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Abstract. This historical article surveys the development of areas of mathematics directly related to
the nearly ninety-year-old Brouwer fixed point theorem. We are mainly concerned with equivalent
formulations and generalizations of the theorem. Also, we deal with the KKM theory and various
equilibrium problems closely related to the Brouwer theorem.

1. Introduction

The Brouwer fixed point theorem is one of the most well known and important existence
principles in mathematics. Since the theorem and its many equivalent formulations or
extensions are powerful tools in showing the existence of solutions for many problems in
pure and applied mathematics, many scholars have been studying its further extensions
and applications. The purpose of this article is to survey the development of areas
of mathematics directly related to the nearly ninety-year-old theorem. We are mainly
concerned with equivalent formulations and generulizations of the theorem. Moreover,
we deal with the Knaster-Kuratowski-Mazurkiewicz Theory (KKM theory for shon)
and various equilibrium problems closely related to the Brouwer theorem.

Generalizations of the Brouwer theorem have appeared in relation to the theory
of topological vector spaces in mathematrcal analysis. The compactness, convexity,
single-valuedness, continuity, self-mapness, and finite dimensionality related to the
Brouwer theorem are all extended and, moreover, for the case of infinite dimension, it is
known that the domain and range of the map may have different topologies. This is why
the Brouwer theorem has so many generalizations. Current study of its generalizations
concentrates on a more general class of compact or condensing multimaps defined on
convex subsets of more general topological vector spaces.

*Partially supported by the SNU-Daewoo Research Fund in 1999.
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Along with these developments, a large number of equivalent formulations of the
Brouwer fixed point theorem have been found. One of the earliest was a theorem of
Knaster, Kuratowski, andMazurkiewicz, which initiated the sci-called KKM theory. At
first, the basic theorems in the KKM theory were established for convex subsets of
topological vector spaces, and later, for various generalized abstract convexities. These
basic theorems have many applications to various equilibrium problems.

Other directions of the generalizations in topology are studies of spaces having the
fixed point property, various degree or index theories, the Lefschetz fixed point theory
the Nielsen fixed point theory and the fixed point theorems in the Atiyah-singer index
theory which generalizes the Lefschetz theory. However, we will not follow these lines
of study.

In closing our introduction, we quote an excellent expression on the current status of
the fixed point theory as follows:

"Fixed points and fixed point theorems have always been a major theoretical tool
in fields as widely apaurt as differential equations, topology, economics, game theory,
dynamics, optimal control, and functional analysis. Moreover, more or less recently, the
usefulness of the concept for applications increased enonnously by the development of
accurate and efncient techniques for computing fixed points, making fixed point methods
a major weapon in the arsenal of the applied mathematician."

M. Hazewinkel,
Editor's Preface to [120].

2. Works of Poincar6 and Bohl

The Bolzano intermediate value theorem in 1817 was generahzedby Poincar6l2lI,2I2)
in order to apply to the three body problem as follows:

k t€ t ,€2 , . . . ,€nbencont inuous func t ionsofnvar iab lesx t ,xz , . . . , xn i thevar iab le
xi is subjected to vary between the limits *ai and -a;. Suppose that for x; : ai, fi is
constantly positive, andfor xi : -ai, $i is constantly negative; I say that there will exist
a system of values of x for which all the f 

's vanish.

For the proof, he referred to a theorem of Kronecker in a paper on functions of several
variables. This paper was known to initiate the theory of the topological degree of maps
(see Browder [34] and references therein). Later, Poincar6 t2I3l published the argument
on the continuation invariance of the index which is the basis for the proof of the above
theorem.

Poincar6's theorem is nowadays called the Bolzano-Poincar6-Miranda theorem
because it was proved by Miranda [168], who also showed that it was equivalent to the
Brouwer fixed point theorem. It should be noted that Kanielll2Tl misquoted Poincar6's
theorem and a number of authors followed (see [194]).

The second forerunner of the Brouwer theorem was given by Bohl f24, p.1851 as
follows:

Let a domain (G) -ai < xi . ai Q : 1,2, ... ,n) be given. In this domain, let
ft, fz, ... , fn be continuous functions of x which do not have a common zero. Then
there is a point (ur, u2, . . . , un) in the boundary of G such that
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f i ( u t , u 2 , . . . , i l n )  :  N  . u i ,  N  <  0  ( i  :  \ , 2 , . . . , n ) .

The following theorem can be regarded as contained in this theorem:

There do not exist n continuous functions F1, F2, . . . , Fr, defined on the domain (G)
-dr  l  x r  1a i  ( i  -  1 ,2 , . . .  ,n ) ,wh ichhavenocommonzero  andwhich fu l f i l l fo r the
points of the boundary of (G)

F i : x i  ( i  - 1 , 2 , " ' , n ) '

Hence, Bohl proved for the first time that the boundary of a cube is not aretractof the
solid cube, which is equivalent to the Brouwer theorem.

For Bohl's work, Bing [21] wrote:

"The result is frequently called the Brouwer Fixed Point Theorem although the work
of Brouwer [8] was probably preceded by that of Bohl t4l. . . . In proving the theorem,
Bohl considered differentiable maps and used Green's Theorem to show that equivalent
integrals did not match if the n-cell had a fixed point free map into itself."

The following is called the non-retract theorem:

Theorem 1. For n > 1, Sn-1 is not a retract of 8".

Smart 12531wrote:

"Bohl l24lproved a result equivalent to the non-retraction theorem but apparently did
not go on to obtain the Brouwer theorem."

On the other hand, Dugundji and Granas [52] claimed that the non-retract theorem
was due to Borsuk and the following to Bohl:

Theorem 2. Every continuous F : 3n*1 * pn*l has at least one of the fottowing
properties:

(a) F has afixedpoint;
(b )  there isanx  eSn suchtha tx : ) "Fx forsome 0  < ,1 .  <  1 .

This follows from Bohl's first theorem: If f : I - F is continuous and fails to have
a fixed point, then Bohl's conclusion implies (b).

Note that the concept of retraction is dle to Borsuk l27l and that the negation of
condition (b) is the so-called Leray-Schauder boundary condition.

3. The Brouwer Fixed Point Theorem

In 1910, the Brouwer theorem appeared.

Theorem 3. l29l A continuous map from an n-simplex to itself has a fixed point.

It is clear that, in this theorem, the n -simplex can be replaced by the unit ball Bn or
any compact convex subset of Rn. This theorem appeared as Satz 4 in [291. At the end
of this paper, it is noted that'Amsterdam, July 1910" by Brouwer himself.

189
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Some authors were confused with the theorem that appeared in [28]. According to
Bing [21], "even before Brouwer's paper l29l appeated, reference had been made to

the Brouwer Fixed Point Theorem." (See Hadamard's reference in [258, p. 472].) ln

fact, Hadamard gave a proof of the Brouwer theorem using the Kronecker indices in the

appendix of Tannaery t2581.
According to Freudenrhal]4l (where [29] is listed as "1911D"), Hadamard knew the

Brouwer theorem (without proof ) from a letter of Brouwer (dated January 4, I9IO).

Brouwer l29l gaveaproof of his theoremusing the simplicial approximation technique

and notions of degree. According to Bing agun, Brouwer himself proved the theorem
by showing that homotopic maps of an (n - l)-sphere onto itself have the same degree
(or rotation of vector fields), hence, there is no retraction of an n-cell onto its boundary.
Hence, each map of an n-cellinto itself is not fixed point free. (For further comments on

Brouwer's works on fixed point, see [49], and on degree theory see 1245,2461.
Alexander [1] proved a theorem of Brouwer [28] using the index of a map and applied

it to obtain the Brouwer fixed point theorem. Birkhoff and Kellogg l22l also gave a
proof of the theorem of Brouwer by using classical methods in calculus and determinant

theory. The same line of proof of the Brouwer theorem can be found in Dunford and

Schwartz [53].
Knaster, Kuratowski, and Mazurkiewicz |l33l gave a proof of the Brouwer theorem

using combinatorial techniques. They used the Sperner lemma t2541and showed that

the non-retract theorem holds.

Latel there appeared proofs using algebraic topology, various degree theories, or
differential forms. Hirsch t1051 gave a proof of the non-retract theorem using the method

of geometric topology, and Milnor [166] gave an analytic proof. There were also many

other proofs of the Brouwer theorem, and a simple proof using advanced calculus was
given by Rogers 12241and others.

Recently, there have been very interesting proofs of the Brouwer theorem. Kulpa

U42l deduced a generaHzation of the Brouwer theorem from the Fubini theorem

and the Weierstrass approximation theorem, and applied it to give a simple proof'

of the fundamental theorem of algebra. More recently, Su [257] gave a completely
elementary proof that the Borsuk-Ulam theorem implies the Brouwer theorem by a

direct construction.
The Brouwer theorem itself gives no information about the location of fixed points.

However, effective ways have been developed to calculate or approximate the fixed
points. Such techniques are important in various applications including calculation of 

'

economic equilibria. The first such algorithm was the simplicial algorithm proposed by

Scarf 12281and later developed in the so-called homotopy or continuation methods for

calculating zeros of functions. (For details of this topic, see [71, t29,2731and others.)

4. Sperner's Combinatorial Lemma: From 1928

In 1928, Sperner t2541gave the following combinatorial lemma and its applications:

Lemma l. 12541 Let K be a simplicial subdivision of ann-simplex ugur . . . un. To each

vertex of K, let an integer be assigned in such away that, whenever avertex u of K lies

on aface niouit... uir,(O S k 1 n, 0 < is < it < "' < i1.' . n), the number assigned
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to u is one of the integers io, it, . . . , ik. Then the total number of those n-simplexes of

K ,whosever t i cesrece ivea l ln* l in tegers  0 ,  1 , . . . ,n , i sodd.  Inpar t i cu la r there isa t

least one such n-simplex.

Fifty years after the birth of this lemma, at a conference in Southampton, England, in

1979, Sperner himself listed early applications of his lemma as follows:

(1) invariance of dimensionl254l;
(2) invariance of region [254];
(3) theorem of verification (Rechtfertigungssatz) in Menger's theory of dimension

[16s];
(4) Brouwer's fixed point theorem [133];
(5) matrices with elements > 0 [60], theorems on eigenvalues of such matrices by

Perron, Frobenius, and others.

There appeared a number of generalizations of the lemma, which was applied to the

following:

(6) antipodal theorems 158,2611; which include the Lusternik-Schnirelmann theorem

on a cover of the n -sphere S" consistingof n* 1 closed subsets and the Borsuk-Ulam

theorem on a continuous map "f : Su + R';
(7) derivation of the Sperner lemma from the Brouwer fixed point theorem 12721;
(8) constructive proof of the Fundamental Theorem of Algebra [141];
(9) approximation algorithm to approximate Brouwer fixed point 13,t40,228,etc1.

In the later years, Sperner unified his own lemma and its extensions due to Tucker and

Fan [36, 58]. (For the details, see Sperner's articles in [71].)

5. The KKM Theorem: From 1929

In 1928, Knaster, Kuratowski , andMazurkiewicz t1331 obtained the following so-called

KKM theorem from the Sperner lemma P5al:

Theorem 4. lI33l Let Ai (0
popr . . . pn. If the inclusion relation

P r o P i r  " '  P i r  a  A i o U  A h  U  " ' U  A i l ,

hotds for all faces ptopir "' Pir, (0 = k 1 n, 0 < io < lt

flf:o Ai * a.

A special case or dual form of the KKM theorem is already given in [254]. The

KKM theorem follows from the Sperner lemma and is used to obtain one of the most

direct proofs of the Brouwer theorem. Therefore, it was conjectured that these three

theorems are mutually equivalent. This was clarified by Yoseloff 1272\.In fact, these

three theorems are regarded as a sort of mathematical trinity (see diagram below).A11

are extremely important and have many applications.

191
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Brouwer

1974 // \ 1929

Sperner --) KKM
1929

Moreover, many important results in nonlinear functional analysis and other fields are
known to be equivalent to these three theorems. Only less than a dozen of those results
are shown in textbooks such as Aubin [8], Aubin and Ekeland [9], andZeidler 12751and
in surveys such as Gwinner [92] and others. Further, usefulness of these three theorems
can also be seen in [102, Lts,l75,273,etc.f

From the KKM theorem, we can deduce the concept of KKM maps as follows:Let E
be a vector space and D C E.A multimap (set-valued function or map) G : D -o E is
called a KKM map rf

co N C G(N)

holds for each non-empty finite subset N of D.
Granas [88] gave some examples of KKM maps as follows:

(i) Variationalproblems. Let Cbeaconvexsubsetof avectorspace E andQ: C + R
a convex function. Then G : C -o C defined by

is a KKM map.
(11) Best approximation.

o n E , a n d " f  ; C  - >

Gx :  {y e C :  Q0) < Q(x)}  for  x e C

Let C be a convex subset of a vector space E, p a seminorm
E a function. Then G : C -o C defined by

G x : { y e C : p ( f y  - y ) <  p ( f y  - r ) }  f o r x e C

is a KKM map.
(111) Variational inequalities. Let (H, (.,.)) be an innerproduct space, C a convex subset

of H, and f : C --> H afunction. Then G : C -o C definedby

G x  : { y  e C  :  { f y , y  - r )  5 0 }  f o r  x  e C

is a KKM map.

The study of properties of such KKM maps and their applications is appropriately
called the KKM theory (see [187, 191]). In the framework of this theory, various fixed
point theorems and many other consequences are obtained (see Sec. 7). As part of the
development of this theory, there have been many results equivalent to the Brouwer
theorem, especially in nonlinear functional analysis and mathematical economics. For
the classical results, see Granas [88].

Relatively early equivalent forms of the Brouwer theorem are as follows:

r Poincar6's theorem (1883);
r Bohl's non-retract theorem (J904);
o Brouwer's fixed point theorem (1912);
r Sperner's combinatorial lemma (1928);
o Knaster-Kuratowski-Mazurki ewicz theorem (1929);
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. Caccioppoli's fixed point theorem (1930);

. Schauder's fixed point theorem (1930);

. Tychonoff's fixed point theorem (1935);

o von Neumann's intersection'lemma (1937);

o intermediate value theorem of Bolzano-Poincar6-Miranda (1941);

. Kakutani's fixed point theorem Q9al);

. Bohnenblust-Karlin's fixed point theorem (1950);

. Hukuhara's fixed point theorem (1950);

. Fan-Glicksberg's fixed point theorem (1952);

. main theorem of mathematical economics on Walras equilibria of 146,78,1721
(1955);

. Kuhn's cubic Sperner lemma (1960);

. Fan's KKM theorem (1961);

. Fan's geometric or section property of convex sets (1961);

. Fan's theorem on sets with convex sections (1966);

. Hartman-Stampacchia's variational inequality (1966);

. Browder's variational inequality (1967);

. Scarf's intersection theorem (1967);

. Fan-Browder's fixed point theorem (1968);

. Fan's best approximation theorems (1969);

o Fan's minimax inequality (1972);

. Himmelberg's fixed point theorem (1972);

. Shapley's generahzation of the KKM theorem (1973);

. Tuy's generalization1262l of the Walras excess demand theorem (1976);

. Fan's matching theorems 1984.

Many generalizations of those theorems are also known to be equivalent to the Brouwer
theorem. Recently, Horvath and Lassonde 12631obtained intersection theorems of the
KKM-, Klee-, and Helly-type, which are all equivalent to the Brouwer theorem.

6. Early Extensions of the Brouwer Theorem: L920s-1950s

The Brouwer theorem was extended to continuous selfmaps of compact convex subsets
of

(1) C[0, 1] by Caccioppoli [36];
(2) normed spaces by Schauder [233,234]; artd

(3) locally convex topological vector spaces by Tychonotr 12631.
All those results are included in Lefschetz-type fixed point theorems, which are in turn

contained in the Leray-Schauder theory as extended by Browder and others (see [264]).

Note that Birkhoff-Kelloggl22), Schauder 12331, and Tychonoff [263] applied their
results to the existence of solutions of certain differential and integral equations.

There also appeared extensions for maps, which were not selfmaps of compact convex
subsets, as follows:

193
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Theorem 5. t1331 If f : B' + R" is a continuous map such that f maps Sn-l -

BdB" back into B' , then f has a ftxed point.

This was originally stated for a simplex instead of B', and is the origin of the so-called
Rothe boundary condition.

Theorem 6. 12341 If C isaclosedconvexsubsetof aBanachspace,theneverycompact
continuous tnap f : C + C has a fixed point.

This is the second theorem of Schauder 12341, and it is especially convenient in
application. Note that this follows from (z)by using Mazur's result 1162l that the convex
closure of a compact set in a Banach space is compact. It is later recognized that the
closedness of C and the completeness of the space are not necessary. The third Schauder
theorem is:

Theorem 7.12341 If C isaweaklycompactconvexsubsetofaseparableBanachspace,
then every weakly continuous map f : C + C has a fixed point.

This also follows from (z)by considering the weak topology, and was generalized by
Krein and Smulian [138] as follows:

Theorem 8. t1381 Let H be a closed convex subset of a Banach space. If f : H -+ H
is weakly continuous such that f (H) is separable and the weak closure of f (H) is
weakly compact, then f has afixed point.

For Caccioppoli's fixed point theorem [36] and for the role of the separability in the
above two theorems, see [7].

The KKM fixed point theorem was extended by Rothe:

T h e o r e m 9 .  l 2 8 l L e t V b e a c l o s e d b a l l o f  a B a n a c h s p a c e E a n d f  :  V  - - >  E a
compact continuous map such that /(Bd V) C V. Then f has afixed point.

Altman [4] showed that the Rothe condition /(BO V) C V can be replaced by the
following:

l lf x - xl2 > lf , l l2 - l lr l l2 for all x e Bd v.

Note that those conditions arc allparticular to the so-called Leray-Schauder condition.
Applications of theorems of Brouwer 1291, Rothe 12251, Schauder 12341, and

Tychonoff 12631 appeared in many textbooks for the existence of solutions. We list
some of them:

. nonlinear systems of equations;

. systems of inequalities;

. integral equations;
o ordinary differential equations satisfying Lipschitz condition;
o peano's theorem on the existence of solutions of ordinary differential equations;
o alternating current circuits (periodic solutions of systems of ordinary differential

equations);
r elliptic partial differential equations;
. problems in mathematical physics.
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One interesting application of the Brouwer theorem is due to Zeeman 12741, who
described a model of brain.

Lomonosov [153] gave a proof of the existence of invariant subspaces in operator
theory that is, for any completely continuous linear map "f from a Banach space X into
itself, there exists a closed subspace Xs satisfying /(Xs) C Xo and {0} C+ Xo C+ X.
Here, a completely continuous map is a continuous map sending bounded sets into
compact sets. (For further information on this topic, see [40] and references therein.)

Maehara t1561 deduced the Jordan curve theorem from the Brouwer theorem.

On the other hand, Kakutani lL26l showed the existence of a fixed-point-free
continuous selfmap (even for a homeomorphism) of the unit ball in an infinite-
dimensional space. Therefore, the compactness in the above theorems on an finite-
dimensional case cannot be replaced by bounded closedness or by weak compactness.
Moreover, Dugundji t51l showed that anormed vector space is finite-dimensional if and
only if every continuous selfmap of its unit ball has a fixed point.

Tychonoff's theorem was applied to obtain the following by Markov [157]:

Theorem L0. [157, 164] Let K be a compact convex subset of a topological vector
space E. Let F be a commuting family of continuous ffine maps from K into itself.
Thenf hasacommonfixedpoint p e K,thatis, fp - pforeach f e F.

Later, Kakutani ll24l gave a direct proof and several applications.

The Markov-Kakutani theorem was generahzedto larger classes of maps by Day [45]
and others.

Earlier, Schauder asked in Problem 54 of t1611 whether a continuous selfmap of a
compact convex subset of any topological vector space has a fixed point. If the space
is Hausdorff locally convex or admissible in the sense of Klee ll32l, then Schauder's
conjecture holds. For some particular spaces, it also holds. However, the problem is not
resolved yet in its full generality, even when the space is metrizable ll32l. (For this
problem, see [118, 199] and references therein.)

In the mid-1930s, the Leray-Schauder theory lI49l appeared. It assigns a degree to
certain maps and establishes properties of the degree which lead to fixed point and domain
invariance theorems. This was first done for Banach spaces, and was later developed by
Leruy [148], Nagumo [169], Altman [5] and others for locally convex spaces. When
the space is Banach, Granas [86] obtained a homotopy extension theorem, which yields
many useful conclusions of the theory while avoiding the more complicated notions of
the degree. Moreover, Klee ll32l established the theory without local convexity.

On the other hand, Schaefer l23ll showed that the problem of solvability of an
equation x : f x, for a completely continuous map f on a locally convex space E,
reduces to finding a priori bounds of all possible solutions for the family of equations
x : A.f x, I € (0, 1). This fact is called the Leray-Schauder alternative by Granas

[70] and its various extensions and modifications have played a basic role in various
applications to nonlinear problems (see also 1192,2071.

It is often said that the last theorem in Sec. 2 can be obtained in the framework
of Leray and Schauder [149], which seems not to be directly related to the so-called
Leray-Schauder boundary condition. This condition seems to have originated from

[24,232] (see Fishel, MR 50#8177) and has frequently appeared since the 1960s. It
is assumed that it was first called the Leray-Schauder condition by Petryshyn [208].
(For the literature on the theory without using degree theory see [197].)
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Independentof the generalizattons of theBrouwertheorem, Nikodym tlTllandMazur
and Schauder [64] initiated the abstract approach to problems in calculus of variations.
Their result can be stated as follows:

Theorem ll. 1164l Let E be a reflexive Banach space and C a closed convex set in
E. Let Q be a lower semicontinuous convex and coercive (that is, ld(x)l + @ as
llx ll + rc) real function on C. If 0 is bounded from below, then at some xs e C, the

function Q attains its minimum.

This is a very useful generulization of the classical Bolzano-Weierstrass theorem and
was applied to a number of concrete problems in calculus of variations by Mazur and
Schauder. However, these results were never published (see [88]). Later, this theorem
was generalized to the variational inequality problems in the framework of the KKM
theory (see [183, 184]).

In the 1950s, there were remarkable generalizations of the Schauder and Tychonoff
theorems. The following was due to Hukuhara in 1950.

Theorem 12. lll2l Let X be a non-empty convex subset of a locally convex Hausdorff
topological vector space E and f : X --> X a cornpact continuous map. Then f has a
fixed point.

This is called the Schauder-Tychonofffixed point theorem in 152,531. (See also l25ll).
In 1955, Krasnoselskii proved the following theorem which combines the contraction

principle of Banach [10] and the Schauder theorem.

Theorem 13. U37l Izt E be a Banach space, T a bounded closed cotvex subset of E,
and A, B : T + E operators suchthat

(a) AQ + Brlr e T for Q,rlt e T ;
(b) A is completely continuous;
(c) B is a Banach contaction (that is, there exists q < 1 such that llBh - BQzll <

ql lh -  0zl l  for  Qr,  Qz e T ) .

Then there is a Q e T such that AQ i BQ - q.

Note that, when A is the zero operator, this is (particular to) the Banach contraction
principle; when B is zero, this is the second Schauder theorem.

This type of theorem is useful in establishing existence theorems for perturbed operator
equations and other problems. Since then, there have been many generalizations and other
applications (see, for example, [35,37].)

In the same year, Darbo l44l introduced a new type of fixed point theorem for
non-compact maps.

Recall that Kuratowski ll43l defined the measure of non-compactness, u(A), of a
bounded subset A of a metric space (X, d):

a(A) - inf {e > 0 ; A can be covered by a finite number of sets of diameter
less than or equal to e).

Let T : X + X be a continuous map. Darbo calls Z an a-contractionfor any given
bounded set A in X, T (A) is bounded in X and

alT (A))  < ku(A),

where the constant k fulfills the ineoualitv 0 < k < l.
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Theorem t4. l44l If G is a closed bounded convex subset of a Banach space X and
T : G + G is an a-contraction, then T has afixed point.

Note that the class of cy-contractions contains completely continuous maps and
all Banach contractions as well [11]. (For generalizations of Darbo's theorem to
@-condensing maps, see Sec. 11.)

7. Extensions to Multimaps andApplications: 1940s and 1950s

Independent of the above progress, in 1928, von Neumann [265] obtained the following
minimax theorem, which is one of the fundamental theorems in game theory developed
by him.

Theorem 15. 12651 Let f (x,!)beacontinuousreal-valuedfunctiondefinedforx e K
and y e L, where K and L are arbitrary bounded closed convex sets in two Euclidean
spacesR* andR".If,foreveryxo e K andforeveryrealnumberu,thesetof ally € L
such that f (xo, !) < a is convex, and if, for every yo e L and for every real number B,
the set of all x e K such that f (x, yil > F is coFtrvex, then we have

m4I mig f @ ' Y) : min max /(x, Y).
x e K  y e L  "  '  

y e L  x e K

(For the history of earlier proofs of the theorem, see [43, 267].
The theorem was later extended by von Neumann to the following intersection lemma:

Lemma 2, 12661 Let K and L be two compact convex sets in the Euclidean spacesR*
andRn, respectively, and let us consider their Cartesian product K x L inR*+' . Let U
and V be two closed subsets of K x L such that, for a.ny xo e K, the set U*0, of y e L
such that (xo, y) e U, is non-empty, closed, and convex such that, for any yo € L, the
set Vyo, of all x e K such that (x, yo) e V, is non-empty, closed and convex. Under
these assumptions, U and V have a common point.

Von Neumann proved this by using a notion of integral in Euclidean spaces and applied
this to the problems of mathematical economics. We adopted the above formulations of
Theorem and Lemma in ll25l.

According to Debreu [47],

"Ironically that Lemma, which, through Kakutani's Corollary, had a major influence
in particular on economic theory and on the theory of games, was not required to obtain
either one of the results that von Neumann wanted to establish. The Minimax theorem,
as well as his theorem on optimal balanced growth paths, can be proved by elementary
means."

Recall that a multimap F : X -oY, where X and Y arc topological spaces, is upper
semicontinuous (u.s.c.) whenever, for any x € X and any neighborhood U of Fx, there
exists a neighborhood V of x satisfying F(V) C U.

In order to give simple proofs of von Neumann's Lemma and the minimax theorem,
Kakutani obtained the following generalizatron of the Brouwer theorem to multimaps:

r97
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Theorem 16. U25l If x + O(x) is an upper semicontinuous point-to-set mapping of
an r-dimensional closed simplex S into the family of non-empty closed convex subset of
S, then there exists an xo e S such that xs e O(xg).

Equivalently,

Corollary l. ll25l Theorem 16 is also valid even if S is an arbitary bounded closed
colwex set in a Euclidean space.

As Kakutani noted, Corollary I readily implies von Neumann's Lemma, and later
Nikaido U74l noted that these two results are directly equivalent.

This was the begining of the fixed point theory of multimaps having a vital connection
with the minimax theory in game theory and the equilibrium theory in economics.

According to Debreu l47l again:

"However, the formulation given by Kakutani is far more convenient to use, and his
proof is distinctly more appealing.

One of the earliest, and most important, applications of the theorem of Kakutani was
made by Nash [70] in his proof of the existence of an equilibrium for a finite game. It
was followed by several hundred applications in the theory of games and in economic
theory. In the latter, Kakutani's theorem has been for more than three decades the main
tool for proving the existence of an economic equilibrium (a recent survey by Debreu
[47] quotes some three hundred and fifty instances). Other areas of applications were
mathematical programming, control theory and the theory of differential equations."

In the 1950s, Kakutani's theorem was extended to Banach spaces by Bohnenblust and
Karlin [25] and to locally convex Hausdorff topological vector spaces by Fan [57] and
Glicksberg [83]. These extensions were mainly used to extend von Neumann's works in
the above. Moreover, they were known to be included in the extensions, due to Eilenberg
and Montgomery [55] or Begle ll2l, of Lefschetz's theorem to u.s.c. maps of a compact
/c-space into the family of its non-empty compact acyclic subsets.

The first remarkble generulization of von Neumann's minimax theorem was Nash's
theorem t17U on equilibrium points of non-cooperative games. The following was
formulated by Fan [64]:

Theorem 17. ll7ll Let X1, X2, . . . , Xn be n (> 2) non-empty, compact, convex sets,
each in a real Hausdoffi topological vector space. kt ft, fz, . . . , f, be n real-valued
continuousfunctions definedonfl!_rXi. If,for eachi - 1,2,... ,n andfor any given
point  (xt ,  . . .  ,  x i -1,  x i+t  xr)  € f l i4 iXi ,  f i@t x i -1,  )c i ,  x i+t  xn) is a
quasi-concavefunction on Xi, thenthere exists apoint @r,i, . . . ,i") e fl?:tX; such
that

f i @ t , i z , . . . , i " )  -  m i l (  f i @ ; . . . , f r t , y i , i + t , . . . , i )  ( 1  <  t  . n ) .
l i € x i

Further, von Neumann's minimax theorem was extended by Sion [252] to arbitrary
topological vector spaces as follows:

Theorem lE. 12521 LetX,Y beacompactconvexsetinatopologicalvectorspace.Let

f be a real-valuedfunction defined on X x Y. If,



Brouwer Fixed Point Theorem t99

(l) for each fixed x e X, f (x , y) is a lower semicontinuous, quasi-corwex function on
Y, and

(2) for each fixed y € Y, f (x, y) is an upper semicontinuous, quasi-concave function
on X,

then we have

WfT#f 
(x' Y) - nT rrurf @' Y)'

Here, f islower semicontinuous wheneverthe set {y e Y : f (x,y) > r} is open,
andquasi-concave whenever {x e X: f (x,y) > r} isconvexforeachr e R. Further,

f is upper semicontinuous whenever {x e X : f (x, y) < rl is open, and quasi-convex
whenever  {y  eY:  f  (x ,y )  < r l  i sconvex foreachr  e  R.

Sion's proof was based on the KKM theorem and this seems to be the first application
of the theorem after KKM t1331.

As for the Brouwer theorem, in the mid-1960s, algorithms on constructive processes
approximating effectively to the values of the Kakutani fixed points were developed. For
the literature, see Secs. 3 and 4.

In closing this section, we quote two stories on the Brouwer and Kakutani theorems.
In [45], Brouwer denied the existence of a fixed point in his earlier theorem [28],

and claimed that there can be only e-fixed points for each e > 0, because the
Bolzano-Weierstrass theorem is invalid in the intuitionistic mathematics. Note that his
theorem in [28] implies the Brouwer fixed point theorem as Alexander [1] showed. Here,
we see Brouwer's fate of denying one of his great accomplishments of his younger days
because of his own philosophy.

Comparing the Brouwer and Kakutani theorems, Franklin [73] quoted aprivate survey:

". . . 96Vo of all mathematicians can state the Brouwer fixed point theorem, but only
5Vo can prove it. Among mathematical economists, 95Vo can state it, but only 27o can
prove it (and these are all ex-topologists). . . . while 96Vo of mathematicians can state
the Brouwer fixed-point theorem, only 7Vo can state the Kakutani theorem."

8. Establishment of the KKM Theory: From the 1960s-1980s

In 1961, a milestone of the history of the KKM theory was established by Fan [61]. He
extended the KKM theorem to infinite-dimensional spaces and applied it to coincidence
theorems generulizing the Tychonoff fixed point theorem and a result concerning two
continuous maps from a compact convex set into a uniform space.

Lemma 3. t61l Let X be an arbitrary set in a topological vector space Y. To each
x € X, let a closed set F(x) in Y be given such that the following two conditions are
satisfied:

( i )  Theconvexhul lofanyf in i tesubset{xr ,xz, . . . ,xn}ofXiscontainedinui-rF(x);
(ii) F(x) is compactfor at least one x e X.

Then OxexF(x) # A.

This is usually known as the KKMF theorem. Fan also obtained the following
geometric or section property of convex sets, which is equivalent to Lemma 3.
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Lemma 4. t6ll Let X be a compact convex set in a topological vector space. Let A be
a closed subset of X x X with the following properties:

(i) (x, x) e Afor every x e X;
(11) For any fixed y e X, the set {x e X': (x, y) f Al is corrvex (or empty).

Thenthere exists apoint h e X suchthat X x {y6} C A.

Fan applied Lemma 4 to give a simple proof [6 1] of the Tychonoff theorem and to prove
two results [62] genercIizing the Pontrjagin-Iohvidov-Krein theorem on the existence of
invariant subspaces of certain linear operators. Also, Fan [63] applied his KKMF lemma
to obtain an intersection theorem (concerning sets with convex sections) which implies
the Sion minimax theorem t2521and the Tychonoff theorem 12631. The main results of
Fan [63] Were extendedby Ma [154], who obtained a generulization of the Nash theorem
for the infinite case.

On the otherhand, Debrunner andFlor [48] proved an extension theorem of monotone
sets. This generalized earlier works of Minty 1167l and Grtinbaum [91] have interesting
applications to nonlinear elliptic boundary value problems. Since then, the fixed point
theory of multimaps have become closely related to the study of monotone operators
(see [33,34,2751).

Moreover, "a theorem concerning sets with convex sections" was applied to prove the
following results in [64]:
. an intersection theorem (which genenlizes the von Neumann lemma 12661);
. an analytic formulation (which generulizes the equilibrium theorem of Nash t1711

and the minimax theorem of Sion t2521);
. a theorem on systems of convex inequalities of Fan [59];
. extremum problems for matrices;
. a theorem of Hardy-Littlewood-P6lya concerning doubly stochastic matrices;
. afixedpointtheorem generahzingtheresultsof Iohvidov [119] andTychonoffl263l;
. extensions of monotone sets;
. invariant vector subspaces;
. an analog of Helly's intersection theorem for convex sets.

In the same year, Hartman and Stampacchia [100] introduced the following variational
inequality:

Lemma 5. [100] Let K be a compact convex subset inW and f : K + W a
continuous rnap. Then there exists ug e K such that

( f ( u d , u - u o ) 2 0  f o r  u € K ,

where (., .) denotes the scalar product inR".

Using this result, the Hartman and Stampacchia t1001 obtained existence and
uniqueness theorems for (weak) uniformly Lipschitz continuous solutions of Dirichlet
boundary value problems associated with certain nonlinear elliptic differential functional
equations. Later, Lemma 5 is known to be equivalent to the Brouwer theorem.

Lemma 5 was extended by Browder l32l while trying to extend the theorems of
Schauder and Tychonoff motivated by Halpern's work [97] on fixed point theorems for
outward maps:
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Theorem 19. l32l Let E be a locally convex topological vector space, K a compact
convex subset of E, andT a continuous mapping of K into E*. Then there exists an
element us of K such that

( T ( u d , u - u g ) > 0

for all u in K.

Here, E* is the topological dual of E and (, ) denotes the pairing between elements
of E* and elements of E. This theorem was later extended and improved by Park [181]
and many others by pointing out that the local convexity is superfluous.

On the otherhand, Browder [33] restatedFan's geometric lemma t61l inthe convenient
form of a fixed point theorem by means of the Brouwer theorem and the partition of unity
argument. Since then, the following is known as the Fan-Browder fixed point theorem:

Theorem 20. l33l Let K be a non-empty compact convex subset of a topological vector
space. Let T be amap of K into 2K, where, for each x e K, T (x) is a non-empty convex
subsetof  K.Supposefurtherthat, foreachy in K,f-r})  -  [ r  e K :  y e T(x)]  is
open in K. Then there exists xs in K such that xg e T(.rs).

Lategthis is also known to be equivalent to the Brouwer theorem. Browder [33] applied
his theorem to a systematic treatment of interconnections between multi-valued fixed
point theorems, minimax theorems, variational inequalities, and monotone extension
theorems. This was also applied by Borgin and Keiding [26] andYannelis and Prabhakar
I27ll, to the existence of maximal elements in mathematical economics. For further
development of generalizations and applications of the Fan-Browder theorem, we refer
t o  [ 1 8 1 ,  1 9 1 ] .

Motivated by Browder's works 132,331on fixed point theorems, Fan in 1969 deduced
the following from his geometric lemma:

Theorem 21. 165l Let X be a non-empty compact corrvex set in a normed vector space
E. For any continuous map f : X --> E, there exists a point jo e X such that

l lyo - f! i l l l  - mixll '  - /00)l l.

(In particular, if f (X) C X, then ys is afixed point of f .)

Fan [65] also obtained a generalization of this theorem to locally convex Hausdorff
topological vector spaces. These are known as best approximation theorems and are
applied to obtain generulizations of the Brouwer theorem and some non-separation
theorems on upper demicontinuous (u.d.c.) multimaps.

Moreover, Fan established a minimax inequality from the KKMF theorem:

Theorem 22. 166l Let X be a compact convex set in a Hausdorff topological vector
space. Let f be a real function defined on X x X such that

(a) For eachfixed x e X, f (r, y) is a lower semicontinuous function of y on X.
(b) For each ford y e x, f(x, y) is a quasi-concave function of x on x. Then the

minimax inequality

fr'f;3gf f 
x, y) < sup/(x, x)

holds.
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Fan gave applications of his inequality as follows:

o a variational inequality (extending 132,641);
. a geometric formulation of the inequality (equivalent to the Fan-Browder theorem);

. separation properties of upper demicontinuous multimaps, coincidence, and fixed

point theorems;

. properties of sets with convex sections [64];

. a fundamental existence theorem in potential theory;

Furthermore, Fan [67,68] introduced a KKM theorem with a coercivity (or com-

pactness) condition for non-compact conyex sets and, from this, extended many known

results to r-ron-compact cases. We list some main results as follows:

. generulizations of the KKM theorem for non-compact cases;

. geometric formulations;

. fixed point and coincidence theorems;

. generahzed minimax inequality (extending Allen's variational inequality [2]);

. a matching theorem for open (closed) covers of convex sets;

. the 1978 model of the Sperner lemma;

. another matching theorem for closed covers of convex sets;

. a generalization of Shapley's KKM theorem 1239);

. results on sets with convex sections;

. a new proof of the Brouwer theorem.

While closing a sequence of lectures delivered at the NATO-ASI, Montreal, 1983, Fan

listed various fields in mathematics which have applications of KKM maps, as follows:

. potential theory;

o Pontrjagin spaces or Bochner spaces in inner product spaces;

. operator ideals;

. weak compactness of subsets of locally convex topological vector spaces;

. function algebras;

. harmonic analysis;

. variational inequalities;

. free boundary value problems;

. convex analysis;

. mathematical economics:

. game theory;

o mathematical statistics.

We may add the following fields to this list: nonlinear functional analysis, approxi-

mation theory, optimization theory, fixed point theory and others.

In the 1980s, many recognized the following open-valued version of the KKM

theorem:

Theorem 23. Let D be the set of vertices of L,n and G : D -o L,n a KKM map (that is,

co A C G(A) for each subset A of D) with openvalues. Then )oeo G(a) I A.
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This is a simple consequence of the KKM theorem in view of Theorem 4 in l24ll,
which shows the existence of a closed-valued KKM map-F : D -o A, such that
Fx C Gx for all x e D.lt is later known to be equivalent to the KKM theorem itself.
(For the history of generalizations and applications of the above open-valued version of
the KKM theorem, see [190, 205D.

9. Intersection Theorems and Equilibrium Problems

Intersection theorems concern those conditions under which members of a certain subset
of a cover of a given set have a non-empty intersection. Such intersection theorems
on the standard simplex or other convex sets were given by the covering property of
Sperner 12541, the KKM theorem U331, the KKMF theorem due to Fan [61], Scarf's
theorem l228l,the KKMS theorem due to Shapley 12391, Gale's theorem [79],Ichiishi's
theorem [116], the intersection theorems of Horvath and Lassonde [111], and others.
These theorems are applied to the existence of solutions of mathematical programming
problems, to economic equilibrium theory, and to game theoretic problems.

The KKMS theorem is a very useful tool to show that the core of any balanced,
non-transferable utility game is non-empty, a result first shown in 12291by means of
a constructive method being related to the methods introduced in 1228,23Ol.In fact,
Shapley 12391extended the KKM theorem on closed covers of a simplex to the case
of more general closed covers of a simplex incorporating the notion of balancedness,
and obtained a theorem now called the KKMS theorem. Shapley proved the theorem
constructively using an analogous generalization of the Sperner lemma 12541.

LetN: {1,  . . .  ,n}  and,A/thefami lyof  a l lnon-emptysubsetsof N.Let{ei  : i  e N}
be the standard basis of R', that is, e' is an n -vector whose lth coordinate is I and 0
otherwise. Let A be the simplex co{ei : i e N} and, for an S e ,A/, let As be the face of
A spanned by {ti : i e S}, that is, As - co{ei : i e S}. A subfamily B of,A/ is said to
be balanced if therc are non-negative weights ;.s, S e 6, such that f r.u.l.ses : eN ,
where es denotes the n -vector whose lth coordinate is 1 if i e S and 0 otherwise. It is
easily seen that 6 is batanced if and only if mN e co{ms : S e 6}, where zs denotes
the center of gravity of the face As, that is, ms : I,.s ei /lsl.

Theorem 24. 12391 Let {Cs: S e N} be afamily of closed subsets of L^ suchthat,for
each T e N,

a r c U t r .
SCZ

Then there is a balancedfamily B such that

)c '  +  a .
SeB

Since Scarf's core theorem was very important in mathematical economics and since
Shapley's proof of the KKMS theorem was rather complicated, several authors explored
the logical connection between Scarf's theorem and fixed point theory either by proving
the KKMS theorem from a standard fixed point theorem or by proceeding directly to
Scarf's theorem via a different route. Kannai ll28l showed that Scarf's theorem 12281is
equivalent to the Brouwer theorem. Todd 12601applied the Kakutani theorem [125] to
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prove a special case of the KKMS theorem, which is sufficient to prove the core theorem.

An easy non-constructive proof of the KKMS theorem due to Ichiishi tl131 was based on

a coincidence theorem of Fan t65 l. Keiding and Thorlund-Peterson I I 30] proved the core

theorem through the KKM theorem. Also, Ichiishi t1411 initiated a cooperative extension

of the non-cooperative game and, more systematically, in particular, his theorem [117]
includes as special cases the Nash equilibrium theorem in non-cooperative game theory

and Scarf's core theorem in cooperative game theory. Moreover, Ichiishi tl161 obtained

a dual version of the KKMS theorem using Fan's coincidence theorem, and then applied

it to the core theorem.

Shapley and Vohra 12401gave proofs of both Scarf's core theorem and the KKMS

theorem involving either Kakutani's fixed point theorem or Fan's coincidence theorem.

Komiya ll34l gave a proof of the KKMS theorem based on the Kakutani theorem,

the separating hyperplane theorem, ffid the Berge maximum theorem. Krasa and

Yannelis t1351 gave a proof of the KKMS theorem by means of the Brouwer theorem,

the separating hyperplane theorem, and a continuous selection theorem. Zhou 12761
considered intersection theorems close to the Ichiishi theorem and the KKMS theorem.

Finally, Herings t1011 gave a very elementary and simple proof of the KKMS theorem

using only the Brouwer theorem and some elementary calculus. This shows that the

KKMS theorem and the Brouwer theorem should be regarded as "equivalent" since it is

elementary to prove the Brouwer theorem using the KKMS theorem.

By an equilibrium problem, Blum and Oettli [23] understood the problem of finding

i e X  s u c h t h a t  f ( i , y )  < 0 f o r a l l y e X ,

whereXisagivensetand f  :X x X + Risagivenfunct ion.

We consider more general problems as follows:

A quasi-equilibrium problem is to find

(EP)

i e X suchthat"i e S(.i) and f(i,.) . 0 for all e € S(i),

whereX and f ueasaboveandS : X -o X is agivenmultimap.

A generalized quasi-equilibrium problem is to find

(QEP)

i  e  X  and i  eT( i )  suchtha t i  e  S( . i )  and f  ( i ,9 ,2 ) .0 fo r  a l l z  e  S( i ) '
(GQEP)

where X and Sarethe sameasabove, Y is anothergivenset, T : X -o Y is another

multimap, and f : X x Y x X + R is a givenfunction.

These problems contain as special cases, for instance, optimization problems, prob-

lems of the Nash-type equilibrium, complementarity problems, fixed point problems,

variational inequalities, minimax theorems, and many others. There are many variations

or generalizations of these problems (see [152, 177] and references therein).

It should be emphasized that the main tools of various equilibrium problems are

intersection theorems, fixed point theorems, and their equivalent formulations. Recently,

each field of study of equilibrium problems becomes very productive with a large number

of literature.
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For example, the von Neumann minimax theorem and its extended versions have been
applied to different branches of mathematics; and even in mathematical analysis, they
have been applied to function algebras and extension theoreins for nonlinear operators
and inequalities. Moreover, many.authors have contributed elementary proofs of various
minimax theorems (say, set-theoretical or not using any equivalent form of the Brouwer
theorem). Consequently, the literature on the minimax theory is by now extensive (see,
for instance, [250]).

10. Convex-Valued Multimaps: 1960s-1990s

Since the 1960s, there have been many fixed point theorems generalizing the Brouwer
or Kakutani theorems for single-valued or multi-valued maps defined on convex subsets
of Hausdorff topological vector spaces.

For single-valued continuous maps, Fan [63] showed that Schauder's conjecture is
valid for a topological vector space E on which its topological dual E* separates
points.

Ha$ern [97] considered new boundary conditions called outwardness and, later,
inwardness, and obtained fixed point theorems for maps satisfying these conditions.
For a topological vector space, E, a compact convex subset K of E, and a continuous
map f : K + E satisfying certain inwardness or outwardness, generuIizations of the
Brouwer theorem were due to Fan [65], Halpern [97], Reich [218], Sehgal and Singh
t2371 and others whenever E is locally convex, and to Halpern and Bergman [99],
Kaczynski ll22l, Roux and Singh [2261, Sehgal, Singh, and Whitfield [238] whenever
E* separates points of E. In the sequel, t.v.s. means a Hausdorff topological vector
space.

Kakutani's convex-valued u.s.c. multimaps are further extended as follows: For a
subset X of at.v.s. E, amap F : X -o E is called

(i) upper demicontinuous (u.d.c.) if, for each x e X and open half-space H in E
containing Fx,therc exists an open neighborhood N of x in X such that f (N) c H
(see [65]).

(ii) upper hemicontinuous (u.h.c.) if, for each h € E* and for any real a, the set

{x e X : supRe h(Fx) < cv} is open in X (see 141,t44,1801).
(111) generalized u.h.c. if, for each p e {Re h : h e E*}, the set {x e X : supp(Fx) >

p(x)l is compactly closed in X (see [38,82, 185, 188,247,248]).

For those maps with compact convex domains, the Kakutani theorem was extended by
Browder [32], Fan 165,661, Glebov [82], Halpern [98], Cellina [38], Reich [218,2211,
Cornet [41], Lasry-Robert ll44l,and Simonsl24T ,248lfor a locally convex t.v.s. E, and
by Granas-Liu [90], Park [180, 185, 188] and others for a t.v.s. E onwhich E* separates
points.

Inordertoassuretheexistenceof af ixedpointof  maps f  :  X + E orF: X -oE,

we need the following:

(1) Certain continuity of the map like the generalized u.h.c.. The topology of the domain
X is not necessarily the same as the relative topology of X in E.

(2) Certain compactness on X. lf X is not compact, then certain compactness or
coercivity condition suffices for the existence of fixed points.

205
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(3) Certain boundary conditions. Until the mid-1960s, we only had a few such
conditions, for example, that of Altman [4], Rothe 12251, or the Leray-Schauder
condition.

Halpern [97] first introduced the outward and, late1 inward sets:

LetE beat.v.s.  and X C E.Theinwardandoutwardsetsof X atx € E,Iy(x)  and
Ox(x), are defined as follows:

I x@)  -  x  *U t (X  -  x ) ,  Ox@)  :  x  lU t t x -x ) .
r > 0 r < 0

LetX be anon-empty convex subset of avector space E. Following [65], the algebraic
boundary Sz(X) of X in E is the setof allx e X forwhichthereexists y e E such
thatx ]-ry 4 X for allr > 0. If E is at.v.s., thetopologicalboundary BdX -BdnX

is the complement of IntpX of X.It is known that 6n(X) C Bd X and, in general,

\z (X)  +BdX.
A m a p  F : X - o E  i s s a i d t o b e

(i) inwardlf Fx n /a(x) t' A for each x € Bd X,

outward 1f Fx i Ox@) * A for each x e Bd X.

(11) weakly inward rf Fx O /x(x) I A for each x € Bd X,

weakly outwardif Fx n Ox@) # A for each x e Bd X.

Note that, by replacing Bd X by 6r (X), we can obtain more general boundary conditions.

F o r p  e  { R e  h : h  e  E * }  a n d  U , V  C  E , l e t

d p ( U , V ) : i n t { l p ( u  - u ) l  i u e U ,  u e V } .

Further, motivated by the work of ll2ll, we have the following much more general
boundary conditions:

(111) dp(Fx, Ix(x)) - 0 for each x e 6n(X),

dp(Fx, Ox@D: 0 for  each r  e 6r(X).

For this case, the domain X is not compact, and for maps F : X -o E having certain
continuity, boundary conditions, and certain compactness conditions, generalizations of
the Kakutani theorem were obtained by Fan [68], Shih and Tan 1242,2431, Jiang II2ll,
Ding and Tan [50], Park [185, 188], and others.

All of the generalizations of the Brouwer and Kakutani theorems mentioned above
were unified by Park 12021as follows:

A convex space X is a non-empty convex set with any topology that induces the
Euclidean topology on the convex hulls of its finite subsets. A non-empty subset L of a
convex space X is called a c-compact set if, for each finite set S C X, there is a compact
convex set Zs C X such that L U S C Ls (see t1451).

Let cc(E) denote the set of non-empty closed convex subsets of a t.v.s. E and kc(E)
the set of non-empty compact convex subsets of E.

The following is given inl202l:
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Theorem 25. Int X be a corrvex space, L a c-compact subset of X, K a non-empty
compact subset of X, E a t.v.s. containing X as a subset, and F a generalized u.h.c. map
satisfuing either

(A) E. separates points of E and F : X + kc(E); or
(B) E is locally cotwex and F : X + cc(E).

(D Suppose that, for each p e {Re h : h e E*l;
(l) plx is continuous on X;
(2) dp(Fx,I  r@D :0for every x € X \  K;  and
(3) do(Fx, I x@D : 0for every x e K n 6E(X).

Then there exists an x € X such that x e Fx.

(Il) Suppose that,for each p e {Re h: h e E*},
(1)' plx is continuous on X;
(2) '  dp(Fx, O r@D : j for  every x e X \  K;  and
(3) '  dp(Fx, Ox@D : 0for every x € K n dr(X).

Thenthere exists anx e X suchthatx e Fx. Further, if F isu.h.c., then F(X) -l X.

The major particular forms of Theorem25 can be adequately summarized by Table I
which is an enlarged version of those in [180, 185].

In the table, class I stands for that of Euclidean spaces, II for normed vector spaces,
III for locally convex Hausdorfftopological vector spaces, and IV for topological vector
spaces having sufficiently many linear functionals. Moreover, / stands for single-valued
maps, F for set-valued maps, K for a non-empty compact convex subset of a space E,
and X for a non-empty convex subset of E satisfying certain coercivity conditions with
respect to F : X -o E with certain boundary conditions.

In fact, Theorem 25 contains all the fixed point theorems in the diagram.

11. Fixed Point Theorems for BetterAdmissible Multimaps

It should be noted that the diagram does not contain fixed point theorems for compact
maps and for condensing maps. One of the most well-known theorems generalizing
the second Schauder theorem L2341, Hukuhara's theorem UIzl, and most results on
f : K + K and F : K -oK in the diagram was the following due to Himmelberg
[103]:

Theorem 26. lI03l Let X be a non-empty convex subset of a locally convex t.v.s. and
F : X -o X a compact u.s.c. map having non-empty closed convex values. Then F has
afixed point.

This was applied to give generulizations of the von Neumann intersection lemma and
the minimax theorem, and to various equilibrium problems by others.

The above theorem was extended to non-locally convex t.v.s. by Idzik U181, and to
non-convex valued maps by Ben-El-Mechaiekh and Deguire [15, 16], Park [186, 187],
and others.

For non-convex-valued multimaps, the author recently established the fixed point
theory for "admissible" maps in very general classes of multimaps as follows:
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Thble 1.

E f :K--+K F : K - o  K

I

il

m

Brouwer

Schauder

Tychonoff

Fan

1912
1927, 1930
r935

t964

Kakutani I94l

Bohnenblust and Karlin 1950

Fan 1952
Glicksberg 1952

Granas and Liu 1986N

f  : K - > E F : K - a  E

ru

Knaster, Kuratowski
and Mazurkiewicz

Rothe
Halpern
Fan
Reich
Sehgal and Singh

IV Halpern and Bergman
Kaczynski
Roux and Singh
Sehgal, Singh,
andWhitfield

Browder
Fan
Glebov
Halpern

Cellina
Reich
Cornet
Lasry and Robert
Simons
Granas and Liu
Park

1929
1937
1965
1969
t972
1983

1968
1983
1989

1990

1968
1969, t972
1969
r970
1970
1972, 1978
r975
r975
1986
1986
1988, 1991

F : X - a  E

u
m

Ding and Tan

Fan
Shih and Tan
Jiang

Park

r992
t984
1987, 1988
1988
1992, 1993IV

In a t.v.s. E, any convex hulls of its finite subsets will be called polytopes.
Given a class X of maps, X(X, Y) denotes the set of maps F : X -o Y belonging to

X, and X. the set of finite compositions of maps in X.
A class A of maps is defined by the following properties:

(i) 
"4 contains the class C of (single-valued) continuous functions;

(ii) each F € A, is u.s.c. and non-empty compact-valued; and
(iii) for any polytope P, F e Ar(P, P) has a fixed point, where the intermediate spaces

are suitably chose

Examples of A are C, the Kakutani maps K (with convex values and codomains
are convex spaces), the Aronszajn maps M (with R5 values), the acyclic maps V (with
acyclic values), the Powers maps V, (finite compositions of acyclic maps), the O'Neill
maps N (continuous with values consisting of one or m acyclic components, where rn is
fixed), the approachable maps A (whose domains and codomains are uniform spaces),
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admissible maps in the sense of G6rniewicz [84], o-selectionable maps of Haddad and
Lasry [94], permissible maps of Dzedzej [54], and many others.

We introduce two more classes:

(1) F e A!(X,Y) <+ for any d-compact subset K of X, there is an F e A.(K,Y)
such that Fx c Fx for each x e K.

(2) F e Af (X, Y) I for any compact subset K of X, there is an F e Ar(K, Y) such
that Fx C Fx foreach x € K.

Note that A c A, c A!, c 4. Any class belonging to Af is called
admissible. These classes are all due to the author in his earlier works. Examples of
A, are K! due to Lassonde ll47l, V! due to Park, Singh, and Watson 12071 and
others. Note that K! contains classes K, the Fan-Browder-type maps, T in ll47l,
approximable maps of Ben-El-Mechaiekh and Idzik [20], and many others. (For details,
see [1 88, 189, 191, 199,203)).

Motivated by the admissible class, for a convex space X and a topological space Y,
Chang andYen [39] defined the class of maps T : X -oY having the KKM property as
follows:

(3) T e KKM(X,Y) (* the family {Sx : x e Xl has the finite intersection property
whenever S : X -o Y has closed values and Z(coN) c S(At) for each finite subset
N o f X .

For a convex space X, it was noted that Af (X,Y) C K KM(X, Y) [191].
In order to improve the admissible class, Park [198] introduced the better admissible

class 6 as follows:

(4 )  F  eB(X,  f )  <+  F :X-oY isamapsuchtha t , fo ranypo ly tope P inX andany
continuousmap f : F(P) + P, f (Flp): P -o P hasafixedpoint.

(5) F e B" (X, Y) + F : X -oY is amap suchthat, forany d-compact convex subset
K of  X, thereisaclosedmapf e B(K, Y) suchthatf  (x)  C F(x) foreach x e K.

(6) F e B* (X, Y) <+ F : X ---o I is amap such that, for any compactconvex subset K
of X,thereis aclosedmap f eB(K, Y) suchthat f (x) C F(x) foreach x e K.

It is noted that, in the class of closed compact maps, two subclasses B and KKM
coincide (see [198]). These classes of multimaps were used to generalize the KKM
theory and the fixed point theory.

A non-empty subset X of at.v.s. E is said tobe admissible (in the sense of Klee U32l)
provided that, for every compact subset K of X and every neighborhood V of the origin
0 of E, there exists a continuous map h : K + X such that x - h(x) e V for aII x e K
and h(K) is contained in a finite-dimensional subspace L of E.

Note that every non-empty convex subset of a locally convex t.v.s. is admissible
(see [112,169D. Other examples of admissible t.v.s. are lP , Lp, the Hardy spaces .F1P
for 0 < p < 1, the space S(0, 1) of equivalence classes of measurable functions on

[0, 1], certain Orlrcz spaces, ultrabarrelled t.v.s. admitting Schauder basis, and others.
Moreover, any locally convex subset of an F-normable t.v.s. is admissible, and every
compact convex locally convex subset of a t.v.s. is admissible, Note that an example
of a non-admissible, non-convex compact subset of the Hilbert space /2 is known. (For
details, see [95, 132,268,269] and references therein.)

Theorem 27. Let X be an admissible convex subset of a t.v.s.
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(I) If F e B* (X, X) is compact, then F has afixed point;
(2) If F e B(X, X) is closed and compact, then F has afixed point.

Sehie Park

This is recently due to Park [196, l97l and subsumes more than 60 particular
forms including Ben-El-Mechaiekh et al. [13-15,17-19], Bohnenblust and Karlin [25],
Himmelberg [103], Hukuhara lLI2l, Lassonde 1L45,l46l,Mazur [163], Park et al. [186,
193 , 195 , 2071, Powers l2l5l, Rhee 12231, Schauder 12341, Simons 12491, and Singbal
lzsrl.

There is another way of extending compact maps in certain situations using
(generalizations of ) the Kuratowski or other measures of non-compactness. This study
was initiated by Darbo [44] (see the end of Sec. 5). In this direction we also have a very
general theorem.

LetX be aclosed convex subsetof at.v.s. E andC alattice with aleast element,
which is denoted by 0.A function Q :2x + C is called ameasure of non-compactness
on X provided that the following conditions hold for arry A, B e 2x:

(1) O(A) - 0 if and only if A is relatively compact;
(2) O(co A) : O(A), where co denotes the convex closure of A; and
(3) o(A u B) : max{o(A), o(B)}.

The above notion is a generalization of the set-measure y and the ball-measure X
of non-compactness defined either in terms of a family of seminoffns or a nofin. (For

details, see [209, 210].)
Givenameasure O of non-compactness on E andX C E, amap T : X < E iscalled

Q-condensing provided that, If A C X and O(A) < O(f (A)), then A is relatively
compact, that is, O(A) - 0.

Note that each map defined on a compact set or each compact map is <D-condensing.

Especially, if E islocallyconvex, thenacompact mapT : X -< E rsy- or X-condensing
whenever X is complete or E is quasi-complete.

The following is due to Park [196,199f:

Theorem 28. Let X be a closed convex subset of a locally convex t.v.s. E. Then any
Q-condensing map F e B* (X, X) has afixed point.

This theorem extends earlier results of DaneS 142),Darbo 1441, Ewert [56], Furi and
Vignoli [76], Himmelberg, Porter, and Van Vleck U041, Lif5ic and Sadovskii [150],
Nussbaum [178], Petryshyn and Fitzpatrick 1209, 2101, Reich 1217-2191, Sadovskii

1227), Su and Sehgal 12561, and Tarafdar and Vybornli 12591.
Let C, D be subsets of a t.v.s.E , T e Ar(C, D), and M the class of non-empty

compact subsets of D consisting of the functional values of maps in A. We say that T
satisfies the Schr)neberg condition tf

t M e M f o r r e [ 0 ,  1 ] a n d M e M (s6)

holds (see [235]). For example, M canbe the class of convex sets for.4 : K, acyclic sets
for A: V, R5 sets {X : lrXi : Xi+r C Xi,Xr € ARcompact, i e N} for A: M,
and others.

For U C D,let ClpU denote the closure of U in D and BdoU the boundary of U
in D. on the other hand. 

- and Bd will denote the closure and boundarv in the whole
space E.
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Now, we give some fixed point theorems due to ll97l for compact maps satisfying
the so-called Lerav-Schauder condition:

Theorem 29. Let D be a corwex subset of a locally corwex t.v.s.,0 e D,U C D a
neighborhood of 0 (in D), and F e Ar(ClnU, D) a compact map satisfiing (Stt). 1/

F y n { r y : r  >  1 } - A  f o r a l l  y  e  B d U , (LS)

then the set of fixed points of F in CloU is non-empty and compact.

This improves, unifies, and extends the results of Altman[4], Brouwer [29], Eilenberg
andMontgomery [55], Furi andMartelti [75], G6rniewicz, Granas, and Kryszewski [85],
Granas [89], Hahn 196l,Kaczynski and Wu II23l, Kaniel U27), Knaster, Kuratowski,
and Mazurkiewicz [133], Krasnoselstii tt:0] , Leray and Schauder [149], Ma [155],
Martelli [158], Petryshyn and Fitzpatrick [209], Potter l2l4l, Powers l2l5l, Reich 1218,
220,2221, Rothe 12251, Shinbrot 12441, Su and Sehgal 12561, andYamamuro 12701.

For O-condensing maps, we have the following in ll97l:

Theorem 30. Let D be a closed convex subset of a t.v.s. E onwhich E* separates points,
0 e D, U c D aneighborhoodof 0 (inD), and p e Ar(CloU,D) aQ-condensing
map satisfyins (Sd). If the condition (LS) holds, thenthe set offixedpoints of F inClnU
is non-empty and compact.

This includes the results of Fitzpatrick and Petryshyn [70], Gatica and Kirk [80, 81],
Lin [151], Martelli [158, 159], Petryshyn [208], Petryshyn and Fitzpatrick1209,2I0l,
Reich 1217,220,2221, Su and Sehgal 12561, and many others.

These Leray-Schauder-type theorems due to [197] are applied to

(i) the so-called Leray-Schauder principles of Browder [3 I ], Lercy and Schauder I I 49],
Petryshyn and Fitzpatrickl209l, Potter l2l4l, and Schoneberg 12351;

(ii) the Schaefer-type theorems due to G6rniewicz, Granas, and Kryszewski [85], Granas

[89], Martelli [159], Martelli and Vignoli [160], Reich 12L7,2181, Schaefer 1231,
2321, and Seda 12361; and

(iii) the Birkhoff-Kellogg-type theorems due to Birkhoffand Kellogglzzl, Fournier and
Martelli 17 2j, Martelli [ 1 59], and Yamamuro 127 01.

L2. Generalized Convex Spaces

In the last decade, there have also been advances in the KKM theory. Recently, Park

[190, 191] obtained far-reaching generahzations of the KKM theorem, the Fan-Browder
theorem, a matching theorem, an analytic alternative, the Ky Fan minimax inequalities,
section properties of convex spaces, and other fundamental theorems in the theory from
coincidence theorems on compositions of admissible maps. These new results extend,
improve, and unify main theorems in more than 100 published works.

On the other hand, the concept of convex sets in a t.v.s. was extended to convex
spaces by Lassonde [145], and further to C-spaces by Horvath U06-1101. Other authors
also extended the concept of convexity for various purposes. Recently, Park and Kim

1203,205,2061 unified these concepts and inroduced generuhzed convex spaces or

z r l
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G-convex spaces. For these spaces, the foundations of the KKM theory with respect
to admissible maps were established by Park and Kim [205], and some general fixed
point theorems were obtained by Kim [131] and Park [201].

A generalized corwex space or a G-convex space (X, D; f ) consists of a topological
space X, a non-empty set D, and a map f : (D) -o X such that, for each A e (D) with
the cardinality lAl - n 11, there exists a continuous function Oa : L,n + f (A) such
that J € (A) implies Oa(A"r) C f (/). Note that Oall, can be regarded as <D7.

Here, (D) denotes the set of all non-empty finite subsets of D, A,, - co{e;}'!_o
the standard n-simplex, and A7 the face of A, corresponding to ,I e (A), that is, if
A - {ao, at, . . . , an} and J : {aro, air, . . . , air} C A, then A7 - ea{eio, €ir, . . . , eik}.
We may write f.a : f(A) for each A e (Dl and (X, f) : (X, X;f). (For details on
G-convex.spaces, see 1204-2061, where basic theory was extensively developed.)

There are many examples of G-convex spaces.

Example I. If X : D is a convex subset of a vector space and each fa is the convex
hull of A e (X) equipped with the Euclidean topology, then (X, f) becomes a convex
space due to Lassonde [14]. Note that any convex subset of a topological vector space
is a convex space, but not conversely.

Example 2. IfX - Dandfaisassumedtobecontractibleor,moregenerally,infinitely
connected(thatis,n-connectedfor alln 7 0)andif,for eachA, B e (X) ,A C Bimplies
fa c f 6, then (X, f ) becomes a C-space (or an I/-space) due to Horvath tl10].

Example 3. Other major examples of G-convex spaces are metric spaces with Michael's
convex structure, Pasicki's S-contractible spaces, Horvath's pseudoconvex spaces,
Komiya's convex spaces, Bielawski's simplicial convexities, Joo's pseudoconvex spaces,
and so on (see 1203,2041). Recently, we found a number of new examples of G-convex
spaces (see [200]). In particular, any continuous image of a G-convex space is a G-convex
space, and any almost convex subset of a t.v.s. (see [103]) is a G-convex space.

For a G-convex space (X, D; f), a map F : D -o X is called a G-KKM map if
frg c F(N) for each N e (D). Now the KKM theory is extended to the study of
G-KKM maps on G-convex spaces. The following is basic in this theory:

Theorem 30. Let (X, D;l) be a G-convex space, Y a Hausdorff space, S : D -oY,

T : X -oY rnaps, and F € A\(X,Y). Suppose

(l) for each x e D, Sx is compactly open in Y;
(2) for each y e F(X), M e (S-y) implies lu c T- y;
(3) thereexistsanon-emptycompactsubset K of Y suchthat F(X) n K C S(D);and
(4) either

( i )  r \ K  c S ( M ) f o r s o m e M  e  ( D ) ; o r
(11) for each N € (D), there exists a compact G-convex subset L7,1 of X containing

N suchthat F(Lx) \ rK C S(ZN n D).

Then there exists anT e X such that FT n TT + A.

This was due to Park and Kim 1204,205), which was reformulated to more than a
dozen foundational results in the KKM theory. The class Af in the above theorem can
be replaced by the extended class 6 for G-convex spaces.
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Finally, some fixed point theorems for the possible extended class B on G-convex
spaces have appeared (see, for example, [201]).

Aclmowledgement. The author wouldlike to express his sincere gratitude to Professors W.A. Kirk,
C.J. Rhee, H. Steinlein, and Do Hong Thn for their very helpful comments.
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