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The study of properties of functions in connection with the support of their Fourier

transform has been considered by Schwartz, Hormander, Bang, and many other

mathematicians (see [1,4,7] and references there). In particular, the spectrum of

non-convex functions.
Let C denote the family of all non-zero concave functions O : [0, +oo) -+ [0, *oo]'

which are non-decreasing and satisfy o(0) : 0' For an arbitrary measurable function /

and o e c' we define 
t.f t'* : [* olxvt>1ar,

J O

where i.y(t) : tL({x : l,f(x)l > tJ), t Z 0' Let No : No(R') be the space of

all measurable functions / such that ll /ll,y, < oo. Then N6 is a Banach space [8].
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by the NCST'Applied Mathematics".
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Denote by Mo : Mo(R') the space of measurable functions g such that

t  I  f  .  n  _ h ,  
. l

l l g l lu , :  *p lo (dE) )  
J r l s@) ldx :  

E  cR ' .  0  <  p (E)  =  - l  .  * .

Then M6 is a Banach space too [8].
We need the following results:

Lemmal . t3 l  I f  f  e  Naandh e  I r (R ' ) ,  then f  *h  e  N6and l l f  *h l l rs .  <
ll "f l lru. llft l l r.

Lemma 2. Int / e No(lRn). If sp(f) is bounded, then f is bounded.

Proof. Sincethe spectrum of / is bounded, we can choose '{rfq> . Cf (R'), such that
'$ : t rnsome neighborhood of sp(/), to obtain

l l  (F-t  / )(r)  l l -  :  l l (F-1 (0/ l l f " l t t ""

: l lrl, * "f l l- 
< llf l lrl l,f 11,,,'. < m. r

By applying Lemmas I and 2 and using the techniques of the proof of Theorems I
and2in [2] for spaces N6, we obtain the following results:

Theorem l. Let O(/) € C, f  ̂ e No, f @) t' O and tet l0 e sp(f) be an arbitrary
point. Then the restriction of i to any neighborhood of $o cannot concentrarc on any
finit e numb e r of hyp e rp lane s.

The proof of the theorem is based on Theorem 2.3.5 in [4] for the distributions with
compact support and the properties of the Fourier transform.

Corollary l. Let Q e C, f e No, and f (x) 10. Thenfor any $0 e sp(f ), there exists
asequence{ t * l  csp( f )  suchtha t { i  +  € : ,  j  -  1 , . .  . ,nand$*  - ->  {0 .

Corollary 2. LetQ eC,,f e No, and f (x) lO.Thenforany€o € sp(f),thereexists
asequence {€^}  csp( f )  suchtha t$ f  #0 ,  j  :  l , . . . ,nandg^  -+  90 .

Corollary 3. Let Q e C, f e No, and f (x) 10. Then

span(sp(/)) : span(sp(,f) \ {60}) : n'

for any 60 e sp(,f).

Corollary 4. One has sp(Dq f) c sp("f), where Do - Di' ...D|', Di : -i\/Exi.
Furthe4 if the hypotheses of Corollary I are satisfied, then sp(Da f) : sp(,f).

Theorem 2. Int Q e C, f e No and let cv > 0 be a rnulti-index. In order that
suprp("r) 16"l : O, it is necessary and sufficient that Ddf (x) = O where Dd :
D i '  . . .  DX^,  D i  :  - i \ l \ x i .

Sketchofproof. Wefirstprove that€" ic)concentratesontheplanefl : . '. :6r :0.
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Next, we show that, it €"rh@i(f) concentrates on the plane f1 : ... : 6r : 0,
then D" F-rlr * /(r) : 6.

Finally, for every 9 e Cff(R"), we choose r/ e Cfl(R') such that lr : I in some
neighborhood of suppg. Then

(D"  f ,Ql  :  G"  iG) ,qGD: t€"v@i@,eG))
:  ( D "  F - r V  *  f  , 0 ) :  ( 0 ,  @ )  :  0 .

So it follows from the density of Cff(R") in S that (D"f,Q) : 0 for all9 e S.
Therefore, Da f (x) : g.
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