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Abstract. In this paper the robust stability of the class of positive linear discrete-time systems in
Banach space under affine multi-perturbations and nonlinear fractional perturbations is studied
via the notion of stability radii. We show that for this class the complex and the real stability radii
coincide and can be computed by simple formulae. An example is provided to illustrate the result.

L. Introduction

In this paper we study the robust stability of infinite-dimensional, positive, discrete-time
systems subjected to affine and nonlinear fractional perturbations. Our aim is to
generalize some results of [5] and [10] to systems in Banach spaces.

Recall that the main problem in the study of robust stability of the dynamical system
x(ft * 1) : Ax(k) under affine perturbations is to characterize and compute its stability
radius which can be defined as the smallest (in norm) complex or real perturbation A;
for which the perturbed system

x(k * 1) : (A + f o,o,z,1*1t 1,
; - l

is unstable. Here, D;,E; are given matrices defining the structure of perturbation.
We mention that in the case of single ffine perturbation (Ihat is, when N : 1), the
robust stability of infinite-dimensional, positive systems was considered first in [1] for
discrete-time systems and, quite recently, in [2] for continuous-time systems. In this
paper we shall deal with the more general case when N : oo. It will be shown, as in
the case of single perturbation, that for positive systems, real and complex stability radii
coincide and can be computed by a simple formula which extends the formula of [5] to
positive systems in Banach space.
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The following notations will be used throughout this paper. Let c and R be
the set of all complex and real numbers, respectively. Define N : 11,2,...|,
No : N U {0},R+ : [t € Rlr > 0]. Let X,Y be real or complex Banach spaces
and x* the dual space of X. Then L(x,Y) stands for the Banach space of bounded
linear operators A : X -+ Y endowed with the norm llAll : sup11";1:1 llAxll,
L(X) :: L(X, X),and 1 (or Ix) is the identity operator on X. For e e t(X), tne
spectrum o(A) of A is defined by o(A) : C\{s e Cl(s/ - A)-t € LG)} and the
spectral radius of A is denotedby p(A):: sup{lsl ls e o(A)}. sequences of elements
in a Banach space will be denoted by (z;)i.N or, more briefly, (z;).

2. Robust Stability of Linear Systems in Banach Spaces

In this section we extend to Banach spaces the general framework developed in [5] for
the study of robust stability of discrete-time systems under affine multi-perturbations
(see [13] for a similar development). we consider the discrete-time linear system

x(k - l  l )  :  Ax(k) ,  k  e N,  x  e X,  (1)

where X is aBanach space overK, K - Rorc, and A is aboundedlinearoperatoron
X, that is, A e L(X).Wo say that the system (l) is Schur stable if

p(A)  < L

Then it is well known that the system (l) is Schur stable if and only if there exist c > I
and0 < cv < 1 suchthat

l l A " l l  < c a e ,  k € N 6 ,

(see, e.g., [12]).
Assume u, Y arc complex Banach spaces and A is Schur stable and subiected to

afflne perturbations of the form

A  +  A +  D L E ,  A ,  e D .  e )

Here, D e L(U, X) and E e L(X,Y) are given bounded linear operators and
D c L(Y, u) is a given subset of disturbance operators. As in [5], we introduce the
following definition of stability radius:

Definition 2.1. Given a subsetD c L(Y, u), the stability radius of the system (t) with
respect to perturbations of the form (2) is defined by

rp(4,  D,  E)  :  in f { l lA l l  I  A e D,  p(A + DAE) > 1} .  (3)

We now proceed by showing how the above general definition will be specified for some
perturbation classes of particular interest.

Let Y; , Ui (i e N) be Banach spaces. Assume that Ei € L(X, y), D; e L(Ui , X)
(, e N) are given bounded linear operators. We consider perturbations of the following
type:

A " - +  A + l o i t i E ; ,
; - l

(4)
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where A; e L(Y; , u;), i e N are unknown bounded linear operators defining the scaling
of the parameter uncertainty. The uncertainty model

N

A * t  A + ln i t ;n ;
i : l

is clearly the particular case of (4) where (J; : yi : {0}, t > N. To ensure conversence
of the series in (4), we assume

(s)

oo

I tto,ll < oo, sup llE;ll < oo,
i eN

' (6)

and the perturbation operators A; are uniformly bounded:

sup llA; ll < m. e)

We show that the above perturbation class can be represented in the form of (2). To this
end, let us consider the vector spaces of all bounded sequences

I l  :  {(u). f l  Urt ui € (J;,sup l lz; l l  < oo}, (8)
i€N i€N

Y : {(y). fI 
y, I yi e yi,sup lly; ll < oo}. (9)

i eN  i eN

It is easy to check thatu, Y are Banach spaces with respect to the norms ll(u)llu =
suPieN llz; lland ll(y;)llv : SUpieN lly; ll.Letusdefinethelinearoperators E : X I y,
D:U ----+ Xbysett ing

Ex = (E;x); .p,  Vx € X, D(zi) ; .N : f  O,u,,  V(u;) ;Ey e U. (10)
j : l

It follows from (6) that E e L(X,y), D e L(U,X). Further, as in [13], for each
sequenceof operators A,;  e L(Yi,U;), i  e N,wedef ineanoperator L:y -----> Uby
putting

A((y;); .N) :  (A;);) ieN, (y;);eN e Y, (1  l )

and we denote A : ffi.N A;. It is easy to see that, under the assumption (7),
L e L(Y, U) and

l lal l  :  sup l lA; l l  .

Using the above definitions, the perturbation model (4) can be rewritten in the following
form:

A ̂ . :  A+ DLE,  L  eD1 ,

D1 : : {A, :  f f  l , l  A i  e  L(y ; ,U) ,supl lA; l l  <  m}.
i eN  i €N

where
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Therefore, in this case, the stability radius ofthe system (1) is defined by

rp'(A' D' E)::-;lf; l l,^1',i; ' l]. 
L(yi,ui),, € N, suprA;r < m,

i €N  f eN
@

p(A+f Orl ; r ' r1 t  t1.  (o2)
i : l

Consider now another perturbation class of interest. Let A, Ai e L(X) (t e N) be given
bounded linear operators such that A is Schur stable and

g
)  . l lA i l l  .  m.  (13)
I : l

Suppose A is subjected to affine perturbation of the form

A * A + i a , a , ,  r , 4 )
i : 1

where (6;);6p is a sequence of unknown scalar perturbation satisfying the following
condition:

sup ld; l  < oo.  (15)
t €N

The affine perturbations (14) can also be represented in the form (2). To see this, denote
by Y the Banach space of all bounded sequences in X:

Y : {(xi) lxi e X, i e N, sup l lrr l l  < oo}
i €N

(withthenorm l l (x;) l l  :  suPieN l l r ; l l )anddef ineoperators E e L(X,Y),D e L(Y,X),
A, e L(Y, Y) by setting

Ex :  (x i) ,  x i :  x,  Vi  e N, Yx e X
@

D(x;)  -DO,* , ,  Y(x)  eY (16)
i : l

A(x;) : (6;.r;).

Then (14) can be rewritten in the form:

A  " -  A +  D L E ,  A ,  e D 7 7 ,

where the perturbation class 277 is given by

D r r :  { f l a ; r 1 6 ;  e  C ,  I  e  N ,  s u p 1 6 ; l <  o o } .  ( 1 7 )
i € N  

i € N

Thus, in this case, Definition 2.1 of the stability radius is reduced to

ro, , (A,  D,  E)  : :  r (A;  (A;) ;eN)

:  in f {supld; l  l6 ;  e  C,  supl6 i l  <  oo,  p(A+iu,o, ,  -  r r .  (18)
i eN  i €N  i : l

We note that (14) can also be represented in the form (4) by setting Yi : [J; : f,,
Di : Ai, Ei : I, and A,iu; : 8;ur for all i e N.

Motivated by the above examples we introduce the following:



Stability of Linear Infinite-Dimensional Systems 157

Definition 2.2. Let Yi, Ui (i e N) be Banach spaces. Let Banach spaces of sequences
Y, U be defined by (8) and (9). A subset D c L(Y, U) is called a perturbation class of
b lock-d iagonaloperators i f thereexis tsasubset lCNsrzchthatY;-U; for i€N\" /
and

D : t f l A i l A i  e D ; . i
i eN

where

I  L t Y i , U i )  i f  i  e  J
D i : l c i u  " ' f i e  

N \ / .

Thus, the classes Dr and 277 considered above correspond to the two extreme cases
where J : N and J : lTl, respectively. As in [5], given a block-diagonal class
D c L(Y, U) we define the ptp-function on L(U , Y) by setting, for each M e L(U , Y) ,

po(M) :  t inf{ l lAl l  I  L,  eD, det(Iu -  M L) :  0} l - r (20)

Then the following theorem is the extension of Proposition 3.7 in [5] to systems in
Banach spaces and can be proved similarly (see, e.g., [13]).

Theorem 2,3. Suppose the system ( I ) is Schur stable and subjected to ffine perturba-
tion of the form (2), where D is a perturbation class of block-diagonal operators. Let
G(s) : E(s I - A)-r n be the transfer function defined on the resolvent set C\o (A).
Then

rrt(A; D, E) : lsup 1"c2(G(s))l-r
l s  l :1

(2r)

3. Positive Systems in Banach Spaces

In the finite-dimensional case (i.e., when X : Rn), the system (1) is called positive if
and only if the matrix A is nonnegative, i.e., A e Rli'. Positive systems in Rn admit an
interesting feature that their real stability radius is equal to the complex one and can be
computed easily in certain cases (for instance, in the case of single affine perturbations
and the case of block-diagonal perturbations of class D11) $ee, e.g., [5]). Our objective
is to generalize these results to positive systems in Banach spaces. For the convenience
of the reader, we briefly summarize some notions and basic facts we need about Banach
lattices and positive operators. We refer to 16,7,9) for more details.

Let Xp be a real Banach lattice, X :: Xn * r Xp, the complex Banach lattice obtained
by complexification of Xp and Xfi : 1x € Xnlx > 0). Then Xfi is a closed convex
cone in Xn . The modulus of x e Xp defined by lxl :: sup{x, -;} satisfies the lattice
norm property, that is,

e N, sup l lA; l l  < oo),
i €N

(1e)

l r l  < l y l  +  l l x l l  . l l y l l ,  V x , y e  X p (22)
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whichimplies ll lxl l l : l lrl lforallx e Xp.Forz - x+ty e X,themodulusofzdefined
by lzl : sup{l(cos@)x + Gind)yl i 0 < Q < 2r} e Xp satisfies llzll : l l lzl l l. Let
X, Y be complex Banach lattices which are complexifications of Xp, Ip, respectively.
Then the bounded linear operator A e L(X,I) is called real if AXn C /n. A is called
positive(A > 0)if AisrealandAXfi C ffi.Thesetof allrealandpositiveoperatorsin
L(X,Y) are denoted, respectively, by LR1X, Y) and L+(X,I). If sup,.,=,lAzl e Yn,
for every x e X{, then there exists a unique operator lAl € L+ (X, Y) such that

lAlx :,:[n. lA.l, x e xd'.

The following monotonicity property of positive operators will be used frequently: Let
A e L+ (X, Y) and B e L(X ,I) such that lB I exists, then

0 < l B l  < A +  l l B l l  < l l  l B l  l l  s l l A l l  +  p ( B ) < p ( l B l ) < p ( A )  ( 2 3 )

(the second implication is a consequence of the Gelfand-Beurlin formula for spectral
radius). Let (1p,);6p be a sequence ofreal Banach lattices. Then it is easy to show that
the vector space of all bounded sequences

Ip :: {(y;);.* . II Yp; I sup lly; Il < oo}
, €N  i eN

endowed with the norm ll (y; ) ll : suPieN ll y; ll and the order relation

(vi) < (!;) # vi < ii (t e N)

is also a real Banach lattice satisfying

sup{(},), (!;)} : (sup{y;, !;}) V(y;), (!;) e Yp.

In particular, we have

l$ i ) l  :  ( lv ; l ) '  v (v ; )  e  Ya '

(24)

(2s)

Let Y :: In * I Yn be the complex Banach lattice obtained by the complexification of
Ip. Then it is easily seen that Y is isometrically isomorphic to the Banach space of all
bounded sequences

ff 
y' ,: {(z)l zi e Yi, i e N, sup l lzi l l  < oo},

i €N

where I; : Yn; * l Yru is the complexification of Yp;. Therefore, in what follows, given
a sequence of complex Banach lattices I;, we shall identify, without loss of generality,

II;.N {' with the complex Banach lattice Y .
Let X be a complex Banach lattice. We consider the discrete-time linear system

x(k -l l) : Ax(k) k e N, x(k) e X, (26)

where A e L(X) and A is Schur stable. System (26) is called positive lf A e L+(X).
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Suppose Yi,Ui, (t e N) are complex Banach lattices and E; e L(X,Y;), Di €
L(Ui,X), (t e N) are given bounded linear operators satisfying the conditions (6).
We define the Banach spaces of bounded sequences U, Y by (8) and (9) and the
operators E e L(X,Y), D e L(U,X), A :: fI;.N A,; e L(y, U) by (10) and (11).
LetD C L(Y,U) be a perturbation class of block-diagonal operators. We define the
following classes ofreal and positive perturbations:

Dp --

T t .  -u + -

fI o' t a,i e LR(Yi,u;), i eN, sup lla; l l  = ml,
, €N  i eN

f I  o,  t  L i  e L+(Y1,U),  i  eN, sup t t l , l l  .  ml .
i € N  i € N

(27)

(28)

and

It is clear that 2p, Da are linear subspaces of l(Y, U) and

D +  C D n  C D .

Therefore, from Definition2.l, we have

ro(A; D, E) < rp*(A; D, E) < ron(A; D, E). (29)

The following lemma gives a technical criterion under which equalities of the stability
radii hold.

Lemma 3.I. If D C L(Y,U)isaperturbationclassofblock-diagonaloperators,then

fora l l  A:  f f ; .N L, ;  eDandy -  (y)  ey, thereexists  A:  f ] , .n  A, i  eD,sat is fy ing

A ) :  A y ,  l A l  e  2 1

i l t ^ | t  <  i l ^ i l ,
where lLl: [i.n lAi l.

Proof. The proof is similar to the one in [5]. Suppose A : fI;.NA; e D,where
L i  e  L ( Y i , U ; ) , i  e  N , a n d  y :  ( y i )  e Y , !  f  0 . A s s u m e t h a t A y  :  ( u ) :  ( A ; y i ) .
Then u; : Ltli, j e N and we define

A : J I A I ,
i eN

where
I  A i  i f i e  N \ . r

- l
l , : l 0 . i f i e J , . ) i : 0

t  f f i  i f  i e J .  y r * 0 ,
fi e (Yi)* is a linear functional on { such that llf;ll : 1 and fi}i) : lly;ll (by the
Hahn-Banach theorem). Clearly, Aiyi : ui,llLill < llA; ll, I e N and so Ay : Ay. It
is obviousthat, forevery i € N \ "I. lAilexists and lllA;lll : l lA;ll. Since A; is of rank
one for i € J,itfollows fromLemma 3.4 in [1] that lA;l exists and ll lA;l l l : l lA;ll.
Sowehave lAl  :  f ] , .N 1A,;1 eO* and l l  lAl  l l  :  sup;er. l l l  lA; l l l  :  supjeN l lAi l l  .
sup;eN llA; ll : llA ll. This completes the proof. r

We are now in a position to prove the following result.
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Theorem 3.2. Let the systems (1) be positive and Schur stable. Let Ei e L+(X,Y),
Di e L+(Ui, X), i e N, be given such that (6) is satisfied, and let D, E be given by
(10). Assume A and, for eachj e N, either D; or Ei are comp(tct operators. IfD is a
perturbation class of block-diagonal operators, then

re(A,  D,  E)  :  ro*(A,  D,  E)  :  rD*(4,  D'  E) '

Proof. The case rp(A, D, E) - oo is trivial. Suppose rp(4, D, E) < oo, then by
(29) , i t  suf f ices to show rhatry t* (A,D,E) < rp(A,D,E).Let  A :  f I i .N L i  e D
be a destabilizing disturbance, that is, p(A + DLE) > 1. Since A + DLE :

A+I3r D;L.;E;isacompactoperator,thereexistsacomplexnumberaandanon-zero
vectorxs e X suchthat  (A *  DL.E)xs:  d.xo, la l :  p(A+ DLE).  ByLemma3.1,
thereexists  A:  f I , . *  L . i  eD suchthat  A,nro-  LExs, lA l  :  f l ; .n  1A;1 e 2* ,  and

ll lA lll S llA ll. We will show that lA I is also a destabilizing disturbance. Indeed, we have

l@ + DLDxI: l (A +iro,t ,z;))xl  < lAxl +l  i ta,A,r,)"1, Yx e X.

Since X+ is closed, it follows that I I=1(D iLtE)xl S IEr l(DiLiE)xl, Yx e X.
Since A, Di and Ei Q e N) are positive operators, we have

t (A + DLE)xl  < Alx l+ i to, lA; lEr) lx l
i : I

:  (A + i ,r , tAi lr i )) lx l
i = l

:  ( A  +  D I A I E ) l x l

for every x e X. It follows from Lemma 3.5 in [1] that p (A + DILID > p (A + D LD.
Moreover,  s ince (A + DL,Elxs:  (A + DL,E)xo:  otxo;  wehave p(A+ DIAIE) >
lal > 1. Therefore, by definition, we have

rp,(A;  D,  E)  < rp(A;  D,  E) ,

completing the proof. r

As it will be shown in Theorem 4.4 below (when M : 0), in the case where N : 1,
the above theorem remains valid without the compactness assumption (see also [1] for
another proof of this fact). This is also true for the case where D : D t t which is defined
by(17) .Toseeth is , le t  XbeacomplexBanachlat t ice,  le tA,Ai  e L+(X) ( t  e  N)
be given such that A is Schur stable, and IEr IlAr ll < m. Suppose A is subjected to
perturbations of the form

A ̂ .+  A+ f  a ;a , , (30)
i : 1

where (6;);6p are unknown scalar sequences satisfying suP;eN l6il < oo . Let Y be the
Banach space ofbounded sequences in X:

Y : {(x i)  i  x;  € X, t  e N, l l (x i) l l  ' :  
: :$ 

l lx; l l  < oo}.
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As noted at the beginning of this section, Y can be considered as a complex Banach
lattice which is the complexification of Ip :: {(x;) : x; e Xn} .Then, as shown in the
previous section, (30) can be represented il the form

A ^ . + A + D L E ,  A , e D 7 1 ,

whereE e L(X,Y),D e L(Y,X),L e L(Y, Y)aredefinedby(16)andtheperturbation
classDlT is given by

Drr  :  { f la , r  l3 ;  e  C,  I  e  N,  sup16; l  <  oo} .
i eN  i eN

It is easy to verify that E, D are positive operators: E e L+ (X, Y), D e L+ (Y, X).
Denote by D!, andD!, ne subclasses of real and nonnegative perturbations obtained

by putting, respectively, 6; € R and 6; > 0 in the formula defining D77.Let

G(s)  :  E(sI  -  A)- t  n

be the corresponding transfer function. Since A e L+(X), it is well known from the
spectral theory of positive operators (see, e.g., [6]) that p(A) e o(A) and (s1 - A)-1 e
L+6) if and only if s > p(A). This implies G(s) e L+(Y,Y) for all s > p(A).
Moreover, the following monotonicity property holds:

t z>h>  p (A )  +  G( t )>G( t )  >0and l l c ( r r ) l l  z  l l c ( r z ) l l  ( 31 )

(see [5, Lemma 4.1] and [, Proposition 3.9]).

Theorem 3,3. Let A, Ai e L+ (X), i e N, and A is Schur stable. Suppose A is subject
to affine perturbations of the form (14) and denote by rg, tR, r| the stability radii of A
corresponding to perturbation classes D t t , Dlt ,D!, of complex, real, and nonnegative
pe rturbations, re sp ectiv ely. Then

1
r c : r y - r + : p ( C ( l D (32)

Proof. It is clear that
/ c < r R < r + .

Suppose rc < *oo and let A : fI;.N 6iI e D17 be a destabilizing operator, that is,

@

p(A + DLE) :  p(A+ f  A;a, ;  Z t .

Set

Then we have

A : fI  ls; lr eD!,.
t €N

l (A + DLE)xl < lAxl + l(DAE)xl .
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Since A, Ai e L+(X) and Xfr is closed in X, we can derive

l (A + D^E)xl  < Alx l+ i  la,  l lAix l  <Alx l  + i , , r ,  I  A) lx l

:  (A + |  tar t  A;) lx l :  (A+ DLDlxl ,  yx e x.  (33)
i : I

Therefore, from Lemma 3.5 in [1], it follows that

p ( A + D L D > p ( A + D L E ) > r

sothat A is destabilizing. Moreover, since llAll : llAll : sup;eN16;1, weobtainby
definition that

r+  S  rc '

This establishes the first two equalities in (32). Assume r.r < *oo, otherwise there is
nothing to show. By definition, for every e > 0, there exists A e Df, such that

l lA l l  <  ra  *  s ,  ss : :  p (A +  DAE)  >  1 .

Since A + DLE € L+(X), it follows thar s6 e o(A + DLE) (Perron-Frobenius
theorem), and moreover, J0 is contained in the approximate point spectrum of A + D LE
(see, e.g., [7, Proposition 2.2]). Therefore, there exists a sequence xn e X such that
llx,ll : 1, lls6rn - (A + DLE)x,ll --+ 0 as n --> oo. Since (se/ - A) is invertible, we
can derive that

ll.r, - (so/ - A)-rDLEx,ll -+ 0, n -+ oo (34)

and hence, llEx" - G(ss)A,Exrll -+ 0 as n --, oo. Since llx,ll : 1, from (34), it
follows that there exist c > 0 and a subsequence x n1, of x, such that llExnoll > c. Setting
yt : Ex"olllExroll, we obtained that llyy. - G(s6)Ay1ll -+ 0 as k + oo, which means

I e o(G(s6)A)

and therefore, p(G(so)A) > 1. On the orher hand, since L, e Dl,, for any y e yf ::
{(x) | xi e Xf,}, we have

Ay :  (6;x;)  5 sup 16; l (x;)  :  l lAl ly .

Since ss > | > p(A), it follows, in view of (31), that

l lAl lc(1) > l lAl lG(s6) > G(s6)A > 0,

which, by (23), yields

l lA l lp (c ( l ) )  :  p ( l lA l l c (1 ) )  >  p (G(so)A) )  >  t .

Hence, r+ > llAll - e > lp(G(l))l-t - e, whichimplies

1
f , > -' -  -  p ( G ( l ) ) '
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On the other hand, since G(1) > 0, it follows that s1 :: p(G(1)) is contained in
the approximate spectrum of G(1). Therefore, there exists a sequence ln inY such that
lly,ll : 1 and lls1y" - G(l)y"ll -+ 0 as n --> &. Define the disturbance operator
L1 e Dll by setting

Ar (xi) : r l l  (.rr), (x;) e Y,

then we have lly, - G(l)L1y"ll -+ 0 as n --> oo. This implies I e o(G(1)A1) which
is equivalent to I e o(A 1- DL,1E). Thus, A1 is a destabilizing operator, and hence, by
definition,

1
l l A r l l  : n 6 1 1 ; - r + .

Consequently, ra : [p(G(l))]-I, concluding the proof. r

We illustrate the above result by a simple example. Consider the linear discrete time
system

x ( k * l )  :  A x ( k ) ,  f t  e  N ,  x ( k )  e 1 2 ,

where the operator A : lz -----> /2 is defined by the infinite matrix (ar-) with anm : 0,
n + m and ann : 112", n, m e N. It is clear that A e L(l),A is a compact operator,
and o(A) : {l/2" I n e N}. Therefore, the system is Schur stable. We consider the
perturbed system

p

x(k-r  r ) :  (A + l t i ,e . i1x{b,  k  e N,
i : L

where A; : @f)) (withali): l if n: m: i, othenwise, ol'):0) aregiveninfinite
matrices and p e N is given. By Theorem 3.3, the perturbed system remains Schur stable
for all (6;) e CP such that maxl<;<p 16; | < llpGOD : I12. Finally, we consider the
perturbed system 

@
x(k * l ) :  (A + l l iL i \*1t ) ,  k e N,

i :  I

where A; : @f)) @ith @f)) : Ol2)i 7f n : m: l, otherwis e, 
"f) 

:0). Then this
system is Schur stable for all sequences (6;), 6; e C such that sup;.p 16; | < l/p(G(1))
-  l .

4. Systems Under Fractional Perturbations

LeI X, Y, U be a complex Banach lattice with real parts XR, YR, UR, respectively.
Assume the linear infinite-dimensional system

x ( k * 1 ) : A x ( k ) ,  k e  N ,  x e  X

is subjected to non-linear fractional perturbations of the form

(3s)

r63

A .-+ A(A) :: A * DL(I - M L)-r E, (36)
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where D € L(U,X), E e L(X,Y), M € L(U,Y) are given bounded linear

opefators and A € L(y, U) are unknown bounded linear perturbation opentots. Out

consideration in this section is motivated by the recent results due to Shafai et al. [10]
for finite-dimensional systems. It turns out that some of the ideas behind the proof of

results inl2,3,5l can be used to treat the case of fractional perturbations.

Let A e f,(X) such that p(A) < 1. We define the complex and real stability radii of

A b v

rc(A; D, E, M) : :  inf{ l lAl l  I  L e L(Y,U), ei ther 1 e o(ML) or p(A(A)) > 1} '
rn(A; D, E, M)::  inf{ l lAl l  lA e 4n(I ,  U),  ei ther I  e o(ML) or p(A(A)) Z 1},

where we set inf 0 :: oo. Obviously,

rc(A;  D,  E,  M) < rn(A;  D,  E,  M). (37)

Let G(s) '.: E(sI - A)-1o € L(U,I), s > p(A), denote the transfer function

associatedwi thA,  D,  E.WesetG(s)  ' . -  M lG(s) ,s  > p(A) . I t isc lear thatd(r ) is

analyt iconC\D,U:  {s  e C. ls l  < 1} .Therefore, i t fo l lowsthat , foreach f  eY*and

u € (J,the function ----+ f (G(s)u) is analytic on C \D. Sincelimlsl-oo lf GG)u)l
exists, we obtain, by the maximum principle, that

and consequently,

i lpi l/(G(r),)l : 
il11l lf (Gtsra)1.

max l lC(s) l l  -  m44 l lG(s) l l  .
l s l z l  l s l : t

(38)

(3e)

In order to give the characterization of stability radii of system (35), we need the following

two lemmas.

Lemma 4.1. LetY, U be Banachlattices, M e L(U,Y).Then

inf { l l l l l  I  A' e L(Y,(J), I  e o(M L)} :  
h

Proof. Itis easy to see that, if L e L(Y, U) satisfles llA ll = | lllMll, then (1 - MA) is
invertible. It follows that

i n f  t l l A l l  l L e L ( Y , ( J ) , r e o ( M L ) \ z  *-  
| M t l

Fixing s > 0, from the formula llMll : suPzeu,llu ll:t llMull' there exists us € U,

llzoll : 1 such thx llllMusll < llllMll * e' By the Hahn-Banach theorem, there
exists a linear functional f e Y* such that f(Mud : llMuoll, ll/ll : 1. Set
A1 : :  f ( . )uo / l lMuo l l  e  L (Y,  U) .  Wehave l lAr l l :  r l l lMuo l l  <  t l l lM l l  *e  and
Lt M us : a0. Hence, I e o (M L,) and ll A1 ll < I I ll M ll * e, completing the proof. r

From the above proof, we observe th aL, if M e L+ (U, Y), then for any e > 0, one can
choose t e L+(y, U) suchthat ll^ll < OlllMll) *e and I e o(ML).Indeed, since
M e L+(U,I) , thereexists a6 e U+ suchthat l lzol l  :  l  and l l l lMuol l  < l l l lMl l+e'
Proceeding further as in the proof of the previous lemma where linear functional / is
chosen, by the Krein theorem [9], to be positive (i.e., ,f (y) > 0 for all y e Y+), we
obtain A € L+ (Y , U) satisfying the required property.
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Lemma 4,2. Let L, e L(Y , U) be such that (I - M L) is irwertible. Then o (A(L)) c D
i f  andonly i f  ( I  - (M+G(s))L) is i rwert ib leforevery s e C,  ls l  Z 1.

Proof Assumethesystem(35)isSchurstable,thatis, o(A) C D.Itfollowsthat(s1-A)
is invertible for every r € C, lsl Z 1. Therefore, we can write the following obvious
equivalent relations:

o(A(A))  c  D <+ sI  -  A-  DL(I  -  ML)- lE is inver t ib lefors e C,  ls l  > 1

+> 1-  (s I -  A)-1(DA(I  -  ML)-r )E is inver t ib lefors € C,  ls l  > 1

<+ 1-  E(sI  -  A)- rDL(I  -  Mn1-r  is inver t ib lefors e C,  ls l  > 1

<+ 1 - M L - E(sI - A)-t DLis invertible fors e C, lsl Z 1

<+ I - (M + G(s))A is invertible for s e C, lsl > 1.

This concludes the proof. I

Now, we are prepared to give the following characteization of the complex stability
radius of positive systems (35) under the perturbations of the form (36).

Theorem 4.3, Let the linear discrete-time system (35) be Schur stable. Assume D e
L(U,X), E e L(X,Y), M € L(U,Y) are given and A is subjected to nonlinear

fractional perturbations oftheform (36). Thenwe have

rg(A; D, E, M) :-t" 
{ #, supt,t:r l lM + G(s)l ll (40)

Proof. Suppose A e L(Y, U) is a destabilizing perturbation operator. If 1 - MA is not
invertible, then by Lemma 4.1, we have

Otherwise, from Lemma 4.2, therc exists a complex number so, lsol > 1 such that
I - (M * G(so))A is not invertible and so, again by Lemma 4.1, we have

1
i lai l  >

l lM + G(so)l l  
-

1

supl , , r  l lM + G(s) l l

supt"t:r l lM + G(s)l l
= - i n { l

. l M l l suplsl:r l lM + c(s)l ll
Consequently, by the definition rg(A; D, E, M), we have

Furthermore, by the definition of supremum, for any € > 0, there exists s1 e C, ls1 | : I
such that

1

l lM + G(sr) l l

q

+ -
2sup1"1:1 l lM + G(s) l l
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This implies, in combination with Lemma 4. 1 , that there exists an operator A 1 e L(Y , U)

such that I - (M * G(sr))Ar is not invertible and satisfying

I
<  l l A r l l  <

l l M + G ( s r ) l l  
-  "

1

l lM +  G(sr ) l l
+s .  (41 )

suptsl :r  l lM + G(s) l l

suprsr: l  l lM + G(s) l l  
'

lMl-r is obvious from the definition and

+ - <' a

fi (I - MAr) is not invertible (or, equivalently,I e o (M L,) ), then it follows from the

definition that rc(A; D, E, M) < llAr ll. If, on the contrary, (I - M Li is invertible,

then by Lemma 4.2, o(A(A.)) eD, which means that A1 is a destabilizing operator,

and hence, by the definition, we have again rc(A; D, E, M) < llAr ll. Thus' from (41)

and in view of arbitrariness of e > 0, we obtain

rc(A;  D,  E,  M) <

Since the inequality rc(A;D,E,M) <

Lemma 4.1, we finally obtain

rc\A: D, E, tur) <,ni" {#, ,"p";T#TZGiil }

The proof is complete. I

In the case of positive systems, the following theorem provides a computable formula

for the real stability radius.

Theorem 4.4. Let A e L+(X) and let the linear discrete-time system (35) be Schur

stable. Assume D e L+(U, x), E e L+(X,Y), M € L+(U,Y) are given positive

operators and A is subject to nonlinear fractional perturbations of the form (j6). Then

we have

rc(A; D, E, M) - rp(A; D, E, M): 
*+-Ctf

Proof.  Since p(A) < l ,wehave,by(31),  G(1) > 0andsoG(1) + M > M > 0'This

implies, by virtue ot (23),llM + G(l)ll z llMll. Therefore, by Theorem 4.3, we have

r c ( A ;  D ,  E ,  M ) : (42)
suptst:1 l lM + G(s) l l

Since M + G(1) z 0, from the observation we have made after the proof of Lemma

4.1, it follows that, for any s > 0, there exists A6 € L+(Y, U) such that llA6ll <

ll lM + G(1)ll l-1 *e and I e o((M + G(1))40). Suppose (I - ML's) is invertible,

then, by Lemma 4.2, o (A(A,d) e D. This implies by definition that

1
rn(A: D, E, M) < l l^ol l  < 

l l l , , f  + c(l) l l  
+ t

1
rv(A; D, E, M) < 

l lM + GGll l

which implies

(43)
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Further, since p(A) < 1, foranyr € C, lsl : 1, the operator G(s) : E(sI - A)-rn
can be expanded as

t g  t r i
G ( s ) : -  )  E - D .

, a  s r

We derive

o o  t i  m  t i

l ( M  - r  G ( s ) ) u l  = l M u l +  I  t r  \  n r l  :  M l u l +  ) - E  l l l  o l u l
-  

j _ - J
l : U  l : 1 ,

:  Mlu l  + i tnd 'o) lu l :  (M+ c( r ) ) lz l
l =0

for every u < U. This yields

l lM + G(s) l l  <  l lM + G( l ) l l

for all s e C, lsl : 1. Therefore, by definition and @2) and (3),

-  -  l ^ -  >  rR(A:  D,  E .  M)  >  rc (A;  D.  E ,  M)
l l M + G ( l ) i l  

' -  
| M  + c ( l ) t l

concluding the proof.
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