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The study of properties of functions in connection with the support of their Fourier
transform has been considered by Schwartz, Hormander, Bang, and many other
mathematicians (see [1,4,7] and references there). In particular, the spectrum of
functions in Orlicz spaces has been studied by Bang [2].

The spectrum of f is, by definition, the support of its Fourier transform f‘ (see [5,7]).
Denote sp(f) = .-mpp.,r‘"“. Then the geometry of sp(f), in general, can have arbitrary
character. In this paper, by modifying the method of [2], we give some geometrical
properties of the spectrum of functions in N (R"), @ being a concave function (see
[6,8]). Note that the Orlicz spaces are generated by convex functions. Here, we have
to overcome some technical difficulties due to the difference between convex and
non-convex functions.

Let C denote the family of all non-zero concave functions @ : [0, +o00) — [0, +oc],
which are non-decreasing and satisfy ®(0) = 0. For an arbitrary measurable function f
and ® € C, we define

I £l =/(; @ (rs(0))dt,

where Ap(r) = p({x : |f)] > t}), t > 0. Let Np = No(R") be the space of
all measurable functions f such that || flly, < oc. Then Ng is a Banach space [8].
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Denote by My = M¢ (R") the space of measurable functions g such that

1
gl = sup{q)—m(E—))/E lg)ldx : E CR", 0 < u(E) < oo} < 0.

Then Mg is a Banach space too [8].
‘We need the following results:

Lemma 1. [3] If f € No and h € Li(R"), then f xh € Ng and ||f % h|y, <
I f s A1

Lemma 2. Let f € No(R"). If sp(f) is bounded, then f is bounded.

Proof. Since the spectrum of f is bounded, we can choose 1,7/(5) € C°(R™), such that
¥ = 1in some neighborhood of sp( f), to obtain

IFA® oo = IF2@ oo
=¥ * flloo < I¥ N1l flln, < 00. .

By applying Lemmas 1 and 2 and using the techniques of the proof of Theorems 1
and 2 in [2] for spaces Ng, we obtain the following results:

Theorem 1. Let ®(t) € C, f € No, f(x) # 0 and let £° e sp(f) be an arbitrary
point. Then the restriction of f to any neighborhood of £° cannot concentrate on any
finite number of hyperplanes.

The proof of the theorem is based on Theorem 2.3.5 in [4] for the distributions with
compact support and the properties of the Fourier transform.

Corollary 1. Let® € C, f € Ng, and f(x) % 0. Then for any £° € sp(f), there exists
a sequence (™} C sp(f) such that §j'" £&0 j=1,...,nand g™ — £O.

Corollary 2. Let® € C, f € No, and f(x) % 0. Thenforany £° € sp(f), there exists
a sequence {§™} C sp(f) such that Ej’” #£0,j=1,...,nand &™ — &°.

Corollary 3. Let ® €C, f € N¢, and f(x) # 0. Then
span(sp(f)) = span(sp(f) \ {£°}) = R”
for any 50 € sp(f).

Corollary 4. One has sp(D° f) C sp(f), where D* = D{' ... Dy, D; = —id/dx;.
Further, if the hypotheses of Corollary 1 are satisfied, then sp(D® f) = sp(f).

SUPg, £y [E%| = O, it is necessary and sufficient that D* f(x) = 0, where D* =
Dllxl <. Dg", Dj = —ia/ax]'.

Theorem 2. Let ® € C, f € No and let o« > 0 be a multi-index. In order that

Sketch of proof. We first prove that §* f (&) concentrates on the plane &1 = - - - = &, = 0.
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Next, we show that, if £ (&) f (&) concentrates on the plane §; = - = & =0,
then D*F~ 1y % f(x) = 0.

Finally, for every ¢ € Cj°(R"), we choose ¢ € C;°(R") such that ¥ = 1 in some
neighborhood of suppg. Then

(D f, @) = (E% F(&), p(&)) = (E“Y(E) F (&), (&)
=(D*F 'y x £,$) = (0,$) =0,

So it follows from the density of C;°(R") in S that (D*f,¢) = O for all ¢ € S.
Therefore, D f(x) = 0. [ ]
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