# On a Positive Bounded Solution of the $n$-Competing Species Problem 

Le Hong Lan ${ }^{1}$ and Tran Van Nhung ${ }^{2}$<br>${ }^{1}$ Department of Mathematics<br>Hanoi University of Transportation and Telecommunication<br>Cau Giay, Hanoi, Vietnam<br>${ }^{2}$ Department of Mathematics, College of Natural Science<br>Vietnam National University<br>334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam

Received May 25, 1998
Revised February 3, 1999

Abstract. We consider the $n$-dimensional, non-autonomous Lotka-Volterra competition equations. Conditions for the existence and uniqueness of a solution defined on $(-\infty,+\infty)$ whose components are bounded above and below by positive constants are given.

## 1. Introduction

Consider the Lotka-Volterra equations for $n$-competing species

$$
\begin{equation*}
\dot{u}_{i}=u_{i}\left[b_{i}(t)-\sum_{j=1}^{n} a_{i j}(t) u_{j}\right], \quad 1 \leq i \leq n, \tag{1.1}
\end{equation*}
$$

where $n \geq 2$ and $b_{i}: R \rightarrow R, a_{i j}: R \rightarrow R_{+}, R:=(-\infty,+\infty), R_{+}:=(0,+\infty)$, are continuous and bounded. The case that $b_{i}, a_{i j}$ are continuous and bounded above and below by positive constants was also considered in [1-6]. It was shown in [7] that if
(i) $b_{i}, a_{i j}: R \rightarrow \dot{R}_{+}(1 \leq i, j \leq n)$ are continuous, bounded above and below by positive constants;
(ii) there exists a positive number $\varepsilon_{1}$ such that

$$
\begin{equation*}
b_{i}(t) \geq \sum_{j \in J_{i}} a_{i j}(t) U_{j}^{0}(t)+\varepsilon_{1}, \quad 1 \leq i \leq n, \quad t \in R \tag{1.2}
\end{equation*}
$$

where $J_{i}=\{1, \ldots, i-1, i+1, \ldots, n\}$ and $U_{j}^{0}(t)$ is the unique solution to the logistic equation

$$
\begin{equation*}
\dot{U}=U\left[b_{j}(t)-a_{j j}(t) U\right] \tag{1.3j}
\end{equation*}
$$

which is defined on $(-\infty,+\infty)$ and is bounded above and below by positive constants;
(iii) there are positive numbers $\varepsilon_{2}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ such that

$$
\begin{equation*}
\alpha_{i} a_{i i}(t) \geq \sum_{j \in J_{i}} a_{j i}(t) \alpha_{j}+\varepsilon_{2}, \quad 1 \leq i \leq n, \quad t \in R \tag{1.4}
\end{equation*}
$$

hold;
then the system (1.1) has a unique solution $u^{0}(t)=\left(u_{1}^{0}(t), \ldots, u_{n}^{0}(t)\right)$ defined on $(-\infty,+\infty)$, whose components are bounded above and below by positive constants, and moreover, $u_{i}(t)-u_{i}^{0}(t) \rightarrow 0$ as $t \rightarrow+\infty(1 \leq i \leq n)$ for any solution $u(t)=\left(u_{1}(t), \ldots, u_{n}(t)\right)$ of (1.1) with $u_{i}\left(t_{0}\right)>0$ for some $t_{0} \in R$ and for all $i: 1 \leq i \leq n$.

In this paper, we prove a result which is more general than the one above. Our main result is as follows:

Theorem 1. Suppose
(i) $\liminf _{t \rightarrow \pm \infty} b_{i}(t)>0, \liminf _{t \rightarrow \pm \infty} a_{i j}(t)>0(1 \leq i, j \leq n)$;
(ii) $\liminf _{t \rightarrow \pm \infty}\left[b_{i}(t)-\sum_{j \in J_{i}} a_{i j}(t) U_{j}^{0}(t)\right]>0 \quad(1 \leq i \leq n)$,
where $U_{j}^{0}(t)(1 \leq j \leq n)$ is the unique solution to (1.3) defined on $(-\infty,+\infty)$ which is bounded above and below by positive constants;
(iii) there are $2 n$ positive constants $\alpha_{1}^{ \pm}, \alpha_{2}^{ \pm}, \ldots, \alpha_{n}^{ \pm}$such that

$$
\begin{equation*}
\liminf _{t \rightarrow \pm \infty}\left[\alpha_{i}^{ \pm} a_{i i}(t)-\sum_{j \in J_{i}} a_{j i}(t) \alpha_{j}^{ \pm}\right]>0 \quad(1 \leq i \leq n) \tag{1.7}
\end{equation*}
$$

hold.
Then the system (1.1) has a unique solution $u^{0}(t)=\left(u_{1}^{0}(t), \ldots, u_{n}^{0}(t)\right)$ defined on $(-\infty,+\infty)$, whose components are bounded above and below by positive constants, and moreover, $u_{i}(t)-u_{i}^{0}(t) \rightarrow 0$ as $t \rightarrow+\infty(1 \leq i \leq n)$ for any solution $u(t)=\left(u_{1}(t), \ldots, u_{n}(t)\right)$ to (1.1) with $u_{i}\left(t_{0}\right)>0,1 \leq i \leq n$ for some $t_{0} \in R$.

The ecological significance of such a system is discussed in $[4,5]$.

## 2. Preliminaries

It is easy to see that the Cauchy problem for (1.1) with the initial condition $u\left(t_{0}\right)=$ $\left(u_{10}, \ldots, u_{n 0}\right) \in R_{+}^{n}:=\left\{\left(u_{1}, \ldots, u_{n}\right) \in R^{n}: u_{i} \geq 0,1 \leq i \leq n\right\}, t_{0} \in R$, has a unique solution. Moreover, $R_{+}^{n}$ and $\operatorname{int}\left(R_{+}^{n}\right)$ are positively invariant.

Lemma 1. Let $+a, b: R \rightarrow R$ be continuous bounded functions such that $\liminf _{t \rightarrow \pm \infty} a(t)>0, \liminf _{t \rightarrow \pm \infty} b(t)>0$, and $b(t)>0$ for all $t \in R$. Then the logistic equation

$$
\begin{equation*}
\dot{x}=x[a(t)-b(t) x] \tag{2.1}
\end{equation*}
$$

has a unique solution $x^{0}(t)$ defined on $(-\infty,+\infty)$, which is bounded above and below by positive constants. Moreover, $\lim _{t \rightarrow+\infty}\left|x(t)-x^{0}(t)\right|=0$ for any solution $x(t)$ to (2.1) with $x\left(t_{0}\right)>0$ for some $t_{0} \in R$.

Proof. Existence. It is an easy matter to show that there exist positive numbers $T, \delta, \Delta$ such that $a(t)>0, b(t)>0$, and $\delta<a(t) / b(t)<\Delta$ for $|t| \geq T$. For each $k=1,2, \ldots$, let $x_{k}(t)$ be the solution to (2.1) with $x_{k}(-k-T)=\Delta$. Let $v_{k}(t)=\Delta$ and $u_{k}(t)=\delta$ for all $-k-T \leq t \leq-T$. Then

$$
v_{k}(t)\left[a(t)-b(t) v_{k}(t)\right]=\Delta[a(t)-b(t) \Delta]<0
$$

and

$$
u_{k}(t)\left[a(t)-b(t) u_{k}(t)\right]=\delta[a(t)-b(t) \delta]>0 \text { for }-k-T \leq t \leq-T
$$

By the Comparison Lemma (see, for example, [6, p.135]) we have that

$$
\delta=u_{k}(t)<x_{k}(t)<v_{k}(t)=\Delta \text { for }-k-T \leq t \leq-T
$$

By passing to a subsequence if necessary, we can assume $x_{k}(-T) \rightarrow \eta \in[\delta, \Delta]$ as $k \rightarrow \infty$.

Let $x^{0}(t)$ be the solution to (2.1) with $x^{0}(-T)=\eta$. It follows that $x_{k}(t) \rightarrow x^{0}(t)$ uniformly with respect to $t$ on any compact subinterval of $(-\infty,-T]$. Therefore, $x^{0}(t)$ is defined on $(-\infty,-T]$ and $\delta \leq x^{0}(t) \leq \Delta$ for $-\infty<t \leq-T$. Let

$$
\widetilde{\Delta}=\max \left\{\sup _{|t| \leq T} \frac{a(t)}{b(t)}+1, \Delta\right\}
$$

then $0<\tilde{\Delta}<+\infty$.
By the same argument given before and by the Comparison Lemma, it is clear that $x^{0}(t)$ is defined on $[-T,+\infty)$ and $x^{0}(t)<\widetilde{\Delta}$ for $-T \leq t<+\infty$. Since $(0,+\infty)$ is positively invariant with respect to (2.1), it follows that $x^{0}(t)>0$ for $-T \leq t \leq T$. Therefore, $\bar{\delta}:=\min _{|t| \leq T} x^{0}(t)>0$. Let $\widetilde{\delta}=\min \{\delta, \bar{\delta}\}$. Then $x^{0}(t)>\widetilde{\delta}$ for all $t>T$. Hence, $\widetilde{\delta} \leq x^{0}(t)<\widetilde{\Delta}$ for all $t \in R$.

Uniqueness. Suppose $x^{1}(t)$ is another solution to (2.1) defined on $(-\infty,+\infty)$ such that $0<\inf _{t \in R} x^{1}(t) \leq \sup _{t \in R} x^{1}(t)<+\infty$. Let $t_{0} \in(-\infty,+\infty)$ be such that $x^{0}\left(t_{0}\right) \neq x^{1}\left(t_{0}\right)$. Without loss of generality, we suppose $x^{1}\left(t_{0}\right)<x^{0}\left(t_{0}\right)$. Since (2.1) is a scalar equation, we can assume, by the uniqueness of solutions of Cauchy problems for Eq. (2.1), that

$$
0<\gamma_{1}:=\inf _{t \in R} x^{1}(t) \leq x^{1}(t)<x^{0}(t) \leq \sup _{t \in R} x^{0}(t)=: \gamma_{2}<+\infty(t \in R)
$$

We have

$$
\frac{d}{d t} \ln \frac{x^{1}(t)}{x^{0}(t)}=b(t)\left[x^{0}(t)-x^{1}(t)\right]
$$

Then, for any $M>0$,

$$
0<\int_{-M}^{M} b(t)\left[x^{0}(t)-x^{1}(t)\right] d t=\ln \frac{x^{1}(M)}{x^{0}(M)}-\ln \frac{x^{1}(-M)}{x^{0}(-M)} \leq 2 \ln \frac{\gamma_{2}}{\gamma_{1}} .
$$

Hence, $\int_{-\infty}^{+\infty} b(t)\left[x^{0}(t)-x^{1}(t)\right] d t<+\infty$. Consequently, $\lim _{t \rightarrow \pm \infty}\left[x^{0}(t)-x^{1}(t)\right]=0$, and this leads to

$$
\int_{-\infty}^{+\infty} b(t)\left[x^{0}(t)-x^{1}(t)\right] d t=\lim _{M \rightarrow \infty}\left[\ln \frac{x^{1}(M)}{x^{0}(M)}-\ln \frac{x^{1}(-M)}{x^{0}(-M)}\right]=0
$$

Thus, $x^{0}(t)=x^{1}(t), t \in R$, and in particular, $x^{0}\left(t_{0}\right)=x^{1}\left(t_{0}\right)$. This contradiction implies the uniqueness.

Asymptoticity. Let $x(t)$ be a solution to (2.1) with $x\left(t_{0}\right)>0, t_{0} \in R$. It can be shown that

$$
x(t) \leq \max \left\{\sup _{t \in R} \frac{a(t)}{b(t)}, x\left(t_{0}\right)\right\}=: \alpha_{1}, \quad t \geq t_{0}
$$

Let $t_{1}$ satisfy $t_{1}>\max \left\{t_{0}, T\right\}$. By the Comparison Lemma, we have

$$
x(t) \geq \alpha_{2}:=\min \left\{x\left(t_{0}\right), \min _{t_{0} \leq t \leq t_{1}} x(t), \inf _{t \geq T} \frac{a(t)}{b(t)}\right\}>0, \quad t \geq t_{0} .
$$

Since (2.1) is scalar, it follows that either
(a) $x(t)>x^{0}(t), t \geq t_{0}$ or
(b) $x(t)<x^{0}(t), t \geq t_{0}$.

If (a) holds, from

$$
\frac{d}{d t} \ln \frac{x(t)}{x^{0}(t)}=b(t)\left[x^{0}(t)-x(t)\right]
$$

it can be shown that

$$
0<\int_{t_{0}}^{M}-b(t)\left[x^{0}(t)-x(t)\right] d t=\ln \frac{x\left(t_{0}\right)}{x^{0}\left(t_{0}\right)}-\ln \frac{x(M)}{x^{0}(M)} \leq 2 \ln \frac{\alpha_{1}}{\alpha_{2}} \text { for any } M>t_{0}
$$

Thus, $\int_{t_{0}}^{+\infty}-b(t)\left[x^{0}(t)-x(t)\right] d t<+\infty$ and this leads to $\lim _{t \rightarrow+\infty}\left[x^{0}(t)-x(t)\right]=0$.
Similarly, we prove that $\lim _{t \rightarrow+\infty}\left[x^{0}(t)-x(t)\right]=0$ if (b) holds. Therefore, the lemma is proved.

Remark 1. It follows from Lemma 1 that, if (1.5) holds, then (1.3j) has a unique solution $U_{j}^{0}(t)$ defined on $(-\infty,+\infty)$ which is bounded above and below by positive constants.

Remark 2. It is not hard to see that (1.5)-(1.7) are equivalent to the following:
There exist positive numbers $T, \varepsilon, b_{i L}, a_{i j L}(1 \leq i, j \leq n)$ such that

$$
\begin{gather*}
b_{i}(t)>b_{i L}, \quad a_{i j}(t)>a_{i j L} \quad \text { for }|t| \geq T  \tag{2.2}\\
b_{i}(t)-\sum_{j \in J_{i}} a_{i j}(t) U_{j}^{0}(t) \geq \varepsilon, \quad 1 \leq i \leq n, \quad|t| \geq T  \tag{2.3}\\
\alpha_{i}^{-} a_{i i}(t)-\sum_{j \in J_{i}} a_{j i}(t) \alpha_{j}^{-} \geq \varepsilon, \quad 1 \leq i \leq n, \quad t<-T \tag{2.4'}
\end{gather*}
$$

and

$$
\alpha_{i}^{+} a_{i i}(t)-\sum_{j \in J_{i}} a_{j i}(t) \alpha_{j}^{+} \geq \varepsilon, \quad 1 \leq i \leq n, \quad t>T
$$

Lemma 2. Let (1.5) and (1.6) (or (2.2) and (2.3)) hold. Let $u(t)$ be a solution to (1.1) with $u\left(t_{0}\right) \in \operatorname{int}\left(R_{+}^{n}\right)$, for some $t_{0} \in R$. Then its right maximal interval of existence is $\left[t_{0},+\infty\right)$ and there exist positive numbers $t_{1}, \eta_{1}, \ldots, \eta_{n}, \Delta_{1}, \ldots, \Delta_{n}\left(t_{1}>T\right)$ such that $\eta_{i}<u_{i}(t)<\Delta_{i}\left(t \geq t_{1}, 1 \leq i \leq n\right)$.

Proof. Since $\inf _{t \in R} a_{i i}(t)>0(1 \leq i \leq n)$, it follows that

$$
0<u_{i}(t) \leq \max \left\{u_{i}\left(t_{0}\right), \sup \frac{b_{i}(t)}{a_{i i}(t)}\right\}:=\Delta_{i}, \quad t>t_{0}
$$

Let $t_{2}=\max \left\{T, t_{0}\right\}$. From (2.3), it follows that there exists a $\gamma>0$ (for example, $\left.\gamma=\min _{1 \leq i \leq n}\left\{\epsilon / 2\left[\sum_{j=1}^{n} \sup _{t \geq T} a_{i j}(t)\right]^{-1}\right\}\right)$ such that

$$
\begin{equation*}
b_{i}(t)-\gamma a_{i i}(t)-\sum_{j \in J_{i}} a_{i j}(t)\left[U_{j}^{0}(t)+\gamma\right]>0 \quad\left(1 \leq i \leq n, \quad t \geq t_{2}\right) \tag{2.5}
\end{equation*}
$$

Let us denote by $U_{i}(t)$ the solution to (1.3j) given by $U_{i}\left(t_{2}\right)=u_{i}\left(t_{2}\right)$. From (1.1) and (1.3j), it is easy to see that

$$
\begin{equation*}
u_{i}(t)<U_{i}(t), \quad t>t_{2} . \tag{2.6}
\end{equation*}
$$

By Lemma $1, U_{i}(t)-U_{i}^{0}(t) \rightarrow 0$ as $t \rightarrow+\infty(1 \leq i \leq n)$. Consequently, there is $t_{3}>t_{2}$ such that

$$
\begin{equation*}
U_{i}(t) \leq U_{i}^{0}(t)+\gamma\left(t \geq t_{3}, \quad 1 \leq i \leq n\right) \tag{2.7}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
u_{i}(t) \geq \eta_{i}:=\min \left\{u_{i}\left(t_{3}\right), \gamma\right\}, \quad t \geq t_{3}, \quad 1 \leq i \leq n \tag{2.8}
\end{equation*}
$$

Suppose that it is false. For each $i=1,2, \ldots, n$, let us define $g_{i}(t)=\eta_{i}-u_{i}(t)$. Then there exist $i$ and $t_{4}>t_{3}$ such that $g_{i}\left(t_{4}\right)>0$. Since $g_{i}\left(t_{3}\right) \leq 0$, there exists $t_{5}>t_{3}$ such that $g_{i}\left(t_{5}\right)>0$ and $\dot{g}_{i}\left(t_{5}\right)>0$. It follows that

$$
0<-b_{i}\left(t_{5}\right)+a_{i i}\left(t_{5}\right) u_{i}\left(t_{5}\right)+\sum_{j \in J_{i}} a_{i j}\left(t_{5}\right) u_{j}\left(t_{5}\right)
$$

Hence,

$$
\begin{equation*}
0<-b_{i}\left(t_{5}\right)+a_{i i}\left(t_{5}\right) \gamma+\sum_{j \in J_{i}} a_{i j}\left(t_{5}\right) u_{j}\left(t_{5}\right) \tag{2.9}
\end{equation*}
$$

From (2.6), (2.7), and (2.9), we have

$$
0<-b_{i}\left(t_{5}\right)+a_{i i}\left(t_{5}\right) \gamma+\sum_{j \in J_{i}} a_{i j}\left(t_{5}\right)\left[U_{j}^{0}\left(t_{5}\right)+\gamma\right]
$$

which contradicts (2.5). The claim is proved. Therefore, the lemma is proved.

## 3. Proof of the Main Result

Proof of Theorem 1. By Remark 2, we assume (2.2), (2.3), (2.4') and (2.4") instead of (1.5)-(1.7).

Existence. Let us define, for each $1 \leq i, j \leq n$,

$$
\bar{a}_{i j}(t)=\left\{\begin{array}{ll}
a_{i j}(t), & t<-T, \\
a_{i j}(-T), & t \geq-T,
\end{array} \quad \bar{b}_{i}(t)= \begin{cases}b_{i}(t), & t<-T \\
b_{i}(-T), & t \geq-T\end{cases}\right.
$$

Consider

$$
\begin{equation*}
\dot{\bar{u}}_{i}=\bar{u}_{i}\left[\bar{b}_{i}(t)-\sum_{j=1}^{n} \bar{a}_{i j}(t) \bar{u}_{j}\right], \quad 1 \leq i \leq n . \tag{3.1}
\end{equation*}
$$

Clearly, (3.1) satisfies all conditions in Theorem 2.3 in [7]. Therefore, (3.1) has a unique solution $\bar{u}^{0}(t)$ defined on $(-\infty,+\infty)$ whose components are all bounded above and below by positive constants. Let $u(t)$ be the solution to (1.1) with $u(-T)=\bar{u}^{0}(-T)$. By Lemma 2, the right maximal interval of existence of $u(t)$ is [ $-T,+\infty$ ). It is easy to see that

$$
u^{0}(t):= \begin{cases}\bar{u}^{0}(t), & t \leq-T \\ u(t), & t>-T\end{cases}
$$

is a solution to (1.1). From Lemma 2, $u_{i}^{0}(t)(1 \leq i \leq n)$ is bounded above and below by positive constants.

Uniqueness. Suppose $u^{1}(t)$ is a solution to (1.1) defined on $(-\infty,+\infty)$ whose components are bounded above and below by positive constants. Let $\bar{u}^{1}(t)$ be the solution to (3.1) with $\bar{u}^{1}(-T)=u(-T)$. By Lemma 2 applying to (3.1), the right maximal interval of existence of $\bar{u}^{1}(t)$ is $[-T,+\infty)$.

Define

$$
\tilde{u}^{1}(t)= \begin{cases}\bar{u}^{1}(t), & t \geq-T, \\ u^{1}(t), & t<-T,\end{cases}
$$

then $\widetilde{u}^{1}(t)$ is a solution to (3.1). From Lemma 2, $\tilde{u}_{i}^{1}(t)(1 \leq i \leq n)$ is bounded above and below by positive constants. By Theorem 2.3 in [7] applying to (3.1), $\tilde{u}^{1}(t)=\bar{u}^{0}(t)$, $t \in R$.

Thus, $u^{1}(t)=u^{0}(t), t \leq-T$, and this leads to $u^{1} \equiv u^{0}$. The uniqueness is proved.
Asymptoticity. Let $u^{k}(t)(k=1,2)$ be solutions to (1.1) with $u^{k}\left(t_{0}\right) \in \operatorname{int}\left(R_{+}^{n}\right), t_{0} \in R$. It suffices to show that $u_{i}^{1}(t)-u_{i}^{2}(t) \rightarrow 0$ as $t \rightarrow+\infty$.

Let us define $t_{1}:=\max \left\{T, t_{0}\right\}$ and

$$
\tilde{a}_{i j}(t)=\left\{\begin{array}{ll}
a_{i j}(t), & t>t_{1}, \\
a_{i j}\left(t_{1}\right), & t \leq t_{1},
\end{array} \quad \tilde{b}_{i}(t)=\left\{\begin{array}{ll}
b_{i}(t), & t>t_{1}, \\
b_{i}\left(t_{1}\right), & t \leq t_{1},
\end{array} \quad 1 \leq i, j \leq n .\right.\right.
$$

Consider

$$
\begin{equation*}
\dot{\widetilde{u}}_{i}=\tilde{u}_{i}\left[\widetilde{b}_{i}(t)-\sum_{j=1}^{n} \tilde{a}_{i j}(t) \tilde{u}_{j}\right], \quad 1 \leq i \leq n . \tag{3.2}
\end{equation*}
$$

Clearly, $u^{1}(t)$ and $u^{2}(t)$ are solutions to (3.2) for $t \geq t_{1}$.

By Theorem 2.3 in [7] applying to (3.2), we have $u_{i}^{1}(t)-u_{i}^{2}(t) \rightarrow 0$ as $t \rightarrow+\infty$ ( $1 \leq i \leq n$ ). The theorem is proved.

Corollary. Let $\liminf _{t \rightarrow \pm \infty} b_{i}(t)=b_{i L}^{ \pm}>0, \liminf _{t \rightarrow \pm \infty} a_{i j}(t)=a_{i j L}^{ \pm}>0$. If

$$
\begin{equation*}
b_{i L}^{ \pm}-\sum_{j \in J_{i}} a_{i j M}^{ \pm} \frac{b_{j M}^{ \pm}}{a_{j j L}^{ \pm}}>0, \quad 1 \leq i \leq n \tag{3.3}
\end{equation*}
$$

where $a_{i j M}^{ \pm}=\limsup \operatorname{sit}_{t \rightarrow \pm} a_{i j}(t), b_{i M}^{ \pm}=\lim \sup _{t \rightarrow \pm \infty} b_{i}(t)$, hold. Then the assertion in Theorem 1 is valid.

Proof. It is not hard to see that $\lim \sup _{t \rightarrow \pm \infty} U_{j}^{0}(t) \leq b_{j M}^{ \pm} / a_{j j L}^{ \pm}, 1 \leq i \leq n$. Thus, (3.3) implies (1.6).

It is suffices to show that (3.3) implies (1.7). Let $B=\left(b_{i j}\right)$ be the real $n \times n$ matrix defined by

$$
b_{i j}= \begin{cases}0, & i=j \\ a_{i j M}^{+} / a_{j j L}^{+}, & i \neq j\end{cases}
$$

It follows from (3.3) that $B \beta<\beta$, where $\beta=\left(b_{1 L}^{+}, \ldots, b_{n L}^{+}\right)^{T}$. Let $\bar{\varepsilon}>0$ be such that $B_{\bar{\varepsilon}} \beta<\beta$, where $B_{\bar{\varepsilon}}=B+\bar{\varepsilon} I$ ( $I$ is the identity matrix). By Perron's theorem, there exists a real positive eigenvalue $\lambda$ of $B_{\bar{\varepsilon}}$ such that $\lambda<1$ and $|\mu| \leq \lambda$ for all eigenvalue $\mu$ of $B_{\bar{\varepsilon}}$. Once again, from Perron's theorem, we have $B_{\bar{\varepsilon}}^{*} \alpha^{+}=\lambda \alpha^{+}$for some vector $\alpha^{+}>0$, where $B_{\bar{\varepsilon}}^{*}$ is the adjoint matrix of $B_{\bar{\varepsilon}}$. Therefore, $B^{*} \alpha^{+}=(\lambda-\bar{\varepsilon}) \alpha^{+}<\alpha^{+}$ which implies

$$
\liminf _{t \rightarrow+\infty}\left[\alpha_{i}^{+} a_{i i}(t)-\sum_{j \in J_{i}} a_{j i}(t) \alpha_{j}^{+}\right]>0 \quad(1 \leq i \leq n)
$$

Similarly, we can prove that there exists a vector $\alpha^{-}>0$ such that

$$
\liminf _{t \rightarrow-\infty}\left[\alpha_{i}^{-} a_{i i}(t)-\sum_{j \in J_{i}} a_{j i}(t) \alpha_{j}^{-}\right]>0 \quad(1 \leq i \leq n)
$$

Therefore, (3.3) implies (1.7). The corollary is proved.

Acknowledgement. The authors thank Mr. Trinh Tuan Anh for very useful discussions during the preparation of the paper.

## References

1. S. Ahmad, On almost periodic solution of the competing species problems, Proc. Amer. Math. Soc. 102 (1988) 855-861.
2. S. Ahmad, On the nonautonomous Volterra-Lotka competition equations, Proc. Amer. Math. Soc. 117 (1993) 199-204.
3. K. Gopalsamy, Global asymptotic stability in a periodic Lotka-Volterra system, J. Austral. Math. Soc. Ser. B 27 (1985) 66-72.
4. K. Gopalsamy, Global asymptotic stability in an almost Lotka-Volterra system, J. Austral. Math. Soc. Ser. B 27 (1986) 346-360.
5. A. Tineo and C. Alvarez, A different consideration about the globally asymptotic stable solution of the periodic competing-species problem, J. Math. Anal. Appl. 159 (1991) 45-50.
6. N. Rouche, P. Habets, and M. Laloy, Stability Theory by Liapunov's Direct Methods, Springer-Verlag, New York, 1977.
7. Trinh T. Anh, On the almost periodic n-competing species problem, Acta Math. Vietnam. 23 (1998) 35-43.
