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Abstract. This historical article surveys the development of areas of mathematics directly related to
the nearly ninety-year-old Brouwer fixed point theorem. We are mainly concerned with equivalent
formulations and generalizations of the theorem. Also, we deal with the KKM theory and various
equilibrium problems closely related to the Brouwer theorem.

1. Introduction

The Brouwer fixed point theorem is one of the most well known and important existence
principles in mathematics. Since the theorem and its many equivalent formulations or
extensions are powerful tools in showing the existence of solutions for many problems in
pure and applied mathematics, many scholars have been studying its further extensions
and applications. The purpose of this article is to survey the development of areas
of mathematics directly related to the nearly ninety-year-old theorem. We are mainly
concerned with equivalent formulations and generalizations of the theorem. Moreover,
we deal with the Knaster—Kuratowski—-Mazurkiewicz Theory (KKM theory for short)
and various equilibrium problems closely related to the Brouwer theorem.

Generalizations of the Brouwer theorem have appeared in relation to the theory
of topological vector spaces in mathematical analysis. The compactness, convexity,
single-valuedness, continuity, self-mapness, and finite dimensionality related to the
Brouwer theorem are all extended and, moreover, for the case of infinite dimension, it is
known that the domain and range of the map may have different topologies. This is why
the Brouwer theorem has so many generalizations. Current study of its generalizations
concentrates on a more general class of compact or condensing multimaps defined on
convex subsets of more general topological vector spaces.

*Partially supported by the SNU-Daewoo Research Fund in 1999.
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Along with these developments, a large number of equivalent formulations of the
Brouwer fixed point theorem have been found. One of the earliest was a theorem of
Knaster, Kuratowski, and Mazurkiewicz, which initiated the so-called KKM theory. At
first, the basic theorems in the KKM theory were established for convex subsets of
topological vector spaces, and later, for various generalized abstract convexities. These
basic theorems have many applications to various equilibrium problems.

Other directions of the generalizations in topology are studies of spaces having the
fixed point property, various degree or index theories, the Lefschetz fixed point theory,
the Nielsen fixed point theory, and the fixed point theorems in the Atiyah—Singer index
theory which generalizes the Lefschetz theory. However, we will not follow these lines
of study.

In closing our introduction, we quote an excellent expression on the current status of
the fixed point theory as follows:

“Fixed points and fixed point theorems have always been a major theoretical tool
in fields as widely apart as differential equations, topology, economics, game theory,
dynamics, optimal control, and functional analysis. Moreover, more or less recently, the
usefulness of the concept for applications increased enormously by the development of
accurate and efficient techniques for computing fixed points, making fixed point methods
a major weapon in the arsenal of the applied mathematician.”

M. Hazewinkel,
Editor’s Preface to [120].

2. Works of Poincaré and Bohl

The Bolzano intermediate value theorem in 1817 was generalized by Poincaré [211,212]
in order to apply to the three body problem as follows:

Let&y, &, ... , &, ben continuous functions of n variables x1, x, . . . , X, the variable
x; is subjected to vary between the limits +a; and —a;. Suppose that for x; = a;, & is
constantly positive, and for x; = —a;, &; is constantly negative; I say that there will exist
a system of values of x for which all the & ’s vanish.

For the proof, he referred to a theorem of Kronecker in a paper on functions of several
variables. This paper was known to initiate the theory of the topological degree of maps
(see Browder [34] and references therein). Later, Poincaré [213] published the argument
on the continuation invariance of the index which is the basis for the proof of the above
theorem.

Poincaré’s theorem is nowadays called the Bolzano-Poincaré—Miranda theorem
because it was proved by Miranda [168], who also showed that it was equivalent to the
Brouwer fixed point theorem. It should be noted that Kaniel [127] misquoted Poincaré’s
theorem and a number of authors followed (see [194]).

The second forerunner of the Brouwer theorem was given by Bohl [24, p. 185] as
follows:

Let a domain (G) —a; < x; < a; (i = 1,2,...,n) be given. In this domain, let
fis f2, .., fu be continuous functions of x which do not have a common zero. Then
there is a point (uy, us, ... , Uy) in the boundary of G such that
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fitur,uz, ... ,up)=N-u;, N<O0 (i=1,2,...,n).
The following theorem can be regarded as contained in this theorem:

There do not exist n continuous functions Fy, Fa, ... , Fy, defined on the domain (G)
—a; <xi <a; (i =1,2,...,n), which have no common zero and which fulfill for the
points of the boundary of (G)

Py =) (T="122"27 #n)t

Hence, Bohl proved for the first time that the boundary of a cube is not a retract of the
solid cube, which is equivalent to the Brouwer theorem.
For Bohl’s work, Bing [21] wrote:

“The result is frequently called the Brouwer Fixed Point Theorem although the work
of Brouwer [8] was probably preceded by that of Bohl [4]. ... In proving the theorem,
Bohl considered differentiable maps and used Green’s Theorem to show that equivalent
integrals did not match if the n-cell had a fixed point free map into itself.”

The following is called the non-retract theorem:

Theorem 1. Forn > 1, S"~! is not a retract of B".
Smart [253] wrote:

“Bohl [24] proved a result equivalent to the non-retraction theorem but apparently did
not go on to obtain the Brouwer theorem.”

On the other hand, Dugundji and Granas [52] claimed that the non-retract theorem
was due to Borsuk and the following to Bohl:

Theorem 2. Every continuous F : B"*! — R™! has at least one of the following
properties:
(a) F has a fixed point;
(b) thereis an x € S" such that x = LFx for some 0 < A < 1.

This follows from Bohl’s first theorem: If f = I — F is continuous and fails to have
a fixed point, then Bohl’s conclusion implies (b).

Note that the concept of retraction is due to Borsuk [27] and that the negation of
condition (b) is the so-called Leray—Schauder boundary condition.

3. The Brouwer Fixed Point Theorem

In 1910, the Brouwer theorem appeared.

Theorem 3. [29] A continuous map from an n-simplex to itself has a fixed point.

It is clear that, in this theorem, the n-simplex can be replaced by the unit ball B* or
any compact convex subset of R”. This theorem appeared as Satz 4 in [29]. At the end
of this paper, it is noted that “Amsterdam, July 1910” by Brouwer himself.
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Some authors were confused with the theorem that appeared in [28]. According to
Bing [21], “even before Brouwer’s paper [29] appeared, reference had been made to
the Brouwer Fixed Point Theorem.” (See Hadamard’s reference in [258, p. 472].) In
fact, Hadamard gave a proof of the Brouwer theorem using the Kronecker indices in the
appendix of Tannaery [258].

According to Freudenthal [74] (where [29] is listed as “1911D”), Hadamard knew the
Brouwer theorem (without proof) from a letter of Brouwer (dated January 4, 1910).

Brouwer [29] gave a proof of his theorem using the simplicial approximation technique
and notions of degree. According to Bing again, Brouwer himself proved the theorem
by showing that homotopic maps of an (n - 1)-sphere onto itself have the same degree
(or rotation of vector fields), hence, there is no retraction of an n-cell onto its boundary.
Hence, each map of an n-cell into itself is not fixed point free. (For further comments on
Brouwer’s works on fixed point, see [49], and on degree theory, see [245,246].

Alexander [1] proved a theorem of Brouwer [28] using the index of a map and applied
it to obtain the Brouwer fixed point theorem. Birkhoff and Kellogg [22] also gave a
proof of the theorem of Brouwer by using classical methods in calculus and determinant
theory. The same line of proof of the Brouwer theorem can be found in Dunford and
Schwartz [53].

Knaster, Kuratowski, and Mazurkiewicz [133] gave a proof of the Brouwer theorem
using combinatorial techniques. They used the Sperner lemma [254] and showed that
the non-retract theorem holds.

Later, there appeared proofs using algebraic topology, various degree theories, or
differential forms. Hirsch [105] gave a proof of the non-retract theorem using the method
of geometric topology, and Milnor [166] gave an analytic proof. There were also many
other proofs of the Brouwer theorem, and a simple proof using advanced calculus was
given by Rogers [224] and others.

Recently, there have been very interesting proofs of the Brouwer theorem. Kulpa
[142] deduced a generalization of the Brouwer theorem from the Fubini theorem
and the Weierstrass approximation theorem, and applied it to give a simple proof’
of the fundamental theorem of algebra. More recently, Su [257] gave a completely
elementary proof that the Borsuk-Ulam theorem implies the Brouwer theorem by a
direct construction.

The Brouwer theorem itself gives no information about the location of fixed points.
However, effective ways have been developed to calculate or approximate the fixed
points. Such techniques are important in various applications including calculation of"
economic equilibria. The first such algorithm was the simplicial algorithm proposed by
Scarf [228] and later developed in the so-called homotopy or continuation methods for
calculating zeros of functions. (For details of this topic, see [71,129,273] and others.)

4. Sperner’s Combinatorial Lemma: From 1928
In 1928, Sperner [254] gave the following combinatorial lemma and its applications:
Lemma 1. [254] Let K be a simplicial subdivision of an n-simplex vov1 . . . v,. To each

vertex of K, let an integer be assigned in such a way that, whenever a vertex u of K lies
on a face v, v;, -+ -v;, (0 <k <n, 0<ip<iy <- - <ix <n), the number assigned
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to u is one of the integers iy, i1, - . . , ix. Then the total number of those n-simplexes of
K, whose vertices receive all n + 1 integers 0, 1, . .. , n, is odd. In particular, there is at
least one such n-simplex.

Fifty years after the birth of this lemma, at a conference in Southampton, England, in
1979, Sperner himself listed early applications of his lemma as follows:

(1) invariance of dimension [254];

(2) invariance of region [254];

(3) theorem of verification (Rechtfertigungssatz) in Menger’s theory of dimension
[165];

(4) Brouwer’s fixed point theorem [133];

(5) matrices with elements > 0 [60], theorems on eigenvalues of such matrices by
Perron, Frobenius, and others.

There appeared a number of generalizations of the lemma, which was applied to the
following:

(6) antipodal theorems [58,261]; which include the Lusternik—Schnirelmann theorem
on a cover of the n-sphere S” consisting of n +1 closed subsets and the Borsuk—Ulam
theorem on a continuous map f : S — R";

(7) derivation of the Sperner lemma from the Brouwer fixed point theorem [272];

(8) constructive proof of the Fundamental Theorem of Algebra [141];

(9) approximation algorithm to approximate Brouwer fixed point [3, 140,228, etc].

In the later years, Sperner unified his own lemma and its extensions due to Tucker and
Fan [36, 58]. (For the details, see Sperner’s articles in [71].)

5. The KKM Theorem: From 1929

In 1928, Knaster, Kuratowski, and Mazurkiewicz [133] obtained the following so-called
KKM theorem from the Sperner lemma [254]:

Theorem 4. [133] Let A; (0 < i < n) be n + 1 closed subsets of an n-simplex
pop1 - - - Pn. If the inclusion relation
PioPiy - Piy T Aig UA; U---UA,;,
holds for all faces pi,pi,---pi, (0 < k < n, 0<iy<ii <- <ip <n) then
A special case or dual form of the KKM theorem is already given in [254]. The
KKM theorem follows from the Sperner lemma and is used to obtain one of the most
direct proofs of the Brouwer theorem. Therefore, it was conjectured that these three
theorems are mutually equivalent. This was clarified by Yoseloff [272]. In fact, these

three theorems are regarded as a sort of mathematical trinity (see diagram below). All
are extremely important and have many applications.
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Brouwer
1974 = 1929

Sperner — KKM
1929

Moreover, many important results in nonlinear functional analysis and other fields are
known to be equivalent to these three theorems. Only less than a dozen of those results
are shown in textbooks such as Aubin [8], Aubin and Ekeland [9], and Zeidler [275] and
in surveys such as Gwinner [92] and others. Further, usefulness of these three theorems
can also be seen in [102,115,175,273, etc.]

From the KKM theorem, we can deduce the concept of KKM maps as follows: Let E
be a vector space and D C E. A multimap (set-valued function or map) G : D —o E is
called a KKM map if

coN C G(N)

holds for each non-empty finite subset N of D.
Granas [88] gave some examples of KKM maps as follows:

(1) Variational problems. Let C be a convex subset of a vector space E and¢ : C — R
a convex function. Then G : C —o C defined by

Gx={yeC:¢(y) <¢p(x)} forxeC

is a KKM map.
(ii) Best approximation. Let C be a convex subset of a vector space E, p a seminorm
on E, and f : C — E afunction. Then G : C —o C defined by

Gx={yeC:p(fy—y)<p(fy—x)} forxeC

is a KKM map.
(iii) Variational inequalities. Let (H, (-, -)) be an inner product space, C a convex subset
of H,and f : C — H afunction. Then G : C —o C defined by

Gx={yeC:{(fy,y—x)<0} forxeC

is a KKM map.

The study of properties of such KKM maps and their applications is appropriately
called the KKM theory (see [187,191]). In the framework of this theory, various fixed
point theorems and many other consequences are obtained (see Sec. 7). As part of the
development of this theory, there have been many results equivalent to the Brouwer
theorem, especially in nonlinear functional analysis and mathematical economics. For
the classical results, see Granas [88].

Relatively early equivalent forms of the Brouwer theorem are as follows:

e Poincaré’s theorem (1883);

e Bohl’s non-retract theorem (1904);

e Brouwer’s fixed point theorem (1912);

e Spemer’s combinatorial lemma (1928);

e Knaster—Kuratowski-Mazurkiewicz theorem (1929);
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Caccioppoli’s fixed point theorem (1930);

Schauder’s fixed point theorem (1930);

Tychonoff’s fixed point theorem (1935);

von Neumann’s intersection lemma (1937);

intermediate value theorem of Bolzano-Poincaré—Miranda (1941);
Kakutani’s fixed point theorem (1941);

Bohnenblust—Karlin’s fixed point theorem (1950);

Hukuhara’s fixed point theorem (1950);

Fan—Glicksberg’s fixed point theorem (1952);

main theorem of mathematical economics on Walras equilibria of [46,78,172]
(1955);

Kuhn’s cubic Sperner lemma (1960);

Fan’s KKM theorem (1961);

Fan’s geometric or section property of convex sets (1961);

Fan’s theorem on sets with convex sections (1966);
Hartman—Stampacchia’s variational inequality (1966);

Browder’s variational inequality (1967);

Scarf’s intersection theorem (1967);

Fan-Browder’s fixed point theorem (1968);

Fan’s best approximation theorems (1969);

Fan’s minimax inequality (1972);

Himmelberg’s fixed point theorem (1972);

Shapley’s generalization of the KKM theorem (1973),

Tuy’s generalization [262] of the Walras excess demand theorem (1976);
Fan’s matching theorems 1984.

Many generalizations of those theorems are also known to be equivalent to the Brouwer
theorem. Recently, Horvath and Lassonde [263] obtained intersection theorems of the
KKM-, Klee-, and Helly-type, which are all equivalent to the Brouwer theorem.

6. Early Extensions of the Brouwer Theorem: 1920s-1950s

The Brouwer theorem was extended to continuous selfmaps of compact convex subsets
of

(1) CJ[0, 1] by Caccioppoli [36];
(2) normed spaces by Schauder [233, 234]; and
(3) locally convex topological vector spaces by Tychonoff [263].

All those results are included in Lefschetz-type fixed point theorems, which are in turn
contained in the Leray—Schauder theory as extended by Browder and others (see [264]).

Note that Birkhoff-Kellogg [22], Schauder [233], and Tychonoff [263] applied their
results to the existence of solutions of certain differential and integral equations.

There also appeared extensions for maps, which were not selfmaps of compact convex
subsets, as follows:
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Theorem 5. [133] If f : B" — R" is a continuous map such that f maps S"~! =
BdB” back into B", then f has a fixed point.

This was originally stated for a simplex instead of B”, and is the origin of the so-called
Rothe boundary condition.

Theorem 6. [234] If C is a closed convex subset of a Banach space, then every compact
continuous map f : C — C has a fixed point.

This is the second theorem of Schauder [234], and it is especially convenient in
application. Note that this follows from (2) by using Mazur’s result [ 162] that the convex
closure of a compact set in a Banach space is compact. It is later recognized that the
closedness of C and the completeness of the space are not necessary. The third Schauder
theorem is:

Theorem 7. [234] If C is a weakly compact convex subset of a separable Banach space,
then every weakly continuous map [ : C — C has a fixed point.

This also follows from (2) by considering the weak topology, and was generalized by
Krein and Smulian [138] as follows:

Theorem 8. [138] Let H be a closed convex subset of a Banach space. If f : H — H
is weakly continuous such that f(H) is separable and the weak closure of f(H) is
weakly compact, then f has a fixed point.

For Caccioppoli’s fixed point theorem [36] and for the role of the separability in the
above two theorems, see [7].
The KKM fixed point theorem was extended by Rothe:

Theorem 9. [28] Let V be a closed ball of a Banach space E and f : V — E a
compact continuous map such that f(BdV) C V. Then f has a fixed point.

Altman [4] showed that the Rothe condition f(Bd V) C V can be replaced by the
following:

I fx —x|> = | fx|I> = lIx||* forall x e BdV.

Note that those conditions are all particular to the so-called Leray—Schauder condition.

Applications of theorems of Brouwer [29], Rothe [225], Schauder [234], and
Tychonoff [263] appeared in many textbooks for the existence of solutions. We list
some of them:

nonlinear systems of equations;

systems of inequalities;

integral equations;

ordinary differential equations satisfying Lipschitz condition;

peano’s theorem on the existence of solutions of ordinary differential equations;
alternating current circuits (periodic solutions of systems of ordinary differential
equations);

elliptic partial differential equations;

e problems in mathematical physics.
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One interesting application of the Brouwer theorem is due to Zeeman [274], who
described a model of brain.

Lomonosov [153] gave a proof of the existence of invariant subspaces in operator
theory, that is, for any completely continuous linear map f from a Banach space X into
itself, there exists a closed subspace X satisfying f(Xo) C Xo and {0} C+ Xo Cx X.
Here, a completely continuous map is a continuous map sending bounded sets into
compact sets. (For further information on this topic, see [40] and references therein.)

Machara [156] deduced the Jordan curve theorem from the Brouwer theorem.

On the other hand, Kakutani [126] showed the existence of a fixed-point-free
continuous selfmap (even for a homeomorphism) of the unit ball in an infinite-
dimensional space. Therefore, the compactness in the above theorems on an finite-
dimensional case cannot be replaced by bounded closedness or by weak compactness.
Moreover, Dugundji [51] showed that a normed vector space is finite-dimensional if and
only if every continuous selfmap of its unit ball has a fixed point.

Tychonoff’s theorem was applied to obtain the following by Markov [157]:

Theorem 10. [157, 164] Let K be a compact convex subset of a topological vector
space E. Let F be a commuting family of continuous affine maps from K into itself.
Then F has a common fixed point p € K, that is, fp = p for each f € F.

Later, Kakutani [124] gave a direct proof and several applications.

The Markov—Kakutani theorem was generalized to larger classes of maps by Day [45]
and others.

Earlier, Schauder asked in Problem 54 of [161] whether a continuous selfmap of a
compact convex subset of any topological vector space has a fixed point. If the space
is Hausdorff locally convex or admissible in the sense of Klee [132], then Schauder’s
conjecture holds. For some particular spaces, it also holds. However, the problem is not
resolved yet in its full generality, even when the space is metrizable [132]. (For this
problem, see [118, 199] and references therein.)

In the mid-1930s, the Leray—Schauder theory [149] appeared. It assigns a degree to
certain maps and establishes properties of the degree which lead to fixed point and domain
invariance theorems. This was first done for Banach spaces, and was later developed by
Leray [148], Nagumo [169], Altman [5] and others for locally convex spaces. When
the space is Banach, Granas [86] obtained a homotopy extension theorem, which yields
many useful conclusions of the theory while avoiding the more complicated notions of
the degree. Moreover, Klee [132] established the theory without local convexity.

On the other hand, Schaefer [231] showed that the problem of solvability of an
equation x = fx, for a completely continuous map f on a locally convex space E,
reduces to finding a priori bounds of all possible solutions for the family of equations
x = Afx,A € (0,1). This fact is called the Leray—Schauder alternative by Granas
[70] and its various extensions and modifications have played a basic role in various
applications to nonlinear problems (see also [192, 207].

It is often said that the last theorem in Sec. 2 can be obtained in the framework
of Leray and Schauder [149], which seems not to be directly related to the so-called
Leray—Schauder boundary condition. This condition seems to have originated from
[24,232] (see Fishel, MR 50#8177) and has frequently appeared since the 1960s. It
is assumed that it was first called the Leray—Schauder condition by Petryshyn [208].
(For the literature on the theory without using degree theory, see [197].)
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Independent of the generalizations of the Brouwer theorem, Nikodym [176] and Mazur
and Schauder [164] initiated the abstract approach to problems in calculus of variations.
Their result can be stated as follows:

Theorem 11. [164] Let E be a reflexive Banach space and C a closed convex set in
E. Let ¢ be a lower semicontinuous convex and coercive (that is, |¢p(x)| = oo as
x|l = oo) real function on C. If ¢ is bounded from below, then at some xo € C, the
function ¢ attains its minimum.

This is a very useful generalization of the classical Bolzano—Weierstrass theorem and
was applied to a number of concrete problems in calculus of variations by Mazur and
Schauder. However, these results were never published (see [88]). Later, this theorem
was generalized to the variational inequality problems in the framework of the KKM
theory (see [183, 184]).

In the 1950s, there were remarkable generalizations of the Schauder and Tychonoff
theorems. The following was due to Hukuhara in 1950.

Theorem 12. [112] Let X be a non-empty convex subset of a locally convex Hausdorff
topological vector space E and f : X — X a compact continuous map. Then f has a

fixed point.

This is called the Schauder—Tychonoff fixed point theorem in [52, 53]. (See also [251]).
In 1955, Krasnoselskii proved the following theorem which combines the contraction
principle of Banach [10] and the Schauder theorem.

Theorem 13. [137] Let E be a Banach space, T a bounded closed convex subset of E,
and A, B : T — E operators such that

(@ Ap+By eTforp, v eT,
(b) A is completely continuous;,
(c) B is a Banach contraction (that is, there exists ¢ < 1 such that | B¢1 — Bg,|| <

qli¢1 — @2l for 1,42 € T).
Then there isa ¢ € T such that A¢p + Bo = ¢.

Note that, when A is the zero operator, this is (particular to) the Banach contraction
principle; when B is zero, this is the second Schauder theorem.

This type of theorem is useful in establishing existence theorems for perturbed operator
equations and other problems. Since then, there have been many generalizations and other
applications (see, for example, [35,37].)

In the same year, Darbo [44] introduced a new type of fixed point theorem for
non-compact maps.

Recall that Kuratowski [143] defined the measure of non-compactness, a(A), of a
bounded subset A of a metric space (X, d):

a(A) =inf {¢ > 0 : A can be covered by a finite number of sets of diameter
less than or equal to &}.

LetT : X — X be a continuous map. Darbo calls T an «-contraction for any given
bounded set A in X, T(A) is bounded in X and

a[T (A)] < ka(A),
where the constant & fulfills the inequality 0 < k < 1.
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Theorem 14. [44] If G is a closed bounded convex subset of a Banach space X and
T : G - G is an a-contraction, then T has a fixed point.

Note that the class of «-contractions contains completely continuous maps and
all Banach contractions as well [11]. (For generalizations of Darbo’s theorem to
®-condensing maps, see Sec. 11.)

7. Extensions to Multimaps and Applications: 1940s and 1950s

Independent of the above progress, in 1928, von Neumann [265] obtained the following
minimax theorem, which is one of the fundamental theorems in game theory developed
by him.

Theorem 15. [265] Let f(x, y) be a continuous real-valued function defined for x € K
and y € L, where K and L are arbitrary bounded closed convex sets in two Euclidean
spaces R™ and R". If, for every xo € K and for every real number «, the set of all y € L
such that f(xo, y) < o is convex, and if, for every yo € L and for every real number B,
the set of all x € K such that f(x, yo) = B is convex, then we have

max min f(x = minmax f(x, y).
xeKyeLf(’y) yeLxer(’y)

(For the history of earlier proofs of the theorem, see [43,267].
The theorem was later extended by von Neumann to the following intersection lemma:

Lemma 2. [266] Let K and L be two compact convex sets in the Euclidean spaces R™
and R", respectively, and let us consider their Cartesian product K x L in R™", Let U
and V be two closed subsets of K x L such that, for any xo € K, the set Uy, of y € L
such that (xo, y) € U, is non-empty, closed, and convex such that, for any yy € L, the
set Vy, of all x € K such that (x, yo) € V, is non-empty, closed and convex. Under
these assumptions, U and V have a common point.

Von Neumann proved this by using a notion of integral in Euclidean spaces and applied
this to the problems of mathematical economics. We adopted the above formulations of
Theorem and Lemma in [125].

According to Debreu [47],

“Ironically that Lemma, which, through Kakutani’s Corollary, had a major influence
in particular on economic theory and on the theory of games, was not required to obtain
either one of the results that von Neumann wanted to establish. The Minimax theorem,
as well as his theorem on optimal balanced growth paths, can be proved by elementary
means.”

Recall that a multimap F : X —o Y, where X and Y are topological spaces, is upper
semicontinuous (u.s.c.) whenever, for any x € X and any neighborhood U of Fx, there
exists a neighborhood V of x satisfying F(V) C U.

In order to give simple proofs of von Neumann’s Lemma and the minimax theorem,
Kakutani obtained the following generalization of the Brouwer theorem to multimaps:



198 Sehie Park

Theorem 16. [125] If x — ®(x) is an upper semicontinuous point-to-set mapping of
an r-dimensional closed simplex S into the family of non-empty closed convex subset of
S, then there exists an xo € S such that xg € ®(xq).

Equivalently,

Corollary 1. [125] Theorem 16 is also valid even if S is an arbitary bounded closed
convex set in a Euclidean space.

As Kakutani noted, Corollary 1 readily implies von Neumann’s Lemma, and later
Nikaido [174] noted that these two results are directly equivalent.

This was the begining of the fixed point theory of multimaps having a vital connection
with the minimax theory in game theory and the equilibrium theory in economics.

According to Debreu [47] again:

“However, the formulation given by Kakutani is far more convenient to use, and his
proof is distinctly more appealing.

One of the earliest, and most important, applications of the theorem of Kakutani was
made by Nash [70] in his proof of the existence of an equilibrium for a finite game. It
was followed by several hundred applications in the theory of games and in economic
theory. In the latter, Kakutani’s theorem has been for more than three decades the main
tool for proving the existence of an economic equilibrium (a recent survey by Debreu
[47] quotes some three hundred and fifty instances). Other areas of applications were
mathematical programming, control theory and the theory of differential equations.”

In the 1950s, Kakutani’s theorem was extended to Banach spaces by Bohnenblust and
Karlin [25] and to locally convex Hausdorff topological vector spaces by Fan [57] and
Glicksberg [83]. These extensions were mainly used to extend von Neumann’s works in
the above. Moreover, they were known to be included in the extensions, due to Eilenberg
and Montgomery [55] or Begle [12], of Lefschetz’s theorem to u.s.c. maps of a compact
lc-space into the family of its non-empty compact acyclic subsets.

The first remarkble generalization of von Neumann’s minimax theorem was Nash’s
theorem [171] on equilibrium points of non-cooperative games. The following was
formulated by Fan [64]:

Theorem 17. [171] Let X1, X2, ... , X, be n (= 2) non-empty, compact, convex sets,
each in a real Hausdorff topological vector space. Let fi1, fa, ..., f, be n real-valued
cor?tinuous functions defined on IT]_ X;. If, for eachi = 1,2, ... , n and for any gi})en
point (X1, ..., Xi—1, Xi+1, --- » ¥n) € Ijzi Xj, fi(X1, o0 Xio1, Xiy Xig1, ..., Xp) IS @
quasi-concave function on X;, then there exists a point (X1,%2, ... ,X,) € I'_| X; such
that
fiGL%, ..., %) = max G s WOrsy B YU, (R diken)
Yi€A;

Further, von Neumann’s minimax theorem was extended by Sion [252] to arbitrary
topological vector spaces as follows:

Theorem 18. [252] Let X, Y be a compact convex set in a topological vector space. Let
f be a real-valued function defined on X x Y. If,
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(1) foreach fixed x € X, f(x,y) is a lower semicontinuous, quasi-convex function on
Y, and

(2) for each fixed y € Y, f(x, y) is an upper semicontinuous, quasi-concave function
on X,

then we have
min max f (x, y) = max Iynel;lf (>, y).

Here, f is lower semicontinuous whenever the set {y € Y : f(x,y) > r} is open,
and quasi-concave whenever {x € X : f(x,y) > r} is convex for each r € R. Further,
f is upper semicontinuous whenever {x € X : f(x,y) < r}is open, and quasi-convex
whenever {y € Y : f(x,y) < r}is convex for eachr € R.

Sion’s proof was based on the KKM theorem and this seems to be the first application
of the theorem after KKM [133].

As for the Brouwer theorem, in the mid-1960s, algorithms on constructive processes
approximating effectively to the values of the Kakutani fixed points were developed. For
the literature, see Secs. 3 and 4.

In closing this section, we quote two stories on the Brouwer and Kakutani theorems.

In [45], Brouwer denied the existence of a fixed point in his earlier theorem [28],
and claimed that there can be only s-fixed points for each ¢ > 0, because the
Bolzano—Weierstrass theorem is invalid in the intuitionistic mathematics. Note that his
theorem in [28] implies the Brouwer fixed point theorem as Alexander [1] showed. Here,
we see Brouwer’s fate of denying one of his great accomplishments of his younger days
because of his own philosophy.

Comparing the Brouwer and Kakutani theorems, Franklin {73] quoted a private survey:

“... 96% of all mathematicians can state the Brouwer fixed point theorem, but only
5% can prove it. Among mathematical economists, 95% can state it, but only 2% can
prove it (and these are all ex-topologists). ... while96% of mathematicians can state
the Brouwer fixed-point theorem, only 7% can state the Kakutani theorem.”

8. Establishment of the KKM Theory: From the 1960s-1980s

In 1961, a milestone of the history of the KKM theory was established by Fan [61]. He
extended the KKM theorem to infinite-dimensional spaces and applied it to coincidence
theorems generalizing the Tychonoff fixed point theorem and a result concerning two
continuous maps from a compact convex set into a uniform space.

Lemma 3. [61] Let X be an arbitrary set in a topological vector space Y. To each
x € X, let a closed set F(x) in Y be given such that the following two conditions are
satisfied:

() The convex hull of any finite subset {x1, X2, . .. , Xn} of X is contained in U_, F (x;) ;
(i1) F(x) is compact for at least one x € X.

Then Nyex F(x) # 0.

This is usually known as the KKMF theorem. Fan also obtained the following
geometric or section property of convex sets, which is equivalent to Lemma 3.
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Lemma 4. [61] Let X be a compact convex set in a topological vector space. Let A be
a closed subset of X x X with the following properties:

(i) (x,x)e Aforeveryx € X;
(ii) For any fixed y € X, the set {x € X : (x,y) ¢ A} is convex (or empty).

Then there exists a point yo € X such that X x {yo} C A.

Fan applied Lemma 4 to give a simple proof [61] of the Tychonoff theorem and to prove
two results [62] generalizing the Pontrjagin-Iohvidov—Krein theorem on the existence of
invariant subspaces of certain linear operators. Also, Fan [63] applied his KKMF lemma
to obtain an intersection theorem (concerning sets with convex sections) which implies
the Sion minimax theorem [252] and the Tychonoff theorem [263]. The main results of
Fan [63] were extended by Ma [154], who obtained a generalization of the Nash theorem
for the infinite case.

On the other hand, Debrunner and Flor [48] proved an extension theorem of monotone
sets. This generalized earlier works of Minty [167] and Griinbaum [91] have interesting
applications to nonlinear elliptic boundary value problems. Since then, the fixed point
theory of multimaps have become closely related to the study of monotone operators
(see [33,34,275)).

Moreover, “a theorem concerning sets with convex sections” was applied to prove the
following results in [64]:

e an intersection theorem (which generalizes the von Neumann lemma [266]);

e an analytic formulation (which generalizes the equilibrium theorem of Nash [171]
and the minimax theorem of Sion [252]);

a theorem on systems of convex inequalities of Fan [59];

extremum problems for matrices;

a theorem of Hardy-Littlewood—Pélya concerning doubly stochastic matrices;

a fixed point theorem generalizing the results of Iohvidov [119] and Tychonoff [263];
extensions of monotone sets;

invariant vector subspaces;

an analog of Helly’s intersection theorem for convex sets.

In the same year, Hartman and Stampacchia [100] introduced the following variational
inequality:

Lemma 5. [100] Let K be a compact convex subset in R" and f : K — R" a
continuous map. Then there exists ug € K such that

(f(uo),v—up) =0 for vek,

where (-, -) denotes the scalar product in R".

Using this result, the Hartman and Stampacchia [100] obtained existence and
uniqueness theorems for (weak) uniformly Lipschitz continuous solutions of Dirichlet
boundary value problems associated with certain nonlinear elliptic differential functional
equations. Later, Lemma 5 is known to be equivalent to the Brouwer theorem.

Lemma 5 was extended by Browder [32] while trying to extend the theorems of
Schauder and Tychonoff motivated by Halpern’s work [97] on fixed point theorems for
outward maps:
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Theorem 19. [32] Let E be a locally convex topological vector space, K a compact
convex subset of E,andT a continuous mapping of K into E*. Then there exists an
element ug of K such that y

(T (uo),u —ug) 20

foralluin K.

Here, E* is the topological dual of E and (,) denotes the pairing between elements
of E* and elements of E. This theorem was later extended and improved by Park [181]
and many others by pointing out that the local convexity is superfluous.

On the other hand, Browder [33] restated Fan’s geometric lemma [61] in the convenient
form of a fixed point theorem by means of the Brouwer theorem and the partition of unity
argument. Since then, the following is known as the Fan—Browder fixed point theorem:

Theorem 20. [33] Let K be a non-empty compact convex subset of a topological vector
space. Let T be a map of K into 2%, where, for eachx € K, T (x) isa non-empty convex
subset of K. Suppose further that, for eachy in K, T"'(y) = (x e K : y € T(x)} is
open in K. Then there exists xo in K such that xo € T (xg).

Later, this is also known to be equivalent to the Brouwer theorem. Browder [33] applied
his theorem to a systematic treatment of interconnections between multi-valued fixed
point theorems, minimax theorems, variational inequalities, and monotone extension
theorems. This was also applied by Borgin and Keiding [26] and Yannelis and Prabhakar
[271], to the existence of maximal elements in mathematical economics. For further
development of generalizations and applications of the Fan-Browder theorem, we refer
to [181, 191].

Motivated by Browder’s works [32, 33] on fixed point theorems, Fan in 1969 deduced
the following from his geometric lemma:

Theorem 21. [65] Let X be a non-empty compact convex set in a normed vector space
E. For any continuous map f : X — E, there exists a point yg € X such that

lyo — f(yo)ll = minjlx — f(yo)|.
xeX

(In particular, if f(X) C X, then yq is a fixed point of f.)

Fan [65] also obtained a generalization of this theorem to locally convex Hausdorff
topological vector spaces. These are known as best approximation theorems and are
applied to obtain generalizations of the Brouwer theorem and some non-separation
theorems on upper demicontinuous (u.d.c.) multimaps.

Moreover, Fan established a minimax inequality from the KKMF theorem:

Theorem 22. [66] Let X be a compact convex set in a Hausdorff topological vector
space. Let f be a real function defined on X x X such that

(a) Foreach fixed x € X, f(x,y) is a lower semicontinuous function of y on X.
(b) For each fixed y € X, f(x,y) is a quasi-concave function of x on X. Then the
minimax inequality
minsup f(x, y) < sup f(x, x)
yeXxex xeX

holds.
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Fan gave applications of his inequality as follows:

e a variational inequality (extending [32, 64]);
e a geometric formulation of the inequality (equivalent to the Fan-Browder theorem);

e separation properties of upper demicontinuous multimaps, coincidence, and fixed
point theorems;

o properties of sets with convex sections [64];
¢ afundamental existence theorem in potential theory;

Furthermore, Fan [67,68] introduced a KKM theorem with a coercivity (or com-
pactness) condition for non-compact convex sets and, from this, extended many known
results to non-compact cases. We list some main results as follows:

generalizations of the KKM theorem for non-compact cases;

geometric formulations;

fixed point and coincidence theorems;

generalized minimax inequality (extending Allen’s variational inequality [2]);
a matching theorem for open (closed) covers of convex sets;

the 1978 model of the Sperner lemma;

another matching theorem for closed covers of convex sets;

a generalization of Shapley’s KKM theorem [239];

results on sets with convex sections;

a new proof of the Brouwer theorem.

While closing a sequence of lectures delivered at the NATO-ASI, Montreal, 1983, Fan
listed various fields in mathematics which have applications of KKM maps, as follows:

potential theory;

Pontrjagin spaces or Bochner spaces in inner product spaces;
operator ideals;

weak compactness of subsets of locally convex topological vector spaces;
function algebras;

harmonic analysis;

variational inequalities;

free boundary value problems;

convex analysis;

mathematical economics;

game theory;

mathematical statistics.

We may add the following fields to this list: nonlinear functional analysis, approxi-
mation theory, optimization theory, fixed point theory, and others.

In the 1980s, many recognized the following open-valued version of the KKM
theorem:

Theorem 23. Let D be the set of vertices of A, and G : D —o A, a KKM map (that is,
co A C G(A) for each subset A of D) with open values. Then (\,.p G(a) # 0.
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This is a simple consequence of the KKM theorem in view of Theorem 4 in [241],
which shows the existence of a closed-valued KKM map F : D —o A, such that
Fx C Gx for all x € D. It is later known to be equivalent to the KKM theorem itself.
(For the history of generalizations and applications of the above open-valued version of
the KKM theorem, see [190, 205]).

9. Intersection Theorems and Equilibrium Problems

Intersection theorems concern those conditions under which members of a certain subset
of a cover of a given set have a non-empty intersection. Such intersection theorems
on the standard simplex or other convex sets were given by the covering property of
Sperner [254], the KKM theorem [133], the KKMF theorem due to Fan [61], Scarf’s
theorem [228], the KKMS theorem due to Shapley [239], Gale’s theorem [79], Ichiishi’s
theorem [116], the intersection theorems of Horvath and Lassonde [111], and others.
These theorems are applied to the existence of solutions of mathematical programming
problems, to economic equilibrium theory, and to game theoretic problems.

The KKMS theorem is a very useful tool to show that the core of any balanced,
non-transferable utility game is non-empty, a result first shown in [229] by means of
a constructive method being related to the methods introduced in [228, 230]. In fact,
Shapley [239] extended the KKM theorem on closed covers of a simplex to the case
of more general closed covers of a simplex incorporating the notion of balancedness,
and obtained a theorem now called the KKMS theorem. Shapley proved the theorem
constructively using an analogous generalization of the Sperner lemma [254].

Let N ={1,...,n}and N the family of all non-empty subsets of N.Let {¢' : i € N}
be the standard basis of R”, that is, e’ is an n-vector whose ith coordinate is 1 and 0
otherwise. Let A be the simplex cofe! :i € N}Yand, foran S € N, let AS be the face of
A spanned by {¢’ : i € S}, thatis, AS = co{e’ : i € §). A subfamily B of A is said to
be balanced if there are non-negative weights A5, S € B, such that } ¢ s A%eS = &V,
where e® denotes the n-vector whose ith coordinate is 1 if i € S and 0 otherwise. It is
easily seen that B3 is balanced if and only if m" € co{m® : S € B}, where m® denotes
the center of gravity of the face AS, thatis, m% = 3", ¢ e'/|S|.

Theorem 24. [239] Let {Cs : S € N} be a family of closed subsets of A such that, for

eachT € N,
AT ¢ U Cs.
ScT

Then there is a balanced family B such that

[ Cs #9.

SeB

Since Scarf’s core theorem was very important in mathematical economics and since
Shapley’s proof of the KKMS theorem was rather complicated, several authors explored
the logical connection between Scarf’s theorem and fixed point theory, either by proving
the KKMS theorem from a standard fixed point theorem or by proceeding directly to
Scarf’s theorem via a different route. Kannai [128] showed that Scarf’s theorem [228] is
equivalent to the Brouwer theorem. Todd [260] applied the Kakutani theorem [125] to
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prove a special case of the KKMS theorem, which is sufficient to prove the core theorem.
An easy non-constructive proof of the KKMS theorem due to Ichiishi [113] was based on
a coincidence theorem of Fan [65]. Keiding and Thorlund—Peterson [130] proved the core
theorem through the KKM theorem. Also, Ichiishi [141] initiated a cooperative extension
of the non-cooperative game and, more systematically, in particular, his theorem [117]
includes as special cases the Nash equilibrium theorem in non-cooperative game theory
and Scarf’s core theorem in cooperative game theory. Moreover, Ichiishi [116] obtained
a dual version of the KKMS theorem using Fan’s coincidence theorem, and then applied
it to the core theorem.

Shapley and Vohra [240] gave proofs of both Scarf’s core theorem and the KKMS
theorem involving either Kakutani’s fixed point theorem or Fan’s coincidence theorem.
Komiya [134] gave a proof of the KKMS theorem based on the Kakutani theorem,
the separating hyperplane theorem, and the Berge maximum theorem. Krasa and
Yannelis [135] gave a proof of the KKMS theorem by means of the Brouwer theorem,
the separating hyperplane theorem, and a continuous selection theorem. Zhou [276]
considered intersection theorems close to the Ichiishi theorem and the KKMS theorem.
Finally, Herings [101] gave a very elementary and simple proof of the KKMS theorem
using only the Brouwer theorem and some elementary calculus. This shows that the
KKMS theorem and the Brouwer theorem should be regarded as “equivalent” since it is
elementary to prove the Brouwer theorem using the KKMS theorem.

By an equilibrium problem, Blum and Oettli [23] understood the problem of finding
X € X such that f(x,y) <Oforally € X, (EP)

where X is a given set and f : X x X — Ris a given function.
We consider more general problems as follows:
A quasi-equilibrium problem is to find

i € X such that £ € S(x) and f(X,z) <Oforall z € S(x), (QEP)

where X and f are as above and S : X —o X is a given multimap.
A generalized quasi-equilibrium problem is to find

% € X and § € T(%) such that £ € S(%) and f(%, §,z) < Oforall z € S(),
(GQEP)
where X and S are the same as above, Y is another given set, T : X —o Y is another
multimap, and f : X x ¥ x X — Riis a given function.

These problems contain as special cases, for instance, optimization problems, prob-
lems of the Nash-type equilibrium, complementarity problems, fixed point problems,
variational inequalities, minimax theorems, and many others. There are many variations
or generalizations of these problems (see [152,177] and references therein).

It should be emphasized that the main tools of various equilibrium problems are
intersection theorems, fixed point theorems, and their equivalent formulations. Recently,
each field of study of equilibrium problems becomes very productive with a large number
of literature.
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For example, the von Neumann minimax theorem and its extended versions have been
applied to different branches of mathematics; and even in mathematical analysis, they
have been applied to function algebras and extension theorems for nonlinear operators
and inequalities. Moreover, many authors have contributed elementary proofs of various
minimax theorems (say, set-theoretical or not using any equivalent form of the Brouwer
theorem). Consequently, the literature on the minimax theory is by now extensive (see,
for instance, [250]).

10. Convex-Valued Multimaps: 1960s—-1990s

Since the 1960s, there have been many fixed point theorems generalizing the Brouwer
or Kakutani theorems for single-valued or multi-valued maps defined on convex subsets
of Hausdorff topological vector spaces.

For single-valued continuous maps, Fan [63] showed that Schauder’s conjecture is
valid for a topological vector space E on which its topological dual E* separates
points.

Halpern [97] considered new boundary conditions called outwardness and, later,
inwardness, and obtained fixed point theorems for maps satisfying these conditions.
For a topological vector space, E, a compact convex subset K of E, and a continuous
map f : K — E satisfying certain inwardness or outwardness, generalizations of the
Brouwer theorem were due to Fan [65], Halpern [97], Reich [218], Sehgal and Singh
[237] and others whenever E is locally convex, and to Halpern and Bergman [99],
Kaczynski [122], Roux and Singh [226], Sehgal, Singh, and Whitfield [238] whenever
E* separates points of E. In the sequel, t.v.s. means a Hausdorff topological vector
space.

Kakutani’s convex-valued u.s.c. multimaps are further extended as follows: For a
subset X of at.v.s. E,amap F : X —o E is called

(i) upper demicontinuous (u.d.c.) if, for each x € X and open half-space H in E
containing Fx, there exists an open neighborhood N of x in X such that f(N) C H
(see [65]).

(ii) upper hemicontinuous (u.h.c.) if, for each 4 € E* and for any real «, the set
{x € X : supRe h(Fx) < a}isopenin X (see [41, 144,180]).

(iii) generalized u.h.c. if, foreach p € {Re h : h € E*}, the set {x € X : sup p(Fx) >
p(x)} is compactly closed in X (see [38, 82, 185,188,247, 248]).

For those maps with compact convex domains, the Kakutani theorem was extended by
Browder [32], Fan [65,66], Glebov [82], Halpern [98], Cellina [38], Reich [218,221],
Cornet [41], Lasry—Robert [144], and Simons [247,248] for a locally convex t.v.s. E, and
by Granas—Liu [90], Park [180, 185, 188] and others for a t.v.s. E on which E* separates
points.

In order to assure the existence of a fixed pointof maps f : X > Eor F: X —oE,
we need the following:

(1) Certain continuity of the map like the generalized u.h.c.. The topology of the domain
X is not necessarily the same as the relative topology of X in E.

(2) Certain compactness on X. If X is not compact, then certain compactness or
coercivity condition suffices for the existence of fixed points.
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(3) Certain boundary conditions. Until the mid-1960s, we only had a few such
conditions, for example, that of Altman [4], Rothe [225], or the Leray—Schauder
condition. |

Halpern [97] first introduced the outward and, later, inward sets:

Let E be at.v.s. and X C E. The inward and outward sets of X at x € E, Ix(x) and
Ox(x), are defined as follows:

Ix()=x+ | Jr(x —x), Ox(x)=x+ Jrx —x.

r>0 r<0

Let X be a non-empty convex subset of a vector space E. Following [65], the algebraic
boundary 8g(X) of X in E is the set of all x € X for which there exists y € E such
that x +ry ¢ X forall » > 0. If E is a t.v.s., the topological boundary Bd X = BdgX
is the complement of Intgp X of X. It is known that 6g(X) C Bd X and, in general,
8E(X) #BdX.

Amap F : X —o E is said to be

(1) inwardif Fx N Ix(x) # @ for each x € Bd X,
outward if Fx N Oy (x) # @ for each x € Bd X.

(ii) weakly inward if Fx N Ix(x) # @ foreach x € Bd X,
weakly outward if Fx N Ox(x) # @ for each x € Bd X.

Note that, by replacing Bd X by 8 (X), we can obtain more general boundary conditions.
Forpe{Reh:h e E*}and U,V C E, let

dp,(U,V) =inf{|pu —v)|:u €U, veV}

Further, motivated by the work of [121], we have the following much more general
boundary conditions:

(iii) dp (Fx, Ix (x)) = 0 for each x € g (X),
dy,(Fx, Ox(x)) = 0 for each x € 3g(X).

For this case, the domain X is not compact, and for maps F : X —o E having certain
continuity, boundary conditions, and certain compactness conditions, generalizations of
the Kakutani theorem were obtained by Fan [68], Shih and Tan [242, 243], Jiang [121],
Ding and Tan [50], Park [185, 188], and others.

All of the generalizations of the Brouwer and Kakutani theorems mentioned above
were unified by Park [202] as follows:

A convex space X is a non-empty convex set with any topology that induces the
Euclidean topology on the convex hulls of its finite subsets. A non-empty subset L of a
convex space X is called a c-compact set if, for each finite set S C X, there is a compact
convex set Ls C X such that L U S C Lg (see [145]).

Let cc(E) denote the set of non-empty closed convex subsets of a t.v.s. E and kc(E)
the set of non-empty compact convex subsets of E.

The following is given in [202]:
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Theorem 25. Let X be a convex space, L a c-compact subset of X, K a non-empty
compact subset of X, E at.v.s. containing X as a subset, and F a generalized u.h.c. map
satisfying either ’

(A) E* separates points of E and F : X — kc(E); or
(B) E is locally convex and F : X — cc(E).

() Suppose that, for each p € {Re h : h € E*};
(1) plx is continuous on X,
(2) dy(Fx, I.(x)) =0foreveryx € X \ K; and
(3) dp(Fx,Ix(x)) = 0foreveryx € K NSg(X).

Then there exists an x € X such that x € Fx.

(II) Suppose that, for each p € {Re h : h € E*},
(1) plx is continuous on X
(2Y dp(Fx, O (x)) =0foreveryx € X\ K; and
(3) dp(Fx, Ox(x)) =0 foreveryx € K N8g(X).

Then there exists an x € X such that x € Fx. Further, if F is u.h.c., then F(X) D X.

The major particular forms of Theorem 25 can be adequately summarized by Table 1
which is an enlarged version of those in [180, 185].

In the table, class I stands for that of Euclidean spaces, II for normed vector spaces,
III for locally convex Hausdorff topological vector spaces, and IV for topological vector
spaces having sufficiently many linear functionals. Moreover, f stands for single-valued
maps, F for set-valued maps, K for a non-empty compact convex subset of a space E,
and X for a non-empty convex subset of E satisfying certain coercivity conditions with
respect to F : X —o E with certain boundary conditions.

In fact, Theorem 25 contains all the fixed point theorems in the diagram.

11. Fixed Point Theorems for Better Admissible Multimaps

It should be noted that the diagram does not contain fixed point theorems for compact
maps and for condensing maps. One of the most well-known theorems generalizing
the second Schauder theorem [234], Hukuhara’s theorem [112], and most results on
f:K — Kand F : K —oK in the diagram was the following due to Himmelberg
[103]:

Theorem 26. [103] Let X be a non-empty convex subset of a locally convex t.v.s. and
F : X —o X a compact u.s.c. map having non-empty closed convex values. Then F has
a fixed point.

This was applied to give generalizations of the von Neumann intersection lemma and
the minimax theorem, and to various equilibrium problems by others.

The above theorem was extended to non-locally convex t.v.s. by Idzik [118], and to
non-convex valued maps by Ben-El-Mechaiekh and Deguire [15, 16], Park [186, 187],
and others.

For non-convex-valued multimaps, the author recently established the fixed point
theory for “admissible” maps in very general classes of multimaps as follows:
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Table 1.
E fiK—>K F:K-<K
I Brouwer 1912 - Kakutani 1941
IT Schauder 1927, 1930 Bohnenblust and Karlin 1950
I Tychonoff 1935 Fan 1952
Glicksberg 1952
1AY Fan 1964 Granas and Liu 1986
I f:K—E F:K-oE
1 Knaster, Kuratowski
and Mazurkiewicz 1929
I Rothe 1937
Halpern 1965 Browder 1968
Fan 1969 Fan 1969, 1972
Reich 1972 Glebov 1969
Sehgal and Singh 1983 Halpern 1970
I Cellina 1970
Reich 1972, 1978
Cornet 1975
Lasry and Robert 1975
Simons 1986
v Halpern and Bergman 1968 Granas and Liu 1986
Kaczynski 1983 Park 1988, 1991
Roux and Singh 1989
Sehgal, Singh,
and Whitfield 1990
F:X-oFE
I Ding and Tan 1992
m Fan 1984
Shih and Tan 1987, 1988
Jiang 1988
v Park 1992, 1993

In at.v.s. E, any convex hulls of its finite subsets will be called polytopes.

Given a class X of maps, X(X, Y) denotes the set of maps F : X —oY belonging to
X, and X, the set of finite compositions of maps in X.

A class A of maps is defined by the following properties:

(i) A contains the class C of (single-valued) continuous functions;

(ii) each F € A, is u.s.c. and non-empty compact-valued; and

(iii) for any polytope P, F € A.(P, P) has a fixed point, where the intermediate spaces
are suitably chose

Examples of A are C, the Kakutani maps K (with convex values and codomains
are convex spaces), the Aronszajn maps M (with R; values), the acyclic maps V (with
acyclic values), the Powers maps V.. (finite compositions of acyclic maps), the O’Neill
maps N (continuous with values consisting of one or m acyclic components, where m is
fixed), the approachable maps A (whose domains and codomains are uniform spaces),
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admissible maps in the sense of Gémiewicz [84], o-selectionable maps of Haddad and
Lasry [94], permissible maps of Dzedzej [54], and many others.
We introduce two more classes: V

(1) F e A°(X,Y) < for any o-compact subset K of X, there is an F e A(K,Y)
such that Fx C Fx foreachx € K.

(2) F € AY(X,Y) & for any compact subset K of X, there is an F € A.(K,Y) such
that Fx C Fx foreach x € K.

Note that A c A. C A7 C AY. Any class belonging to A is called
admissible. These classes are all due to the author in his earlier works. Examples of
AZ are K¢ due to Lassonde [147], VI due to Park, Singh, and Watson [207] and
others. Note that KJ contains classes K, the Fan-Browder-type maps, T in [147],
approximable maps of Ben-El-Mechaiekh and Idzik [20], and many others. (For details,
see [188,189, 191, 199,203]).

Motivated by the admissible class, for a convex space X and a topological space Y,
Chang and Yen [39] defined the class of maps T : X —o Y having the KKM property as
follows:

(3) T € KKM(X,Y) & the family {Sx : x € X} has the finite intersection property
whenever § : X —o Y has closed values and T (coN) C S(N) for each finite subset
Nof X.

For a convex space X, it was noted that AX(X,Y) C KKM(X,Y) [191].
In order to improve the admissible class, Park [198] introduced the better admissible
class B as follows:

(4) FeB(X,Y) % F: X —oY is amap such that, for any polytope P in X and any
continuous map f : F(P) — P, f(F|p): P —o P has a fixed point.

(5) FeB°(X,Y) & F: X —Y is amap such that, for any o-compact convex subset
K of X, thereisaclosedmap I € B(K, Y) suchthat I'(x) C F(x) foreachx € K.

(6) FeB“(X,Y) < F:X—oY is amap such that, for any compact convex subset K
of X, there is a closed map I' € B(K, Y) such that I'(x) C F(x) foreachx € K.

It is noted that, in the class of closed compact maps, two subclasses 3 and KKM
coincide (see [198]). These classes of multimaps were used to generalize the KKM
theory and the fixed point theory.

A non-empty subset X of at.v.s. E is said to be admissible (in the sense of Klee [132])
provided that, for every compact subset K of X and every neighborhood V of the origin
0 of E, there exists a continuous map 4 : K — X suchthat x — A(x) € V forallx € K
and 7 (K) is contained in a finite-dimensional subspace L of E.

Note that every non-empty convex subset of a locally convex t.v.s. is admissible
(see [112,169]). Other examples of admissible t.v.s. are [?, L?, the Hardy spaces H”
for 0 < p < 1, the space S(0, 1) of equivalence classes of measurable functions on
[0, 1], certain Orlicz spaces, ultrabarrelled t.v.s. admitting Schauder basis, and others.
Moreover, any locally convex subset of an F-normable t.v.s. is admissible, and every
compact convex locally convex subset of a t.v.s. is admissible, Note that an example
of a non-admissible, non-convex compact subset of the Hilbert space /2 is known. (For
details, see [95, 132,268,269] and references therein.)

Theorem 27. Let X be an admissible convex subset of a t.v.s.



210 Sehie Park

(1) IfF € B“(X, X) is compact, then F has a fixed point;
2) If F € B(X, X) is closed and compact, then F has a fixed point.

This is recently due to Park [196, 197] and subsumes more than 60 particular
forms including Ben-El-Mechaiekh et al. [13-15, 17-19], Bohnenblust and Karlin [25],
Himmelberg [103], Hukuhara [112], Lassonde [145, 146], Mazur [163], Park et al. [186,
193, 195, 207], Powers [215], Rhee [223], Schauder [234], Simons [249], and Singbal
[251].

There is another way of extending compact maps in certain situations using
(generalizations of ) the Kuratowski or other measures of non-compactness. This study
was initiated by Darbo [44] (see the end of Sec. 5). In this direction we also have a very
general theorem.

Let X be a closed convex subset of a t.v.s. E and C a lattice with a least element,
which is denoted by 0. A function & : 2¥ — C is called a measure of non-compactness
on X provided that the following conditions hold for any A, B € 2

(1) ®(A) = 0if and only if A is relatively compact;
(2) ®(co A) = ®(A), where co denotes the convex closure of A; and
(3) ®(AU B) = max{®(A), (B)}.

The above notion is a generalization of the set-measure y and the ball-measure x
of non-compactness defined either in terms of a family of seminorms or a norm. (For
details, see [209,210].)

Given a measure ® of non-compactnesson E and X C E,amap 7 : X —o E is called
®-condensing provided that, if A C X and ®(A) < ®(T(A)), then A is relatively
compact, that is, ®(A) = 0.

Note that each map defined on a compact set or each compact map is ®-condensing.
Especially, if E is locally convex, then a compact map T : X —o E is y- or x-condensing
whenever X is complete or E is quasi-complete.

The following is due to Park [196, 199]:

Theorem 28. Let X be a closed convex subset of a locally convex t.v.s. E. Then any
d-condensing map F € B*(X, X) has a fixed point.

This theorem extends earlier results of Dane§ [42], Darbo [44], Ewert [56], Furi and
Vignoli [76], Himmelberg, Porter, and Van Vleck [104], LifSic and Sadovskii [150],
Nussbaum [178], Petryshyn and Fitzpatrick [209, 210], Reich [217-219], Sadovskii
[227], Su and Sehgal [256], and Tarafdar and Vyborny [259].

Let C, D be subsets of a t.vs.E, T € A.(C, D), and M the class of non-empty
compact subsets of D consisting of the functional values of maps in .A. We say that T
satisfies the Schoneberg condition if

tM e Mfort €[0,1]and M e M (So)

holds (see [235]). For example, M can be the class of convex sets for A = K, acyclic sets
for A =V, Rssets {X = NX; : X;4+1 C X;, X; € ARcompact,i € N} for A =M,
and others.

For U C D, let ClpU denote the closure of U in D and BdpU the boundary of U
in D. On the other hand, — and Bd will denote the closure and boundary in the whole
space E.
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Now, we give some fixed point theorems due to [197] for compact maps satisfying
the so-called Leray—Schauder condition:

Theorem 29. Let D be a convex subset of a locally convex tv.s., 0 € D,U C D a
neighborhood of 0 (in D), and F € A.(ClpU, D) a compact map satisfying (S6). If

FynNn{ry:r>1}=40@ forall y e Bd U, LS)

then the set of fixed points of F in ClpU is non-empty and compact.

This improves, unifies, and extends the results of Altman [4], Brouwer [29], Eilenberg
and Montgomery [55], Furi and Martelli [75], Gérniewicz, Granas, and Kryszewski [85],
Granas [89], Hahn [96], Kaczynski and Wu [123], Kaniel [127], Knaster, Kuratowski,
and Mazurkiewicz [133], Krasnoselskii [136], Leray and Schauder [149], Ma [155],
Martelli [158], Petryshyn and Fitzpatrick [209], Potter [214], Powers [215], Reich [218,
220, 222], Rothe [225], Shinbrot [244], Su and Sehgal [256], and Yamamuro [270].

For ®-condensing maps, we have the following in [197]:

Theorem 30. Let D be a closed convex subset of at.v.s. E onwhich E* separates points,
0 € D,U C D a neighborhood of O (in D), and F € A.(ClpU, D) a P-condensing
map satisfying (S6). If the condition (LS) holds, then the set of fixed points of F in ClpU
is non-empty and compact.

This includes the results of Fitzpatrick and Petryshyn [70], Gatica and Kirk [80, 81],
Lin [151], Martelli [158, 159], Petryshyn [208], Petryshyn and Fitzpatrick [209, 210],
Reich [217, 220, 222], Su and Sehgal [256], and many others.

These Leray—Schauder-type theorems due to [197] are applied to

(i) the so-called Leray—Schauder principles of Browder [31], Leray and Schauder [149],
Petryshyn and Fitzpatrick [209], Potter [214], and Schéneberg [235];

(ii) the Schaefer-type theorems due to Gérniewicz, Granas, and Kryszewski [85], Granas
[89], Martelli [159], Martelli and Vignoli [160], Reich [217, 218], Schaefer [231,
232], and Seda [236]; and

(iii) the Birkhoff—Kellogg-type theorems due to Birkhoff and Kellogg [22], Fournier and
Martelli [72], Martelli [159], and Yamamuro [270].

12. Generalized Convex Spaces

In the last decade, there have also been advances in the KKM theory. Recently, Park
[190, 191] obtained far-reaching generalizations of the KKM theorem, the Fan—Browder
theorem, a matching theorem, an analytic alternative, the Ky Fan minimax inequalities,
section properties of convex spaces, and other fundamental theorems in the theory from
coincidence theorems on compositions of admissible maps. These new results extend,
improve, and unify main theorems in more than 100 published works.

On the other hand, the concept of convex sets in a t.v.s. was extended to convex
spaces by Lassonde [145], and further to C-spaces by Horvath [106—110]. Other authors
also extended the concept of convexity for various purposes. Recently, Park and Kim
[203,205,206] unified these concepts and introduced generalized convex spaces or
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G-convex spaces. For these spaces, the foundations of the KKM theory with respect
to admissible maps were established by Park and Kim [205], and some general fixed
point theorems were obtained by Kim [131] and Park [201].

A generalized convex space or a G-convex space (X, D; I") consists of a topological
space X, a non-empty set D, and a map I" : (D) —o X such that, for each A € (D) with
the cardinality [A| = n + 1, there exists a continuous function ®4 : A, — I'(A) such
that J € (A) implies ®4(A ;) C I'(J). Note that ® 4|4, can be regarded as & .

Here, (D) denotes the set of all non-empty finite subsets of D, A, = cofe;}!_,
the standard n-simplex, and A; the face of A, corresponding to J € (A), that is, if
A={ag,ay,...,a,yand J = {a;, a;,, ... ,a;,} C A, then A; =cofej, e, ..., €}
We may write I'y = I'(A) for each A € (D) and (X, TI") = (X, X; I'). (For details on
G-convex.spaces, see [204—206], where basic theory was extensively developed.)

There are many examples of G-convex spaces.

Example 1. If X = D is a convex subset of a vector space and each I'4 is the convex
hull of A € (X) equipped with the Euclidean topology, then (X, I') becomes a convex
space due to Lassonde [14]. Note that any convex subset of a topological vector space
is a convex space, but not conversely.

Example 2. If X = D and I 4 is assumed to be contractible or, more generally, infinitely
connected (that is, n-connected foralln > 0) and if, foreach A, B € (X), A C B implies
I'y C I'p, then (X, I') becomes a C-space (or an H-space) due to Horvath [110].

Example 3. Other major examples of G-convex spaces are metric spaces with Michael’s
convex structure, Pasicki’s S-contractible spaces, Horvath’s pseudoconvex spaces,
Komiya’s convex spaces, Bielawski’s simplicial convexities, Joo’s pseudoconvex spaces,
and so on (see [203,204]). Recently, we found a number of new examples of G-convex
spaces (see [200]). In particular, any continuous image of a G-convex space is a G-convex
space, and any almost convex subset of a t.v.s. (see [103]) is a G-convex space.

For a G-convex space (X, D;I"), amap F : D —o X is called a G-KKM map if
I'v C F(N) for each N € (D). Now, the KKM theory is extended to the study of
G-KKM maps on G-convex spaces. The following is basic in this theory:

Theorem 30. Let (X, D; ") be a G-convex space, Y a Hausdor{f space, S : D —oY,
T:X —oY maps, and F € AX(X,Y). Suppose

(1) foreach x € D, Sx is compactly openin Y,
(2) foreachy € F(X), M € (S y) impliesTyy C T y;
(3) there exists a non-empty compact subset K of Y such that F(X) N K C S(D); and
4) either
i) Y\ K C S(M) for some M € {D); or
(ii) for each N € (D), there exists a compact G-convex subset Ly of X containing
N such that F(Ly) \ K C S(Ly N D).

Then there exists an X € X such that Fx N Tx # @.

This was due to Park and Kim [204, 205], which was reformulated to more than a
dozen foundational results in the KKM theory. The class A in the above theorem can
be replaced by the extended class B for G-convex spaces.
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Finally, some fixed point theorems for the possible extended class B on G-convex
spaces have appeared (see, for example, [201]).
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