), we have $y_{n}>0, \Delta y_{n}>0$ and $\Delta^{2} y_{n}>0$ for $n \geq n_{4}$. So Δy_{n} is strictly increasing, hence, there exist a $n_{5} \geq n_{4}$ and a constant $c>0$, such that $\Delta y_{n}>c>0$ for $n \geq n_{5}$. By summing from n_{5} to n and letting $n \rightarrow \infty$, we have $\lim _{n \rightarrow \infty} y_{n}=\infty$, which contradicts the fact that $\left\{y_{n}\right\}$ is bounded. Hence, $l \geq 3$ is impossible. So $l=1$ holds. From (4), we have, as $n \geq n_{4}, y_{n}>0$ and $(-1)^{k+l} \Delta^{k} y_{n}>0$ for $k=1,2, \ldots, m-1$, that is, as $n \geq n_{4}, z_{n}<0$ and $(-1)^{k} \Delta^{k} z_{n}>0$ for $k=1,2, \ldots, m-1$. In particular, $\Delta^{m-1} z_{n}<0$ for $n \geq n_{4}$. Since $\left\{x_{n}\right\}$ is bounded, we set $\lim _{n \rightarrow \infty} \inf x_{n}=a(0 \leq a<\infty)$. We wish to show that $a>0$. Otherwise, if $a=0$, then there is an integer sequence $\left\{n_{i}\right\}$, such that $\lim _{i \rightarrow \infty} n_{i}=\infty$ and $\lim _{n \rightarrow \infty} \inf x_{n}=a=0$.

By (2), we have

$$
x_{n_{i}+\tau\left(n_{i}\right)}=z_{n_{i}+\tau\left(n_{i}\right)}+p_{n_{i}+\tau\left(n_{i}\right)} x_{n_{i}}+r_{n_{i}+\tau\left(n_{i}\right)} .
$$

So let $i \rightarrow \infty$, we have $\lim _{i \rightarrow \infty} \inf x_{n_{i}+\tau\left(n_{i}\right)}=d<0$. This contradicts $x_{n}>0$ for $n \geq n_{1}$. Hence, $a>0$ holds, that is, $\lim _{n \rightarrow \infty} x_{n}=a>0$. It follows that there are a constant $c_{1}>0$ and a $n_{5} \geq n_{4}$, such that $x_{n}>c_{1}>0$ and $x_{n-\sigma_{i}(n)}>c_{1}>0$ for $n \geq n_{5}$. So, by (3), as $n \geq n_{5}$, we have

$$
\begin{equation*}
\Delta^{m} z_{n} \geq \sum_{i=1}^{s} Q_{i}(n) f_{i}\left(c_{1}\right) \geq b \sum_{i=1}^{s} Q_{i}(n) \geq b Q_{j}(n) \tag{5}
\end{equation*}
$$

where $b=\min _{1 \leq i \leq s}\left\{f_{i}\left(c_{1}\right)\right\}>0$.
By summing (5) from n_{5} to n and letting $n \rightarrow \infty$, we have $\lim _{n \rightarrow \infty} \Delta^{m-1} z_{n}=\infty$. This contradicts $\Delta^{m-1} z_{n}<0$ for $n \geq n_{4}$. Hence, the inequality $-\infty<L<0$ cannot occur.

If $0<L<\infty$, then there exist a constant $c>0$ and a $n_{3} \geq n_{2}$, such that $z_{n}>c>0$ for $n \geq n_{3}$. Since $n \geq n_{2}, \Delta^{m} z_{n}>0$, and $\left\{z_{n}\right\}$ is bounded, observe that m is even. By Lemma 1, there exists a $n_{4} \geq n_{3}$ and $l=0$, such that $(-1)^{k} \Delta^{k} z_{n}>0$ for $n \geq n_{4}$ and $k=0,1,2, \ldots, m-1$. In particular, $\Delta^{m-1} z_{n}<0$ for $n \geq n_{4}$. Observe that $z_{n}>c>0$ for $n \geq n_{3}$ and $\lim _{n \rightarrow \infty} r_{n}=0$. Hence, there exists a constant $c_{1}>0$ and $n_{5} \geq n_{4}$, such that $z_{n}+r_{n}>c_{1}>0$ for $n \geq n_{5}$. By (2), we have $x_{n}>z_{n}+r_{n}>c_{1}>0$ for $n \geq n_{5}$. So we may take a $n_{6} \geq n_{5}$, such that $x_{n-\sigma_{i}(n)}>c_{1}>0$ for $n \geq n_{6}$ and $i=1,2, \ldots, s$. From (3), we obtain

$$
\begin{equation*}
\Delta^{m} z_{n} \geq \sum_{i=1}^{s} Q_{i}(n) f_{i}\left(c_{1}\right) \geq b \sum_{i=1}^{s} Q_{i}(n) \geq b Q_{j}(n), n \geq n_{6} \tag{6}
\end{equation*}
$$

where $b=\min _{1 \leq i \leq s}\left\{f_{i}\left(c_{1}\right)\right\}>0$.
By summing (6) from n_{6} to n and letting $n \rightarrow \infty$, we have $\lim _{n \rightarrow \infty} \Delta^{m-1} z_{n}=\infty$. This contradicts $\Delta^{m-1} z_{n}<0$ for $n \geq n_{4}$. Hence, $0<L<\infty$ is impossible. So $L=0$ holds, that is, $\lim _{n \rightarrow \infty} z_{n}=0$.

Since $\lim _{n \rightarrow \infty} z_{n}=0$, it is not difficult to show by contradiction that $\lim _{n \rightarrow \infty} \Delta^{k} z_{n}$ $=0$ for $k=1,2, \ldots, m-1$. Since $\Delta^{m} z_{n}>0$ for $n \geq n_{2}$ and m is even, hence, it is easy to see that, for sufficiently large $n,(-1)^{k} \Delta^{k} z_{n}>0$ for $k=0,1,2, \ldots, m$. The proof is complete.

Theorem 1. Assume that the following conditions are satisfied:
(c_{1}) $0<p_{n} \leq B$ for $n \geq n_{0}$ and some positive constant $B, 0<B<1$.
(c_{2}) There exists at least an integer $j, 1 \leq j \leq s$, such that

$$
\sum_{n=n_{0}}^{\infty} Q_{i}(n)=\infty
$$

Then every bounded non-oscillatory solution of Eq. (1) tends to zero as $n \rightarrow \infty$.
Proof. Let $\left\{x_{n}\right\}$ be a bounded non-oscillatory solution of Eq. (1). Without loss of generality, assume that $\left\{x_{n}\right\}$ is eventually positive (the proof when $\left\{x_{n}\right\}$ is eventually negative is similar). By Lemma 2, we have $\lim _{n \rightarrow \infty} z_{n}=0$. Since $\lim _{n \rightarrow \infty} r_{n}=0$, so $\lim _{n \rightarrow \infty}\left(z_{n}+r_{n}\right)=0$. Observe that $\left\{x_{n}\right\}$ is bounded, hence, we set $\lim _{n \rightarrow \infty} \sup x_{n}=a$, then $0 \leq a<\infty$. We wish to show that $a=0$. Otherwise, if $a>0$, then there is an integer sequence $\left\{n_{k}\right\}$, such that $\lim _{k \rightarrow \infty} n_{k}=\infty$ and $\lim _{k \rightarrow \infty} x_{n_{k}}=\lim _{n \rightarrow \infty} \sup x_{n}=a>0$. Since $\left\{x_{n}\right\}$ is bounded, so $\left\{x_{n_{k}-\tau\left(n_{k}\right)}\right\}$ is bounded. Hence, there exists a sequence $\left\{n_{k_{i}}\right\} \subset\left\{n_{k}\right\}$, such that $\lim n_{k_{i}}=\infty$ and $\lim _{i \rightarrow \infty} x_{n_{k_{i}}-\tau\left(n_{k_{i}}\right)}$ exists. By (2), we have

$$
z_{n_{k_{i}}}+r_{n_{k_{i}}}=x_{n_{k_{i}}}-p_{n_{k_{i}}} x_{n_{k_{i}}-\tau\left(n_{k_{i}}\right)} \geq x_{n_{k_{i}}}-B x_{n_{k_{i}}-\tau\left(n_{k_{i}}\right)}
$$

so that

$$
\begin{aligned}
0 & =\lim _{i \rightarrow \infty}\left(z_{n_{k_{i}}}+r_{n_{k_{i}}}\right) \geq \lim _{i \rightarrow \infty} x_{n_{k_{i}}}-B \lim _{i \rightarrow \infty} x_{n_{k_{i}}-\tau\left(n_{k_{i}}\right)} \\
& =a-B \lim _{i \rightarrow \infty} x_{n_{k_{i}}-\tau\left(n_{k_{i}}\right)}
\end{aligned}
$$

Hence, we have $\lim _{i \rightarrow \infty} x_{n_{k_{i}}-\tau\left(n_{k_{i}}\right)} \geq a / B>a$. This contradicts $\lim _{n \rightarrow \infty} \sup x_{n}=a$. Hence, $a>0$ is impossible, and so $a=0$ holds, that is, $\lim _{n \rightarrow \infty} \sup x_{n}=a$ holds. Observe that $x_{n}>0$ eventually, so that $\lim _{n \rightarrow \infty} x_{n}=0$. The proof is complete.

Theorem 2. Let $\left(c_{1}\right),\left(c_{2}\right)$ be satisfied. Moreover, assume that the following conditions hold:
$\left(c_{3}\right)$ There exists a positive constant λ, such that

$$
\liminf _{u \rightarrow 0} \frac{f_{i}(u)}{u} \geq \lambda \text { for } i=1,2, \ldots, s
$$

(c_{4})

$$
\limsup _{n \rightarrow \infty} \sum_{w=n_{0}}^{n} w^{m-1} Q_{j}(w) r_{w-\sigma_{j}(w)}=\infty
$$

(c_{5})

$$
\liminf _{n \rightarrow \infty} \sum_{w=n_{0}}^{n} w^{m-1} Q_{j}(w) r_{w-\sigma_{j}(w)}=-\infty
$$

Then every bounded solution of Eq. (1) oscillates.
Proof. Let $\left\{x_{n}\right\}$ be a bounded non-oscillatory solution of Eq. (1). Without loss of generality, we may assume that $x_{n}>0, x_{n-\tau(n)}>0, x_{n-\sigma_{i}(n)}>0(i=1,2, \ldots, s)$ for $n \geq n_{1} \geq n_{0}$ (the proof when $x_{n}<0, n \geq n_{1}$ is similar). By (2) and Lemma 2, there is a $n_{2} \geq n_{1}$, such that

$$
\begin{equation*}
(-1)^{k} \Delta^{k} z_{n}>0 \text { for } n \geq n_{2} \text { and } k=0,1,2, \ldots, m \tag{7}
\end{equation*}
$$

By Theorem 1, we have $\lim _{n \rightarrow \infty} x_{n}=0$, and so $\lim _{n \rightarrow \infty} x_{n-\sigma_{i}(n)}=0$ for $i=$ $1,2, \ldots, s$. By (c_{3}), there is a $n_{3} \geq n_{2}$, such that as $n \geq n_{3}$,

$$
\begin{equation*}
\frac{f_{i}\left(x_{n-\sigma_{i}(n)}\right)}{x_{n-\sigma_{i}(n)}} \geq \lambda>0, \quad \text { for } i=1,2, \ldots, s \tag{8}
\end{equation*}
$$

From (1), (2), and (8), we have

$$
\begin{align*}
\Delta^{m} z_{n} & =\sum_{i=1}^{s} Q_{i}(n) \frac{f_{i}\left(x_{n-\sigma_{i}(n)}\right)}{x_{n-\sigma_{i}(n)}} \cdot x_{n-\sigma_{i}(n)} \\
& \geq \lambda \sum_{i=1}^{s} Q_{i}(n) x_{n-\sigma_{i}(n)} \geq \lambda Q_{j}(n) x_{n-\sigma_{j}(n)} \text { for } n \geq n_{3} . \tag{9}
\end{align*}
$$

From (2), we have

$$
z_{n}+r_{n}=x_{n}-p_{n} x_{n-\tau(n)}<x_{n} .
$$

By (7), we have $z_{n}>0$ for $n \geq n_{3}$. So again, we have $x_{n}>z_{n}+r_{n}>r_{n}$ for $n \geq n_{3}$.
Hence, we take a $n_{4} \geq n_{3}$, such that

$$
\begin{equation*}
x_{n-\sigma_{j}(n)}>r_{n-\sigma_{j}(n)} \text { for } n \geq n_{4} . \tag{10}
\end{equation*}
$$

From (9) and (10), we have

$$
\begin{equation*}
\Delta^{m} z_{n} \geq \lambda Q_{j}(n) r_{n-\sigma_{j}(n)} \text { for } n \geq n_{4} \tag{11}
\end{equation*}
$$

We multiply both sides of (11) by n^{m-1} and then, summing it from n_{4} to n, we obtain

$$
\begin{equation*}
F_{n}-F_{n_{4}} \geq \lambda \sum_{w=n_{4}}^{n} w^{m-1} Q_{j}(w) r_{w-\sigma_{j}(w)} \tag{12}
\end{equation*}
$$

where

$$
F_{n}=n^{m-1} \Delta^{m-1} z_{n}-\sum_{l=2}^{m}(-1)^{l}(m-1)(m-2) \cdots(m-l+1) n^{m-l} \Delta^{m-1} z_{n}
$$

By (7), $F_{n}<0$ for $n \geq n_{4}$. Hence, it follows from (12) that

$$
\sum_{w=n_{0}}^{n} w^{m-1} Q_{j}(w) r_{w-\sigma_{j}(w)} \leq-\frac{F_{n_{4}}}{\lambda}
$$

so that

$$
\limsup _{n \rightarrow \infty} \sum_{w=n_{0}}^{n} w^{m-1} Q_{j}(w) r_{w-\sigma_{j}(w)} \leq-\frac{F_{n_{4}}}{\lambda} .
$$

This contradicts condition (c_{4}), and the proof is complete.

Theorem 3. Let conditions $\left(c_{1}\right),\left(c_{3}\right)$ be satisfied. Assume that the following conditions hold:
(c_{6}) There exists at least an integer $j, 1 \leq j \leq s$, such that $\sigma_{j}(n)$ is non-increasing and as $n \geq n_{0}, \sigma_{j}(n)>0$. Moreover, there exists integer sequences $\left\{n_{k}\right\}$ and $\left\{n_{k}^{\prime}\right\}$, with $\lim _{k \rightarrow \infty} n_{k}=\infty, \lim _{k \rightarrow \infty} n_{k}^{\prime}=\infty$, such that

$$
\begin{align*}
& \left\{\begin{array}{l}
\sum_{w=n_{k}-\sigma_{j}\left(n_{k}\right)}^{n_{k}}\left(n_{k}-w\right)^{m-1} Q_{j}(w)>\frac{(m-1)!}{\lambda} \\
\sum_{w=n_{k}-\sigma_{j}\left(n_{k}\right)}^{n_{k}} Q_{j}(w) r_{w-\sigma_{j}(w) \geq 0} \\
\left\{\begin{array}{l}
\sum_{w=n_{k}^{\prime}-\sigma_{j}\left(n_{k}^{\prime}\right)}^{n_{k}^{\prime}}\left(n_{k}^{\prime}-w\right)^{m-1} Q_{j}(w)>\frac{(m-1)!}{\lambda} \\
\sum_{w=n_{k}^{\prime}-\sigma_{j}\left(n_{k}^{\prime}\right)}^{n_{k}^{\prime}} Q_{j}(w) r_{w-\sigma_{j}(w) \leq 0}
\end{array}\right.
\end{array} . \begin{array}{l}
\end{array}\right. \tag{1}
\end{align*}
$$

Then every bounded solution of Eq. (1) oscillates.
Proof. Let $\left\{x_{n}\right\}$ be a bounded non-oscillatory solution of Eq. (1). Without loss of generality, we may assume that $x_{n}>0, x_{n-\tau(n)}>0, x_{n-\sigma_{i}(n)}>0(i=1,2, \ldots, s)$ for $n \geq n_{1} \geq n_{0}$ (the proof when $x_{n}<0$ is similar). Observe that $\sigma_{j}(n)$ is non-increasing, so that there exist a constant $\sigma>0$ and a $T \geq n_{0}$, such that $0<\sigma_{j}(n) \leq \sigma$ for $n \geq T$, and so $n_{k}-\sigma \leq n_{k}-\sigma_{j}\left(n_{k}\right) \leq w \leq n_{k}$ for $n_{k} \geq T$. Hence, we obtain

$$
\sum_{w=n_{k}-\sigma_{j}\left(n_{k}\right)}^{n_{k}}\left(n_{k}-w\right)^{m-1} Q_{j}(w) \leq \sigma^{m-1} \sum_{w=n_{k}-\sigma_{j}\left(n_{k}\right)}^{n_{k}} Q_{j}(w)
$$

By $\left(\mathrm{H}_{1}\right)$, we have

$$
\sum_{w=n_{k}-\sigma_{j}\left(n_{k}\right)}^{n_{k}} Q_{j}(w)>\frac{(m-1)!}{\lambda \sigma^{m-1}}>0
$$

It follows that

$$
\sum_{w=n_{0}}^{\infty} Q_{j}(w)=\infty
$$

As in the proof of Theorem 2, we have that (7)-(9) hold for $n \geq n_{3}$. By (2), we have $x_{n}>z_{n}+r_{n}$ for $n \geq n_{3}$, and so we take a $n_{4} \geq n_{3}$, such that

$$
x_{n-\sigma_{j}(n)}>z_{n-\sigma_{j}(n)}+r_{n-\sigma_{j}(n)} \text { for } n \geq n_{4} .
$$

Combining (9) with the last inequality as $n \geq n_{4}$, we have

$$
\begin{equation*}
\Delta^{m} z_{n} \geq \lambda Q_{j}(n)\left[z_{n-\sigma_{j}(n)}+r_{n-\sigma_{j}(n)}\right]=\lambda Q_{j}(n) z_{n-\sigma_{j}(n)}+\lambda Q_{j}(n) r_{n-\sigma_{j}(n)} \tag{13}
\end{equation*}
$$

By discrete Taylor's formulas [1], set $n_{4} \leq w \leq n_{k}$. From (13), we have

$$
\begin{align*}
\Delta^{m} z_{w} \geq & \lambda Q_{j}(w)\left[\sum_{i=0}^{m-1} \frac{\Delta^{i} z_{n_{k}-\sigma_{j}\left(n_{k}\right)}}{i!}\left(w-\sigma_{j}(w)-n_{k}+\sigma_{j}\left(n_{k}\right)\right)^{(i)}\right. \\
& \left.+\frac{1}{(m-1)!} \sum_{l=n_{k}-\sigma_{j}\left(n_{k}\right)}^{w-\sigma_{j}(w)-m}\left(w-\sigma_{j}(w)-l-1\right)^{(m-1)} \Delta^{m} z_{l}\right] \\
& +\lambda Q_{j}(w) r_{w-\sigma_{j}(w)} \tag{14}
\end{align*}
$$

From (7) and (14), and observe that $\sigma_{j}(n)$ is non-increasing, we obtain

$$
\begin{equation*}
\Delta^{m} z_{w} \geq \frac{\lambda}{(m-1)!} \Delta^{m-1} z_{n_{k}-\sigma_{j}\left(n_{k}\right)}\left(n_{k}-w\right)^{(m-1)} Q_{j}(w)+\lambda Q_{j}(w) r_{w-\sigma_{j}(w)} \tag{15}
\end{equation*}
$$

By summing (15) from $n_{k}-\sigma_{j}\left(n_{k}\right)$ to $n_{k}-1$, we obtain

$$
\begin{aligned}
& \quad \Delta^{m-1} z_{n_{k}}-\Delta^{m-1} z_{n_{k}-\sigma_{j}\left(n_{k}\right)} \\
& \geq \\
& \frac{-\lambda}{(m-1)!} \Delta^{m-1} z_{n_{k}-\sigma_{j}\left(n_{k}\right)} \sum_{w=n_{k}-\sigma_{j}\left(n_{k}\right)}^{n_{k}-1}\left(n_{k}-w\right)^{m-1} Q_{j}(w) \\
& \quad+\lambda \sum_{w=n_{k}-\sigma_{j}\left(n_{k}\right)}^{n_{k}-1} Q_{j}(w) r_{w-\sigma_{j}(w)} .
\end{aligned}
$$

Applying $\left(\mathrm{H}_{1}\right)$ to the above inequality, we have

$$
\Delta^{m-1} z_{n_{k}}-\Delta^{m-1} z_{n_{k}-\sigma_{j}\left(n_{k}\right)} \geq-\Delta^{m-1} z_{n_{k}-\sigma_{j}\left(n_{k}\right)}
$$

so that $\Delta^{m-1} z_{n_{k}} \geq 0$ for $n_{k} \geq n_{4}$, which contradicts (7), and the proof is complete.
Theorem 4. Let condition (c_{1}) in Theorem 1 be replaced by $\left(\mathrm{c}_{1}^{\prime}\right) 1<B_{1} \leq p_{n} \leq B$ for $n \geq n_{0}$ where B_{1} and B are two positive constants. Then every bounded non-oscillatory solution of Eq. (1) tends to be zero as $n \rightarrow \infty$.

Proof. Let $\left\{x_{n}\right\}$ be a bounded non-oscillatory solution (1). Without loss of generality, we assume that $\left\{x_{n}\right\}$ is eventually positive (the proof when $\left\{x_{n}\right\}$ is eventually negative is similar). By Lemma 2, we have $\lim _{n \rightarrow \infty} z_{n}=0$. Since $\lim _{n \rightarrow \infty} r_{n}=0$, therefore, $\lim _{n \rightarrow \infty}\left[z_{n}+r_{n}\right]=0$. Observe that $\left\{x_{n}\right\}$ is bounded; we may set $\lim _{n \rightarrow \infty} \sup x_{n}=a$ $(0 \leq a<\infty)$. We wish to show that $a=0$. Otherwise, if $a>0$, then there exists an integer sequence $\left\{n_{k}\right\}$ with $\lim _{k \rightarrow \infty} n_{k}=\infty$, such that $\lim _{k \rightarrow \infty} x_{n_{k}}=\lim _{n \rightarrow \infty} \sup x_{n}=$ $a>0$. Since $\left\{x_{n}\right\}$ is bounded, $\left\{x_{n_{k}+\tau\left(n_{k}\right)}\right\}$ is also bounded. Then there is a $\left\{n_{k_{i}}\right\} \subset\left\{n_{k}\right\}$ with $\lim _{i \rightarrow \infty} n_{k_{i}}=\infty$ and such that $\lim _{i \rightarrow \infty} x_{n_{k_{i}}+\tau\left(n_{k_{i}}\right)}$ exists. From (2), we have

$$
z_{n_{k_{i}}+\tau\left(n_{k_{i}}\right)}+r_{n_{k_{i}}+\tau\left(n_{k_{i}}\right)} \leq x_{n_{k_{i}}+\tau\left(n_{k_{i}}\right)}-B_{1} x_{n_{k_{i}}} .
$$

Letting $i \rightarrow \infty$, we have $\lim _{i \rightarrow \infty} x_{n_{k i}+\tau\left(n_{k_{i}}\right)} \geq B_{1} a>a$, which contradicts $\lim _{n \rightarrow \infty} \sup x_{n}=a$. Hence, $a=0$ holds. Observe that $x_{n}>0$ eventually, hence, $\lim _{n \rightarrow \infty} x_{n}=0$. The proof is complete.

Using Lemma 2 and Theorem 4, and following the proof of Theorems 2 and 3, we have

Theorem 5. Let condition (c_{1}) in Theorem 2 be replaced by $\left(c_{1}^{\prime}\right)$. Then every bounded solution of Eq. (1) oscillates.

Theorem 6. Let condition (c_{1}) in Theorem 3 be replaced by (c_{1}^{\prime}). Then every bounded solution of Equation (1) oscillates.

Example. Consider the equation

$$
\begin{equation*}
\Delta^{4}\left(x_{n}-\frac{1}{2} x_{n-1}\right)-24 x_{n-2}=0, \quad n=0,1,2, \ldots \tag{16}
\end{equation*}
$$

Hence, $m=4, p_{n}=1 / 2, r(n)=1 . \sigma(n)=2, Q(n)=24$, and $f(u)=u$. It is easy to verify that the conditions of Theorem 2 are satisfied. Therefore, (16) has an oscillatory solution. For instance, $\left\{x_{n}\right\}=(-1)^{n}$ is such a solution.

References

1. R.P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, New York, 1992.
2. J.R. Graef, A. S. Miciano, P.W. Spikes, and J. Jaros, Oscillation and nonoscillation results for nonlinear difference equations with a forcing term, in: Proceedings of First International Conference on Difference Equations, Gordon and Breach, 1995, pp. 213-222.
3. J.R. Graef, A.S. Miciano, P.W. Spikes, P. Sundaram, and E. Thandapani, Oscillatory and asymptotic behavior of neutral-type difference equations, J. Austral. Math. Soc. B38 (1996) 163-171.
4. I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations, Clarendon Press, Oxford, 1991.
5. B.S. Lalli, Oscillation theorems for neutral difference equations, Computers Math. Appl. 28 (1994) 191-202.
6. E. Thandapani, P. Sundaram, and B.S. Lalli, Oscillation theorem for higher order nonlinear delay difference equations, Comp. Math. Applic. 32(3) (1996) 111-117.
7. P. J.Y. Wong and R.P. Agarwal, Comparison theorems for the oscillation of highest order difference equations with deviating arguments, Math. Comput. Modeling 24(12) (1996) 39-48.
8. J. Yan and B. Liu, Asymptotic behavior of a nonlinear delay difference equation, Appl. Math. Lett. 8(6) (1995) 1-5.
9. A. Zafer, Oscillatory and asymptotic behavior of higher order difference equations, Mathl. Comput. Modeling 21(4) (1995) 43-50.
10. A. Zafer and R. S. Dahiya, Oscillatory asymptotic behavior of solutions of third order delay differential equations with forcing terms, Diff. Equations and Dyn. Systems 1 (1993) 123-136.
