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Abstract. We consider the n-dimensional, non-autonomous Lotka—Volterra competition equations.
Conditions for the existence and uniqueness of a solution defined on (—o0, +00) whose
components are bounded above and below by positive constants are given.

1. Introduction
Consider the Lotka—Volterra equations for n-competing species
n
i = wi i@ = Y ayOw], 1<i<n, (1.1)
j=1

wheren > 2andb; : R — R,a;;: R —> Ry, R :=(—00, +00), R; := (0, +00), are
continuous and bounded. The case that b;, a;; are continuous and bounded above and
below by positive constants was also considered in [1-6]. It was shown in [7] that if

(i) bi,aij : R — Ry (1 <4, j < n) are continuous, bounded above and below by
positive constants;
(ii) there exists a positive number &; such that
bit) = Y aj(OUX®) +e1, 1<i<n, teR, 1.2)
~ jedi

where J; = {1,...,i—1,i+1,...,n}and Ujp(t) is the unique solution to the
logistic equation _
U=U[bj¢t) —aj;(t) U] (1.3j)
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which is defined on (—o0, +00) and is bounded above and below by positive

constants;
(iii) there are positive numbers &3, aj, @3, ..., o, such that
@ ai(t) =Y aiej+e, 1<i<n, teR, (1.4)
JjeJd;
hold;
then the system (1.1) has a unique solution (@) = (u(l)(t), 5 ug(t)) defined on

(=00, +00), whose components are bounded above and below by positive constants,
and moreover, u;(t) — u?(t) — O0astr - +o0 (1 < i < n) for any solution
u(t) = (u1Q@), ..., u,(2)) of (1.1) with u;(p) > O for some f5 € R and for all
i:1<i<n.

In this paper, we prove a result which is more general than the one above. Our main
result is as follows:

Theorem 1. Suppose
(1) Liminf,_, 4+ b;(z) > 0, liminf; .40 a;;(r) > 0 (1 <i, j <n); (1.5)

(i) liminf,_, 1o [b,-(t) — e 61 ) Ujo(t)] >0 (1<i<n), (1.6)

where Ujp(t) (1 < j < n) is the unique solution to (1.3) defined on (—o00, +00)
which is bounded above and below by positive constants;,

(iii) there are 2n positive constants ocf, 0{2jE oo OF sUC that

liminf [ ai; (1) — Y a0 ef| >0 1 <i<n) (1.7)
JeJ;
hold.

Then the system (1.1) has a unique solution u®(t) = (u(l)(t), o ug(t)) defined on
(=00, +00), whose components are bounded above and below by positive constants,
and moreover, u;(t) — u?(t) — Oast - +o0 (1 < i < n) for any solution
u(t) = i), ..., un(@)) to(1.1) withu;(to) > 0, 1 <i < n for some ty € R.

The ecological significance of such a system is discussed in [4, 5].

2. Preliminaries

It is easy to see that the Cauchy problem for (1.1) with the initial condition u(f) =
(10, ..., un0) € R = {(u1, ..., utp) € R* :u; >0, 1 <i <n), 1) € R, has a unique
solution. Moreover, R’} and int (R’, ) are positively invariant.

Lemma 1. Let + a, b : R — R be continuous bounded functions such that
liminf; 100 a(t) > 0, liminf, 1o b() > O, and b(t) > O for all t € R. Then the
logistic equation

x =x[a(t) — b(t) x] 2.1
has a unique solution x°(t) defined on (—oc, +00), which is bounded above and below
by positive constants. Moreover, lim;_, 4o |x(t) — x°(2)] = 0 for any solution x(t) to
(2.1) with x(ty) > O for some ty € R.
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Proof. Existence. It is an easy matter to show that there exist positive numbers 7', §, A
such thata(¢) > 0,b(t) > 0,and § < a(z)/b(t) < Afor |t| = T.Foreachk =1, 2, ...,
let xx(¢) be the solution to (2.1) with xx(—k — T) = A. Let v3(¢t) = A and uz(¢) = §
forall -k — T <t < —T.Then

u@®)[a®) — b)) = Ala@) — b(H)A] <0,

and
ue(@®)[a@®) — bOur(®)] = 8[a(t) —b(®)8] > 0 for —k—T <t < -T.
By the Comparison Lemma (see, for example, [6, p. 135]) we have that
S=ur(t) <xx(t) <vg@)=A for —k—-T <t <-T.

By passing to a subsequence if necessary, we can assume x;(—7) — n € [§, A] as
k — oc.

Let x°(7) be the solution to (2.1) with x0(—T) = 7. It follows that x;(z) — x°(¢)
uniformly with respect to ¢ on any compact subinterval of (—oco, —T']. Therefore, x0(r)
is defined on (—o0, —T]and 8 < x°(t) < A for —oo0 <t < —T. Let

- a(t)
A= — 41, A
" [ ot ]

then 0 < A < +o0.
By the same argument given before and by the Comparison Lemma, it is clear that
x(¢) is defined on [—T, +00) and x0() < A for —T < t < +o0. Since (0, +00) is
positively invariant with respect to (2.1), it follows that xo(t) > 0 for el =
Therefore, § := rn1n|,|<Tx 0r) > 0. Letd = min{8, §}. Then x°() > Sforallt > T.
Hence, 3 < xo(t) < Aforall? €R.

Uniqueness. Suppose x!(t) is another solution to (2.1) defined on (—00, 4+00) such
that 0 < inf,egx!(t) < SUpP,cr x1(t) < 400. Let 15 € (—00, +00) be such that
x%(10) # x1(10). Without loss of generality, we suppose x!(z5) < x°(zp). Since (2.1)is a
scalar equation, we can assume, by the uniqueness of solutions of Cauchy problems for
Eq. (2.1), that

0<y: 1nfx (t) < x'(#) < x°@t) < supx°(r) =: y» < +00 (t € R).
teR

We have

x1(@)
1 0 =b0)[x°() — x'@®)].

Then, for any M > 0,

xl(M)_ x(=M) o
M) XO(—M) = BZ'

M
0< / b@®)[x°¢) —x'(®)]dt =1n
-M
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Hence, fj;o b(®)[x°(t)—x"(r)]dt < +o0.Consequently, lim,_, +o, [x°(1)-x'(1)] =0,
and this leads to

+00 1 T
f b0 —x'()]de = Tim [m;% —lniog_ﬁi]=0.

Thus, x°(f) = x'(#), ¢ € R, and in particular, x%(to) = x'(#y). This contradiction
implies the uniqueness.

Asymptoticity. Let x(¢) be a solution to (2.1) with x(#g) > 0, #o € R. It can be shown
that

x(t)fmax[sup a) x(to)} =0, t>1.
ter b(®)’
Let #; satisfy #; > max{tp, 7). By the Comparison Lemma, we have
x(t) > oy := min { x (1), rmn x(1), mf Q >0, t>1.
- 0 <t<t b( ) -

Since (2.1) is scalar, it follows that either

(@) x(t) > x°@), t >1 or
) x@) <x%0), t>1.
If (a) holds, from
d I x(1)

ar - x0(0)

=b)[x°®) —x®)],

it can be shown that

M x (o) x(M) o]
0< —b(@®)[x°@) — x(#)|dt = In —In < 2In— forany M > 1.
[to OF® - 3©)dr =5 ~InZ5 o <210 forany M > 1
Thus, ftj ® —b(t)[xO(t) —x(t) ]dt < +oc and this leads to lim;_, 4o [x(#) —x(t)] = 0.
Similarly, we prove that lim,_, | [xo(t) — x(t)] = 0 if (b) holds. Therefore, the

lemma is proved. n

Remark 1. It follows from Lemma 1 that, if (1.5) holds, then (1.3j) has a unique solution
U ]Q (¢) defined on (—o0, +00) which is bounded above and below by positive constants.

Remark 2. Tt is not hard to see that (1.5)—(1.7) are equivalent to the following:

There exist positive numbers T, ¢, b;z, a;jr (1 <i, j < n) such that

bi(t) > b, a;ij(t) > ajj, for |t =T, (2.2)

bi(t) =Y a;(OUL@) =6, 1<i<n, |f|=T, 2.3)
jeJd;

o ai(®) = Y @)y >, 1<i<n, t<-T, Q4)

J€J;
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and
al?" a; (t) — Zaj,-(t) Ot;_ >e 1<i<n, t>T. 24"
j€d;

Lemma 2. Let (1.5) and (1.6) (or (2.2) and (2.3)) hold. Let u(t) be a solution to (1.1)
with u(to) € int (R%), for some ty € R. Then its right maximal interval of existence is
[f0, +00) and there exist positive numbers t1, N1, ..., In, AL, ..., Ay (t1 > T) such that
m<ui(t) <A (t>t, 1<i<n).

Proof. Since inf,cga;; (2) > 0 (1 <i < n), it follows that
bi(2)
a;; ()
Let 2 = max({T, fo}. From (2.3), it follows that there exists a y > 0 (for example,
=il
y = minls,-sn{e/Z[ Z;’zl SUp, > aij (t)] D such that

0<u() =< maX[ui(to), sup } =A;, t>1.

bi) —yai@®) =Y a;®O[U®O +y] >0 (A<i<n, 12n). (@25
Jj€d

Let us denote by Uj (¢) the solution to (1.3j) given by U;(#;) = u;(t2). From (1.1) and
(1.3j), it is easy to see that
uit) <U;(t), t>1t. 2.6)

By Lemma 1, U; (¢) — U,.O(t) — 0ast — 400 (1 <i < n). Consequently, there is
t3 > tp such that
Uit) <UP() +y (t=1, 1<i<n). 2.7)

We claim that
ui(t) = n; == min{u;(B3), vy}, t>t, 1<i<n. (2.8)

Suppose that it is false. For each i = 1, 2, ..., n, let us define g; (t) = n; — u; (¢).
Then there exist i and #4 > 13 such that g;(t4) > 0. Since g;(#3) < 0, there exists t5 > #3
such that g;(ts) > 0 and g, (¢5) > 0. It follows that

0 < —bi(ts) + aii(ts) ui(ts) + Y _ asj(ts) uj (ts).
Jed;

Hence,
0 < —bi(ts) +aii(ts) v + D_ aij(ts) u; (15). 2.9)
Jek

From (2.6), (2.7), and (2.9), we have

0 < —bi(ts) +au(ts) v + Y _aij(ts)[UP(ts) + y],
jelt;

which contradicts (2.5). The claim is proved. Therefore, the lemma is proved. U]
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3. Proof of the Main Result

Proof of Theorem 1. By Remark 2, we assume (2.2), (2.3), (2.4') and (2.4”) instead of
(1.5)-(1.7).

Existence. Let us define, foreach 1 <i, j <n,

a;j(t), t < —T,
a;;j(-T), t>-T,

b; (1), t < -T,

bi®) = { bi(=T), t > —T.

ai;(t) ={

Consider

T T [E,-(t)—j;a,-j(t)ﬁj], l<i<n. G.1)

Clearly, (3.1) satisfies all conditions in Theorem 2.3 in [7]. Therefore, (3.1) has a
unique solution #°(r) defined on (—o0, +0c) whose components are all bounded above
and below by positive constants. Let u (¢) be the solution to (1.1) with u(—T) = u%(—T).
By Lemma 2, the right maximal interval of existence of u(¢) is [T, +00). It is easy to

see that
uo(t) =3 {

is a solution to (1.1). From Lemma 2, u?(t) (1 < i < n) is bounded above and below
by positive constants.

%), t<-T,
u(t), t=>-T,

Uniqueness. Suppose ul(t) is a solution to (1.1) defined on (—oo, +00) whose
components are bounded above and below by positive constants. Let ' () be the solution
to3.1)withz' (~T) = u(-T). By Lemma 2 applying to (3.1), the right maximal interval
of existence of z!(¢) is [- T, +00).
Define !
~1 u (t)’ t 2 _T1
u(t) = 1
u ), t<-T,
then %' (¢) is a solution to (3.1). From Lemma 2, il (t) (1 <i < n) is bounded above
and below by positive constants. By Theorem 2.3 in [7] applying to (3.1), @ (¢) = #°(),
teR.
Thus, u!(t) = u%(r),t < —T, and this leads to u! = u°. The uniqueness is proved.

Asymptoticity. Letu*(t) (k = 1, 2) be solutions to (1.1) with u* (1o) € int (R"), £y € R.
It suffices to show that uil(t) — uiz(t) — Qast — +oo.
Let us define #; := max{7, #p} and

()N ey bi(), t>1,
a,ij(t)={atj() >0 bi(t)zl 10 1 lfi,jfn-
ajj(t1), t =<1, bi(t), t=t,
Consider -
W= B =Y @On], 1=i<n. (3.2)

Clearly, u'(z) and u2(z) are solutions to (3.2) for > ;.
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By Theorem 2.3 in [7] applying to (3.2), we have ul(t) — u?(t) — O ast — 400
(1 <i < n). The theorem is proved. ]

Corollary. Let liminf,, 100 b;(t) = b > 0, liminf,_, 400 a;; () = aip > 0. If

=+
+ + M .
bp—) aiy—1 >0 1<i<n, (3.3)
jed; JiL

where aﬁ y = limsup, , . a;;(2), bﬁu = limsup,_, ., b;(t), hold. Then the assertion
in Theorem 1 is valid.

Proof. 1tis not hard to see that limsup,_, | UJQ(t) < be/a;.L, 1 <i < n.Thus, (3.3)
implies (1.6).
It is suffices to show that (3.3) implies (1.7). Let B = (b;;) be the real n X n matrix

defined by
0, i=j,
bij = [ .

ai"; u/ aj'-';- 1, T#J
It follows from (3.3) that B8 < B, where 8 = (bf'L, .3 b;l"L)T. Let £ > O be such that
B:zp < B, where Bz = B + ¢ (I is the identity matrix). By Perron’s theorem, there
exists a real positive eigenvalue A of Bz such that A < 1 and |u| < A for all eigenvalue
i of Bg. Once again, from Perron’s theorem, we have BX a* = Lo for some vector
a® > 0, where BZ is the adjoint matrix of Bg. Therefore, B*at = (A — )t < ot
which implies

liminf (o 4 () — Y a0 af | >0 A <i<n.

t—>—+00
Jjeldi

Similarly, we can prove that there exists a vector = > 0 such that

liminf [0 ai() = Y @@ a | >0 (1 <i<n.

[—> =00
Jj€J;
Therefore, (3.3) implies (1.7). The corollary is proved. ]
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