Vietnam Journal of Mathematics 27:2 (1999) 153-167 =
Vietnam Jourmnal

of
MATHEMATICS

® Springer-Verlag 1999

Stability of Linear Infinite-Dimensional Systems
Under Affine and Fractional Perturbations

Nguyen Khoa Son! and Pham Huu Anh Ngoc?

Vnstitute of Mathematics, P.O. Box 631, Bo Ho, Hanoi, Vietnam
2Department of Mathematics, University of Hue, 32 Le Loi Str., Hue, Vietnam

Received October 28, 1998

Abstract. In this paper the robust stability of the class of positive linear discrete-time systems in
Banach space under affine multi-perturbations and nonlinear fractional perturbations is studied
via the notion of stability radii. We show that for this class the complex and the real stability radii
coincide and can be computed by simple formulae. An example is provided to illustrate the result.

1. Introduction

In this paper we study the robust stability of infinite-dimensional, positive, discrete-time
systems subjected to affine and nonlinear fractional perturbations. Our aim is to
generalize some results of [5] and [10] to systems in Banach spaces.

Recall that the main problem in the study of robust stability of the dynamical system
x(k + 1) = Ax(k) under affine perturbations is to characterize and compute its stability
radius which can be defined as the smallest (in norm) complex or real perturbation A;
for which the perturbed system

N
x(k+1)=(A+ ) D;AE)x(k),
=l

is unstable. Here, D;, E; are given matrices defining the structure of perturbation.
We mention that in the case of single affine perturbation (that is, when N = 1), the
robust stability of infinite-dimensional, positive systems was considered first in [1] for
discrete-time systems and, quite recently, in [2] for continuous-time systems. In this
paper we shall deal with the more general case when N = oo. It will be shown, as in
the case of single perturbation, that for positive systems, real and complex stability radii
coincide and can be computed by a simple formula which extends the formula of [5] to
positive systems in Banach space.
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The following notations will be used throughout this paper. Let C and R be
the set of all complex and real numbers, respectively. Define N = {1,2, ...},
No = NU{0},R. = {r € R|r > 0}. Let X, Y be real or complex Banach spaces
and X* the dual space of X. Then £(X, Y) stands for the Banach space of bounded
linear operators A : X — Y endowed with the norm ||A| = SUp| =1 [l Ax]],
L(X) = L(X, X), and I (or Ix) is the identity operator on X. For A € L(X), the
spectrum o (A) of A is defined by 0 (A) = C\{s € C|(sI — A)~! € L£(X)} and the
spectral radius of A is denoted by p(A) := sup{|s] | s € o(A)). Sequences of elements
in a Banach space will be denoted by (u;);en or, more briefly, (u;).

2. Robust Stability of Linear Systems in Banach Spaces

In this section we extend to Banach spaces the general framework developed in [5] for
the study of robust stability of discrete-time systems under affine multi-perturbations
(see [13] for a similar development). We consider the discrete-time linear system

x(k+1) = Ax(k), keN, xeX, (1)

where X is a Banach space over K, K = R or C, and A is a bounded linear operator on
X, thatis, A € £(X). We say that the system (1) is Schur stable if

o(A) < 1.

Then it is well known that the system (1) is Schur stable if and only if there exist ¢ > 1
and 0 < o < 1 such that

IAF] < ca®, ke Ny,
(see, e.g., [12]).

Assume U, Y are complex Banach spaces and A is Schur stable and subjected to
affine perturbations of the form

A~ A+ DAE, AeD. )

Here, D € L(U,X) and E € L(X,Y) are given bounded linear operators and
D c L(Y,U) is a given subset of disturbance operators. As in [5], we introduce the
following definition of stability radius:

Definition 2.1. Given a subset D C L(Y, U), the stability radius of the system (1) with
respect to perturbations of the form (2) is defined by

rp(A, D, E) =inf{|A|| | A €D, p(A+ DAE) > 1}. 3)

We now proceed by showing how the above general definition will be specified for some
perturbation classes of particular interest.

Let ¥;, U; (i € N) be Banach spaces. Assume that E; € £(X,Y;), D; € L(U;, X)
(i € N) are given bounded linear operators. We consider perturbations of the following
type:

[o0)
A->A+ZD,-A,~E,-, 4)

i=1
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where A; € L(Y;, U;),i € N are unknown bounded linear operators defining the scaling
of the parameter uncertainty. The uncertainty model

N
AwA—l—ZDiA,'E,' 5)

i=1

is clearly the particular case of (4) where U; = ¥; = {0}, i > N. To ensure convergence
of the series in (4), we assume

o0

Y IDill < oo, supllE;f| < oo, (6
i—1 ieN

and the perturbation operators A; are uniformly bounded:

sup [|A; || < oo. )]
ieN

We show that the above perturbation class can be represented in the form of (2). To this
end, let us consider the vector spaces of all bounded sequences

U ={) e [[Uilui € Uy, sup Jus || < o0}, ®)
ieN ieN

Y={one[[%lyet, sup 3] < oo). ©)
ieN i§

It is easy to check that U, Y are Banach spaces with respect to the norms || (u;)|ly =
sup;en llui |l and [|(yi)[ly = sup;en lly:|l- Let us define the linear operators £ : X — Y,
D : U — X by setting

o
Ex = (Eix)ieN, Vx € X, D@i)ieN = ) Diui, Y(u)ien € U. (10)

i=1

It follows from (6) that E € L(X,Y), D € L(U, X). Further, as in [13], for each
sequence of operators A; € L(Y;, U;), i € N, we define an operator A : Y — U by
putting

A((¥i)ieN) = (Aiyi)ieN, (Vi)ieN € Y, an
and we denote A = [];.yA;. It is easy to see that, under the assumption (7),
A € L(Y,U) and
IAll = sup [[A;]f .
ieN

Using the above definitions, the perturbation model (4) can be rewritten in the following
form:
A~ A+ DAE, AeDy,

where
Dpi={(A=[]Ail A€ L, U, sup Al < oo}
N

ieN =
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Therefore, in this case, the stability radius of the system (1) is defined by
rp, (A, D, E) := r(A; (D;, Ej)ieN)
= inf{sup || A;ll| A; € LT, Ui),i €N, sup|A;] < o0,
ieN ieN

o0
p(A+ ) DiAE) 2 1). (12)
i=1
Consider now another perturbation class of interest. Let A, A; € £(X) (i € N) be given
bounded linear operators such that A is Schur stable and

o0
D Al < oo. €13)
i=1

Suppose A is subjected to affine perturbation of the form

o0
AwA+25iAi, (14)
i=1
where (8;);eN is a sequence of unknown scalar perturbation satisfying the following
condition;
sup |3;| < co. (15)
ieN
The affine perturbations (14) can also be represented in the form (2). To see this, denote
by Y the Banach space of all bounded sequences in X:

Y ={(x;)|xi € X,i € N, sup x| < o0}
ieN
(with the norm || (x;) || = sup;cn ||x: ||) and define operators E € £L(X,Y), D € L(Y, X),
A € L(Y,7Y) by setting

Ex=(x), xi=x,VieN, VxeX

D(xi) =) Aixi, ¥(xi) € Y (16)

i=1
Ax;) = (8ixi).
Then (14) can be rewritten in the form:
A~ A+ DAE, A € Dyy,
where the perturbation class Dy is given by

Dy ={[ 8118 €C, i eN, sup|;| < co}. (17)
ieN 2SN

Thus, in this case, Definition 2.1 of the stability radius is reduced to
rp, (A, D, E) :=r(A; (A;)ieN)
o0
= inf{sup|8;| | 8; € C, sup|§;| < o0, p(A + Z&Ai) > 1} (18)
ieN ieN =i ‘
We note that (14) can also be represented in the form (4) by setting ¥; = U; = X,
D; =A;,E; =1,and Aju; = 8;u; foralli € N.

Motivated by the above examples we introduce the following:
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Definition 2.2. Let Y;, U; (i € N) be Banach spaces. Let Banach spaces of sequences
Y, U be defined by (8) and (9). A subset D C L(Y, U) is called a perturbation class of
block-diagonal operators if there exists a subset J C N such that Y; = U; fori € N\J
and

D={[[aAilA €D ieN, sup|lA;] < oo}, (19)
ieN ieN

where
_{1:<Y,-,Ui) ifieJ
e ifi € N\J.

Thlis, the classes D; and Dj; considered above correspond to the two extreme cases
where J = N and J = {@}, respectively. As in [5], given a block-diagonal class
D ¢ L(Y, U) we define the pup-function on L(U, Y) by setting, foreach M € L(U, Y),

pup(M) = [inf(J|Al| | A € D, det(Iy — MA) =0}17" . (20)

Then the following theorem is the extension of Proposition 3.7 in [5] to systems in
Banach spaces and can be proved similarly (see, e.g., [13]).

Theorem 2.3. Suppose the system (1) is Schur stable and subjected to affine perturba-
tion of the form (2), where D is a perturbation class of block-diagonal operators. Let
G(s) = E(sI — A)~!D be the transfer function defined on the resolvent set C\o (A).
Then

rp(A; D, E) = [|Sup up(GEN™' (21)

s|=1

3. Positive Systems in Banach Spaces

In the finite-dimensional case (i.e., when X = R"), the system (1) is called positive if
and only if the matrix A is nonnegative, i.e., A € R*". Positive systems in R” admit an
interesting feature that their real stability radius is equal to the complex one and can be
computed easily in certain cases (for instance, in the case of single affine perturbations
and the case of block-diagonal perturbations of class Dry) (see, e.g., [S]). Our objective
is to generalize these results to positive systems in Banach spaces. For the convenience
of the reader, we briefly summarize some notions and basic facts we need about Banach
lattices and positive operators. We refer to [6,7,9] for more details.

Let Xg be areal Banach lattice, X := Xg +1 XR, the complex Banach lattice obtained
by complexification of Xg and XK = {x € Xgr|x > 0}. Then X;{ is a closed convex
cone in Xg . The modulus of x € Xg defined by |x| := sup{x, —x} satisfies the lattice
norm property, that is,

x| <yl = lixll <llyll. Vx.y € Xr (22)
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which implies || |x| || = ||x|| forallx € Xr.Forz = x+41y € X, the modulus of z defined
by |z| = sup{|(cosP)x + (sin@)y| : 0 < ¢ < 2w} € Xpg satisfies ||z|| = || |z| [|. Let
X, Y be complex Banach lattices which are complexifications of Xg, YR, respectively.
Then the bounded linear operator A € £(X, Y) is called real if AXgr C YRr. A is called
positive (A > 0) if A is real and AXK C YI'{ . The set of all real and positive operators in
L(X,Y) are denoted, respectively, by LR(X,Y)and £T(X,Y). If SUp|; < |Az] € YR,
for every x € Xi'{', then there exists a unique operator |A| € LT (X, Y) such that

+
|Alx = sup |Az|, x € Xg.

lz|=x

The following monotonicity property of positive operators will be used frequently: Let
Ae LT (X,Y)and B € L(X, Y) such that | B| exists, then

0<|B|<A = |BI =Bl =llAll = p(B) =< p(B]) =<p(4) (23)

(the second implication is a consequence of the Gelfand-Beurlin formula for spectral
radius). Let (YR;);en be a sequence of real Banach lattices. Then it is easy to show that
the vector space of all bounded sequences

Yr = {(i)ien € [ | Yril sup Ilyill < o0}
ieN ieN

endowed with the norm ||(y;)|| = sup;cn |13 | and the order relation
) =G) e =<y (€N
is also a real Banach lattice satisfying
sup{(y:), (i)} = (sup{yi, i) Vi), §:) € Yr. (24)

In particular, we have
|yl = Uy:), Y(i) € Yr. (25)

Let Y := YR + 1 YR be the complex Banach lattice obtained by the complexification of
YR. Then it is easily seen that ¥ is isometrically isomorphic to the Banach space of all
bounded sequences

l—[Yi ={(z))lz; € ¥;,i € N,sup||z;|| < oo},
ieN

where ¥; = YR; +1Yg; is the complexification of Yg;. Therefore, in what follows, given
a sequence of complex Banach lattices Y;, we shall identify, without loss of generality,
[T;cn Yi with the complex Banach lattice Y.

Let X be a complex Banach lattice. We consider the discrete-time linear system

x(k+1) = Ax(k) keN, x(k) € X, (26)

where A € £(X) and A is Schur stable. System (26) is called positive if A € £+ (X).
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Suppose Y;, U;, (i € N) are complex Banach lattices and E; € L(X,Y;), D; €
LU;, X), (i € N) are given bounded linear operators satisfying the conditions (6).
We define the Banach spaces of bounded sequences U, ¥ by (8) and (9) and the
operators E € L(X,Y), D € LU, X), A := [|,cx Ai € L(Y, U) by (10) and (11).
Let D C L(Y, U) be a perturbation class of block-diagonal operators. We define the
following classes of real and positive perturbations:

DR—{HAlA e LR, Uy, i €N, sup||A||<oo} @27)
ieN ieN

D+_“—[A|A € LY(Yi, Uy, i €N, sup ||A; ||<oo] (28)
ieN ieN

It iS clear that Dg, D, are linear subspaces of L(Y, U) and
Dy CcDr CD.
Therefore, from Definition 2.1, we have
rp(A; D, E) <rpg(A; D, E) <rp, (A; D, E). (29)
The following lemma gives a technical criterion under which equalities of the stability

radii hold.

Lemma 3.1. If D C L(Y, U) is a perturbation class of block- -diagonal operators, then
Jorall A=TT;cxAi € Dandy = (yi) € Y, there exists A = [[,.y Ai € D, satisfying

Ay = Ay, |Ale Dy

and B
A= [1Al,
where |A| = [[;en 1A
Proof. The proof is similar to the one in [5]. Suppose A = [],.5 A; € D, where

A; € L(Y;,Up),i e Nyandy = (3;) € ¥, y # 0. Assume that Ay = (4;) = (A;y;).
Then u; = A;y;, i € N and we define

A=A

ieN
where :
A; ifi eN\J
Ai=30 ifiel, y=0

qu ifi e, y; #0,
Jfi € (¥;)* is a linear functional on ¥; such that || f;|| = 1 and f;(y;) = ||yl (by the

Hahn-Banach theorem). Clearly, A,y, = 7., ||A I < IlA;ll, i € N and so Ay = Ay. It

is obvious that, foreveryi € N\ J, |A;| exists and IHA Il = IA; . Since A; is of rank
one for i € J, it follows from Lemma 3.4 in [1] that |A;| exists and || |A;| || = ||A Il
So we have |A| = [T;oy |Ai| € Dy and |[|A] || = sup;en [ 1A¢] | = supiey 1Al <
sup; N [|A: ]| = [|A]l. This completes the proof. ]

‘We are now in a position to prove the following result.
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Theorem 3.2. Let the systems (1) be positive and Schur stable. Let E; € LT(X, Y)),
D; € LT(U;, X), i € N, be given such that (6) is satisfied, and let D, E be given by
(10). Assume A and, for each i € N, either D; or E; are compact operators. If D is a
perturbation class of block-diagonal operators, then

rp(A, D, E) =rpy(A,D,E) =rp, (A, D, E).

Proof. The case rp(A, D, E) = oo is trivial. Suppose rp(A, D, E) < oo, then by
(29), it suffices to show that rp (A, D, E) < rp(A, D, E). Let A = [lien2Ai € D
be a destabilizing disturbance, that is, p(A + DAE) > 1. Since A + DAE =
A+Y"2, D; A E; is acompact operator, there exists acomplex number o and a non-zero
vector xg € X such that (A + DAE)xy = axp, l¢| = ,o(A + DAE). By Lemma 3.1,
there exists A = [,.n Ai € D such that AExg = AExo, |A| = [[;en|Ail € D4, and
IIA]] < | AYl. We will show that | A} is also a destabilizing disturbance. Indeed, we have

o0 o0
I(A+DAE)x| = [(A+ ) (DiAE)x| < |Ax| +| Y (DiAE)x|, VxeX.
=l f=1

Since X+ is closed, it follows that | 30, (D; A Enx| < Y52, (D A;Ei)x|, ¥x € X.
Since A, D; and E; (i € N) are positive operators, we have

o0
(A + DAE)x| < Alx| + Y_(Di|Aj|E))|x|
i=1

= (A+ Y _(D;|A|ED)lx|

A=l
= (A + DIA|E)|x|

for every x € X. It follows from Lemma 3.5 in [1] that o (A + DIAIE) > p(A+ DAE)
Moreover, since (A + DAE)xy = (A+ DAE)xo = axg, we have p(A + DlAlE) >
lat| > 1. Therefore, by definition, we have

rp.(A; D, E) <rp(A; D, E),
completing the proof. |

As it will be shown in Theorem 4.4 below (when M = 0), in the case where N = 1,
the above theorem remains valid without the compactness assumption (see also [1] for
another proof of this fact). This is also true for the case where D = D;; which is defined
by (17). To see this, let X be a complex Banach lattice, let A, A; € LT(X) (i € N)
be given such that A is Schur stable, and Zloil [|A;|| < oo. Suppose A is subjected to
perturbations of the form

o0
AwA+ZEiA,-, (30)
i=1

where (8;);cn are unknown scalar sequences satisfying sup; .y |6;| < oo . Let ¥ be the
Banach space of bounded sequences in X:

Y ={(x):x €X, i €N, [[(x)] :=sup x| < oo}.

ieN
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As noted at the beginning of this section, ¥ can be considered as a complex Banach
lattice which is the complexification of Yr := {(x;) : x; € Xgr} . Then, as shown in the
previous section, (30) can be represented in the form

A~ A+ DAE, A € Dyy,

where E € L(X,Y),D € LY, X), A € L(Y, Y) are defined by (16) and the perturbation
class Dy is given by

Di={[[8118 €C,ieN, sup|s] < oo).
ieN ieN
It is easy to verify that E, D are positive operators: E € L1 (X, Y), D € LT(Y, X).

Denote by D}‘I and D7, the subclasses of real and nonnegative perturbations obtained
by putting, respectively, §; € R and §; > 0 in the formula defining D;;. Let

G(s)=EGI —A)7'D

be the corresponding transfer function. Since A € £1(X), it is well known from the
spectral theory of positive operators (see, e.g., [6]) that p(A) € 0 (A) and (s] — A)~! €
LY(X) if and only if s > p(A). This implies G(s) € LT (Y, Y) for all s > p(A).
Moreover, the following monotonicity property holds:

2t >p(A) = G@) =G =0and |Gt = IGE)| (31)
(see [5, Lemma 4.1] and [1, Proposition 3.9]).

Theorem 3.3. Let A, A; € L1(X), i €N, and A is Schur stable. Suppose A is subject
to affine perturbations of the form (14) and denote by rc, rr, r+ the stability radii of A
corresponding to perturbation classes Dy, D%, D}, of complex, real, and nonnegative
perturbations, respectively. Then

1
~ p(GQ))

re=rr=ry (32)

Proof. 1t is clear that
¢ STR =74,

Suppose r¢ < +oo and let A = [[;.n 8:1 € Di; be a destabilizing operator, that is,

o0
p(A+DAE) = p(A+) §A) = 1.
i=1
Set L
A=T]&l1 e D};.
ieN
Then we have
[(A+ DAE)x| < |Ax| + |(DAE)x]|.
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Since A, A; € L7(X) and Xj; is closed in X, we can derive

o0 o0
(A + DAE)x| < Alx| + ) 18i] [Aix] < Alx| + Y _(18:] Ap)lx|

=1 =1
o
=(A+Z|8,-|A,-)|x|=(A+DAE)|x|, Vx € X. (33)
i=1
Therefore, from Lemma 3.5 in [1], it follows that

o(A+ DAE) > p(A+ DAE) > 1

so that A is destabilizing. Moreover, since ||A|| = [|A|l = sup;p |8;|, we obtain by
definition that
ry <rc.

This establishes the first two equalities in (32). Assume r. < +00, otherwise there is
nothing to show. By definition, for every & > 0, there exists A € D;’I such that

IAl <74 +&, so:=p(A+ DAE) > 1.

Since A + DAE € L*(X), it follows that s € o(A + DAE) (Perron—Frobenius
theorem), and moreover, so is contained in the approximate point spectrum of A + DAE
(see, e.g., [7, Proposition 2.2]). Therefore, there exists a sequence x, € X such that
lxzll =1, |lsox, — (A+ DAE)x,| — 0asn — oo. Since (soI — A) is invertible, we
can derive that

%, — (sof — A)"'DAEx,|| = 0, n — 00 (34)

and hence, ||Ex, — G(50)AEx,| — 0asn — oo. Since ||x,|| = 1, from (34), it
follows that there exist ¢ > 0 and a subsequence x», of x, such that | Exy, || > c. Setting
Yk = Exn, /|| Exy, ||, we obtained that || yx — G(s0) Ayx|| — 0 as k — oo, which means

1 €a(G(so)A)

and therefore, p(G(s0)A) = 1. On the other hand, since A € D}, forany y € ¥ :=
{(x:) | x; € X5}, we have

Ay = (§ixi) <sup|8;i|(xi) = |Ally.
ieN

Since sp > 1 > p(A), it follows, in view of (31), that
[AIG() = |AIG(s0) = G(s0)A = 0,
which, by (23), yields
[Alle(G(D) = p(IAIGA)) = p(G(s0)A)) > 1.
Hence, ry > ||A] — & > [0(G(1))]"! — &, which implies

1
p(G())

r+2
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On the other hand, since G(1) > 0, it follows that 57 := p(G(1)) is contained in
the approximate spectrum of G(1). Therefore, there exists a sequence y, in Y such that
lyzll = 1 and |51y, — G(Dysll — 0 as n — oo. Define the disturbance operator
A € D;LI by setting

A1) =s7 ), (w) ey,

then we have ||y, — G(1)A1y,|| = 0 asn — oo. This implies 1 € o (G(1)A;) which
is equivalentto 1 € 6 (A + DA E). Thus, Ay is a destabilizing operator, and hence, by
definition,

ALl = m > rq.

Consequently, 7, = [p(G(1))]~!, concluding the proof. [ ]

We illustrate the above result by a simple example. Consider the linear discrete time
system

xtk+1)=Ax(k), keN, xk)el,,

where the operator A : [, —> [ is defined by the infinite matrix (a,,,) with a,,, = 0,
n # mand a,, = 1/2", n,m € N. Itis clear that A € L(l), A is a compact operator,
and 0 (A) = {1/2" |n € N}. Therefore, the system is Schur stable. We consider the
perturbed system

P
x(k+1D)=(A+) 8A)x(K), keN,
i=1
where A; = (a,(,i,n) (with a,(,i,zl = 1if n = m = i, otherwise, a,(,i,zl = 0) are given infinite
matrices and p € N is given. By Theorem 3.3, the perturbed system remains Schur stable
for all (§;) € C? such that maxi<;<p |8;| < 1/0(G(1)) = 1/2. Finally, we consider the
perturbed system

x(k+1)=(A+) 8A)x(k), keN,

i=1
where A; = (a') (with (') = (1/2)i if n = m = i, otherwise, a'y = 0). Then this
system is Schur stable for all sequences (5;), §; € C such that sup; .y [8;| < 1/0(G (1))
= 1.

4. Systems Under Fractional Perturbations

Let X, Y, U be a complex Banach lattice with real parts Xgr, Yr, UR, respectively.
Assume the linear infinite-dimensional system

xtk+1)=Axk), keN, xeX (35)
is subjected to non-linear fractional perturbations of the form

A~ A(A) := A+ DA — MA)'E, (36)
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where D € LU,X), E € L(X,Y), M € L(U,Y) are given bounded linear
operators and A € £(¥, U) are unknown bounded linear perturbation operators. Our
consideration in this section is motivated by the recent results due to Shafai et al. [10]
for finite-dimensional systems. It turns out that some of the ideas behind the proof of
results in [2,3, 5] can be used to treat the case of fractional perturbations.

Let A € L£(X) such that p(A) < 1. We define the complex and real stability radii of
A by

rc(A; D, E, M) :=inf{||A||| A € LT, U), either1 € a(MA)or p(A(A)) > 1},
rr(A; D, E, M) :=inf{||Al| | A € Lr(¥, U), either 1 € (M A) or p(A(A)) = 1},
where we set inf § := co. Obviously,

rc(A; D, E, M) <rr(A; D, E, M). 37

Let G(s) = E(sI —A)~ Ip € E(U Y), s > p(A), denote the transfer function
associated w1th A, D, E. We set G(s) :== M + G(5), s > p(A). It is clear that G(s) is
analyticon C\D, D := {s € C : |s| < 1}. Therefore, it follows that, foreach f € Y* and
u € U, the function s — f(G(s)u) is analytic on C \ D. Since limyg s 00 |f(G(s)u)|
exists, we obtain, by the maximum principle, that

max | F(Gu)| = max | £ (G(s)u), (38)
and consequently, . -
max [|G(s)| = max G- (39)

In order to give the characterization of stability radii of system (35), we need the following
two lemmas.

Lemma 4.1. Let Y, U be Banach lattices, M € L(U,Y). Then

1
inf (JAl| A € LT, U), 1 € 0(MA)} = ik

Proof. Itis easy to see that, if A € L(Y, U) satisfies ||A|| < 1/||M]|, then (I — MA) is
invertible. It follows that

1
inf {|Al|A € LY, U), 1 e a(MA)} = m

Fixing ¢ > 0, from the formula |M| = sup,cy, juy=1 [Mull, there exists up € U,
lluoll = 1 such that 1/|Mugl| < 1/|IM| + &. By the Hahn—Banach theorem, there
exists a linear functional f € Y* such that f(Muo) = |[Muoll, |Ifll = 1. Set
A1 = fQuo/||Mugll € LY, U). We have ||A1]| = 1/[[Mugll < 1/|M]| + ¢ and
A1 Mug = ug. Hence, 1 € o (MA) and ||A1]| < 1/[|M]| + &, completing the proof. ®

From the above proof, we observe that, if M € LT(U, Y), then for any ¢ > 0, one can
choose A € £1(Y, U) such that |A| < (1/|M|]) + ¢ and 1 € o(MA). Indeed, since
M € LU, Y), there exists ug € U™ such that fjuo|| = 1 and 1/||Muo| < 1/||M|| +e.
Proceeding further as in the proof of the previous lemma where linear functional f is
chosen, by the Krein theorem [9], to be positive (i.e., f(y) = Oforall y € YT, we
obtain A € LT (¥, U) satisfying the required property.
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Lemma 4.2. Let A € L(Y, U) be such that (I — M A) is invertible. Then o (A(A)) C D
if and only if (I — (M + G(s))A) is invertible for every s € C, |s| > 1.

Proof. Assume the system (35) is Schur stable, thatis, o (A) C D.Itfollows that (s/— A)
is invertible for every s € C, |s| = 1. Therefore, we can write the following obvious
equivalent relations:
c(AA) CD & sl —A—DA(I — MA)~!E is invertible for s € C, Is| > 1
&I —(sI — A YDAU — MA)™YE is invertible for s € C, |s| > 1
&1 —EGI—A)"'DAUI — MA) ! isinvertible for s € C, |s| > 1
& I — MA — E(sI — A)"' DA is invertible for s € C, |s| > 1
& [ — (M + G(s))A is invertible for s € C, |s| > 1.
This concludes the proof. [ |
Now, we are prepared to give the following characterization of the complex stability

radius of positive systems (35) under the perturbations of the form (36).

Theorem 4.3. Let the linear discrete-time system (35) be Schur stable. Assume D €
LWU,X), E € LX,Y), M € L(U,Y) are given and A is subjected to nonlinear
fractional perturbations of the form (36). Then we have

. 1 |
re(4; D, B, M) =min { suppiey 1M + GGl J “0)

Proof. Suppose A € L(Y, U) is a destabilizing perturbation operator. If / — M A is not
invertible, then by Lemma 4.1, we have

1 1 ]
|A|| = —— = min [ 3 )
| | M| [|M]| " supg—; M+ G(s)l

Otherwise, from Lemma 4.2, there exists a complex number sg, |[sg] > 1 such that
I — (M + G(sp))A is not invertible and so, again by Lemma 4.1, we have

1 1
A= >
1M+ G(so)ll — supys >y M + Gs)ll

1 1 1
= > min {—, }
supg=1 1M + Gl |M||" supis=1 |M + G(s)|
Consequently, by the definition r¢(4; D, E, M), we have

1

1
rc(A; D, E, M) > min { : tearl
M supyg—; IM + G(s)

Furthermore, by the definition of supremum, for any ¢ > 0, there exists s; € C, |s1| = 1

such that
1 1

= + = X
IM+GeDll - supg—1 M+ GO 2
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This implies, in combination with Lemma 4.1, that there exists an operator A1 € LY, U)
such that I — (M + G(s1))A; is not invertible and satisfying

1 1 e 1

e g [ | e M +e.
1M+ Gl IM+ Gl 2 supg—y 1M + GG

(41)

If (I — MA)) is not invertible (or, equivalently, 1 € o (M A1)), then it follows from the
definition that r¢(A; D, E, M) < ||A4|l. If, on the contrary, (I — MA;) is invertible,
then by Lemma 4.2, 6 (A(A1)) ¢ D, which means that A; is a destabilizing operator,
and hence, by the definition, we have again rc(A; D, E, M) < l|A1|l. Thus, from (41)
and in view of arbitrariness of ¢ > 0, we obtain

1
supis—1 M + G()||

rc(A; D, E, M) <

Since the inequality rc(4; D, E, M) < |M I~! is obvious from the definition and
Lemma 4.1, we finally obtain

1 1
rc(A; D,E,M)smin[ , }
<l M| sup_ 1M + G(s)

The proof is complete. L

In the case of positive systems, the following theorem provides a computable formula
for the real stability radius.

Theorem 4.4. Let A € L1(X) and let the linear discrete-time system (35) be Schur
stable. Assume D € LT (U, X), E € LY(X,Y), M € LT (U,Y) are given positive
operators and A is subject to nonlinear fractional perturbations of the form (36). Then
we have

rc(A; D, E, M) = rr(A; D, E, M) = m

Proof. Since p(A) < 1, we have, by 31), G(1) = 0 and so G(1) + M > M > 0. This
implies, by virtue of (23), |M + G(D)|| = | M]. Therefore, by Theorem 4.3, we have

rc(A; D, E, M) = ;
supjs1=1 [M + G ()|l

(42)

Since M + G(1) > 0, from the observation we have made after the proof of Lemma
4.1, it follows that, for any ¢ > 0, there exists Ag € LYY, U) such that [|Ag] <
M+ G +&and 1 € o((M + G(1))Ao). Suppose (I — M Ap) is invertible,
then, by Lemma 4.2, 0 (A(A¢)) ¢ D. This implies by definition that

1
rR(A; D, E, M) < || Dol < == +¢€
1M+ Gl

which implies

1
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Further, since p(A) < 1, for any s € C, |s| = 1, the operator G(s) = E(sI — A)_lD
can be expanded as

1S i
G = — E—D
()=~ ;O =

We derive

o Al o~ Al
I(M + G(s))ul < |Mu|+Z|E—STDuI =Mlu|+ZE|;| Diu|
i=0 i=0

= Mlu|+ ) (EA'D)lu| = (M + G(D))u|
i=0

for every u € U. This yields

M+ G| <M+ G

forall s € C, |s| = 1. Therefore, by definition and (42) and (43),

1 1
P Ry o =R IO S S AP IRNED V) e S
M+ GO 1M+ G
concluding the proof. |
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