Vietnam Journal
of
MATHEMATICS
© Springer-Verlag 1999

On a Positive Bounded Solution of the *n*-Competing Species Problem

Le Hong Lan¹ and Tran Van Nhung²

¹Department of Mathematics Hanoi University of Transportation and Telecommunication Cau Giay, Hanoi, Vietnam

²Department of Mathematics, College of Natural Science Vietnam National University 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam

> Received May 25, 1998 Revised February 3, 1999

Abstract. We consider the *n*-dimensional, non-autonomous Lotka–Volterra competition equations. Conditions for the existence and uniqueness of a solution defined on $(-\infty, +\infty)$ whose components are bounded above and below by positive constants are given.

1. Introduction

Consider the Lotka-Volterra equations for n-competing species

$$\dot{u}_i = u_i \Big[b_i(t) - \sum_{j=1}^n a_{ij}(t) u_j \Big], \quad 1 \le i \le n,$$
 (1.1)

where $n \ge 2$ and $b_i: R \to R$, $a_{ij}: R \to R_+$, $R:=(-\infty, +\infty)$, $R_+:=(0, +\infty)$, are continuous and bounded. The case that b_i , a_{ij} are continuous and bounded above and below by positive constants was also considered in [1–6]. It was shown in [7] that if

- (i) $b_i, a_{ij}: R \to R_+$ $(1 \le i, j \le n)$ are continuous, bounded above and below by positive constants;
- (ii) there exists a positive number ε_1 such that

$$b_i(t) \ge \sum_{j \in J_i} a_{ij}(t) U_j^0(t) + \varepsilon_1, \quad 1 \le i \le n, \ t \in R,$$
 (1.2)

where $J_i = \{1, ..., i-1, i+1, ..., n\}$ and $U_j^0(t)$ is the unique solution to the logistic equation

 $\dot{U} = U \big[b_j(t) - a_{jj}(t) \, U \big] \tag{1.3j}$

which is defined on $(-\infty, +\infty)$ and is bounded above and below by positive constants;

(iii) there are positive numbers ε_2 , α_1 , α_2 , ..., α_n such that

$$\alpha_i a_{ii}(t) \ge \sum_{j \in J_i} a_{ji}(t) \alpha_j + \varepsilon_2, \quad 1 \le i \le n, \quad t \in R,$$
 (1.4)

hold;

then the system (1.1) has a unique solution $u^0(t) = (u_1^0(t), ..., u_n^0(t))$ defined on $(-\infty, +\infty)$, whose components are bounded above and below by positive constants, and moreover, $u_i(t) - u_i^0(t) \to 0$ as $t \to +\infty$ $(1 \le i \le n)$ for any solution $u(t) = (u_1(t), ..., u_n(t))$ of (1.1) with $u_i(t_0) > 0$ for some $t_0 \in R$ and for all $i: 1 \le i \le n$.

In this paper, we prove a result which is more general than the one above. Our main result is as follows:

Theorem 1. Suppose

(i)
$$\liminf_{t \to \pm \infty} b_i(t) > 0$$
, $\liminf_{t \to \pm \infty} a_{ij}(t) > 0$ $(1 \le i, j \le n)$; (1.5)

(ii)
$$\liminf_{t \to \pm \infty} \left[b_i(t) - \sum_{j \in J_i} a_{ij}(t) U_j^0(t) \right] > 0 \quad (1 \le i \le n),$$
 (1.6)

where $U_j^0(t)$ $(1 \le j \le n)$ is the unique solution to (1.3) defined on $(-\infty, +\infty)$ which is bounded above and below by positive constants;

(iii) there are 2n positive constants α_1^{\pm} , α_2^{\pm} , ..., α_n^{\pm} such that

$$\liminf_{t \to \pm \infty} \left[\alpha_i^{\pm} a_{ii}(t) - \sum_{j \in J_i} a_{ji}(t) \alpha_j^{\pm} \right] > 0 \quad (1 \le i \le n)$$
(1.7)

hold.

Then the system (1.1) has a unique solution $u^0(t) = (u_1^0(t), ..., u_n^0(t))$ defined on $(-\infty, +\infty)$, whose components are bounded above and below by positive constants, and moreover, $u_i(t) - u_i^0(t) \to 0$ as $t \to +\infty$ $(1 \le i \le n)$ for any solution $u(t) = (u_1(t), ..., u_n(t))$ to (1.1) with $u_i(t_0) > 0$, $1 \le i \le n$ for some $t_0 \in R$.

The ecological significance of such a system is discussed in [4,5].

2. Preliminaries

It is easy to see that the Cauchy problem for (1.1) with the initial condition $u(t_0) = (u_{10}, ..., u_{n0}) \in R_+^n := \{(u_1, ..., u_n) \in R^n : u_i \ge 0, 1 \le i \le n\}, t_0 \in R$, has a unique solution. Moreover, R_+^n and int (R_+^n) are positively invariant.

Lemma 1. Let + a, b : $R \to R$ be continuous bounded functions such that $\liminf_{t\to\pm\infty} a(t) > 0$, $\liminf_{t\to\pm\infty} b(t) > 0$, and b(t) > 0 for all $t \in R$. Then the logistic equation

$$\dot{x} = x \left[a(t) - b(t) x \right] \tag{2.1}$$

has a unique solution $x^0(t)$ defined on $(-\infty, +\infty)$, which is bounded above and below by positive constants. Moreover, $\lim_{t\to +\infty} |x(t)-x^0(t)| = 0$ for any solution x(t) to (2.1) with $x(t_0) > 0$ for some $t_0 \in R$.

Proof. Existence. It is an easy matter to show that there exist positive numbers T, δ , Δ such that a(t) > 0, b(t) > 0, and $\delta < a(t)/b(t) < \Delta$ for $|t| \ge T$. For each k = 1, 2, ..., let $x_k(t)$ be the solution to (2.1) with $x_k(-k-T) = \Delta$. Let $v_k(t) = \Delta$ and $u_k(t) = \delta$ for all $-k-T \le t \le -T$. Then

$$v_k(t)[a(t) - b(t)v_k(t)] = \Delta[a(t) - b(t)\Delta] < 0,$$

and

$$u_k(t)[a(t) - b(t)u_k(t)] = \delta[a(t) - b(t)\delta] > 0 \text{ for } -k - T \le t \le -T.$$

By the Comparison Lemma (see, for example, [6, p. 135]) we have that

$$\delta = u_k(t) < x_k(t) < v_k(t) = \Delta \text{ for } -k-T \le t \le -T.$$

By passing to a subsequence if necessary, we can assume $x_k(-T) \to \eta \in [\delta, \Delta]$ as $k \to \infty$.

Let $x^0(t)$ be the solution to (2.1) with $x^0(-T) = \eta$. It follows that $x_k(t) \to x^0(t)$ uniformly with respect to t on any compact subinterval of $(-\infty, -T]$. Therefore, $x^0(t)$ is defined on $(-\infty, -T]$ and $\delta \le x^0(t) \le \Delta$ for $-\infty < t \le -T$. Let

$$\widetilde{\Delta} = \max\bigg\{\sup_{|t| \leq T} \frac{a(t)}{b(t)} + 1, \ \Delta\bigg\},\label{eq:delta_delta_delta}$$

then $0 < \widetilde{\Delta} < +\infty$.

By the same argument given before and by the Comparison Lemma, it is clear that $x^0(t)$ is defined on $[-T, +\infty)$ and $x^0(t) < \widetilde{\Delta}$ for $-T \le t < +\infty$. Since $(0, +\infty)$ is positively invariant with respect to (2.1), it follows that $x^0(t) > 0$ for $-T \le t \le T$. Therefore, $\overline{\delta} := \min_{|t| \le T} x^0(t) > 0$. Let $\widetilde{\delta} = \min\{\delta, \, \overline{\delta}\}$. Then $x^0(t) > \widetilde{\delta}$ for all t > T. Hence, $\widetilde{\delta} \le x^0(t) < \widetilde{\Delta}$ for all $t \in R$.

Uniqueness. Suppose $x^1(t)$ is another solution to (2.1) defined on $(-\infty, +\infty)$ such that $0 < \inf_{t \in R} x^1(t) \le \sup_{t \in R} x^1(t) < +\infty$. Let $t_0 \in (-\infty, +\infty)$ be such that $x^0(t_0) \ne x^1(t_0)$. Without loss of generality, we suppose $x^1(t_0) < x^0(t_0)$. Since (2.1) is a scalar equation, we can assume, by the uniqueness of solutions of Cauchy problems for Eq. (2.1), that

$$0 < \gamma_1 := \inf_{t \in R} x^1(t) \le x^1(t) < x^0(t) \le \sup_{t \in R} x^0(t) =: \gamma_2 < +\infty \ (t \in R).$$

We have

$$\frac{d}{dt} \ln \frac{x^{1}(t)}{x^{0}(t)} = b(t) [x^{0}(t) - x^{1}(t)].$$

Then, for any M > 0,

$$0 < \int_{-M}^{M} b(t) \left[x^{0}(t) - x^{1}(t) \right] dt = \ln \frac{x^{1}(M)}{x^{0}(M)} - \ln \frac{x^{1}(-M)}{x^{0}(-M)} \le 2 \ln \frac{\gamma_{2}}{\gamma_{1}}$$

Hence, $\int_{-\infty}^{+\infty} b(t) [x^0(t) - x^1(t)] dt < +\infty$. Consequently, $\lim_{t \to \pm \infty} [x^0(t) - x^1(t)] = 0$, and this leads to

$$\int_{-\infty}^{+\infty} b(t) [x^0(t) - x^1(t)] dt = \lim_{M \to \infty} \left[\ln \frac{x^1(M)}{x^0(M)} - \ln \frac{x^1(-M)}{x^0(-M)} \right] = 0.$$

Thus, $x^0(t) = x^1(t)$, $t \in R$, and in particular, $x^0(t_0) = x^1(t_0)$. This contradiction implies the uniqueness.

Asymptoticity. Let x(t) be a solution to (2.1) with $x(t_0) > 0$, $t_0 \in R$. It can be shown that

$$x(t) \le \max \left\{ \sup_{t \in \mathbb{R}} \frac{a(t)}{b(t)}, \ x(t_0) \right\} =: \alpha_1, \quad t \ge t_0.$$

Let t_1 satisfy $t_1 > \max\{t_0, T\}$. By the Comparison Lemma, we have

$$x(t) \ge \alpha_2 := \min \left\{ x(t_0), \min_{t_0 \le t \le t_1} x(t), \inf_{t \ge T} \frac{a(t)}{b(t)} \right\} > 0, \quad t \ge t_0.$$

Since (2.1) is scalar, it follows that either

- (a) $x(t) > x^0(t)$, $t \ge t_0$ or
- (b) $x(t) < x^0(t), t \ge t_0$.

If (a) holds, from

$$\frac{d}{dt} \ln \frac{x(t)}{x^0(t)} = b(t) \left[x^0(t) - x(t) \right],$$

it can be shown that

$$0 < \int_{t_0}^M -b(t) \left[x^0(t) - x(t) \right] dt = \ln \frac{x(t_0)}{x^0(t_0)} - \ln \frac{x(M)}{x^0(M)} \le 2 \ln \frac{\alpha_1}{\alpha_2} \text{ for any } M > t_0.$$

Thus, $\int_{t_0}^{+\infty} -b(t) \left[x^0(t) - x(t) \right] dt < +\infty$ and this leads to $\lim_{t \to +\infty} \left[x^0(t) - x(t) \right] = 0$.

Similarly, we prove that $\lim_{t\to+\infty} \left[x^0(t)-x(t)\right]=0$ if (b) holds. Therefore, the lemma is proved.

Remark 1. It follows from Lemma 1 that, if (1.5) holds, then (1.3j) has a unique solution $U_i^0(t)$ defined on $(-\infty, +\infty)$ which is bounded above and below by positive constants.

Remark 2. It is not hard to see that (1.5)–(1.7) are equivalent to the following:

There exist positive numbers T, ε , b_{iL} , a_{ijL} $(1 \le i, j \le n)$ such that

$$b_i(t) > b_{iL}, \ a_{ij}(t) > a_{ijL} \ \text{for } |t| \ge T,$$
 (2.2)

$$b_i(t) - \sum_{j \in J_i} a_{ij}(t) U_j^0(t) \ge \varepsilon, \quad 1 \le i \le n, \quad |t| \ge T,$$
 (2.3)

$$\alpha_i^- a_{ii}(t) - \sum_{j \in J_i} a_{ji}(t) \,\alpha_j^- \ge \varepsilon, \quad 1 \le i \le n, \quad t < -T, \tag{2.4'}$$

and

$$\alpha_i^+ a_{ii}(t) - \sum_{j \in J_i} a_{ji}(t) \, \alpha_j^+ \ge \varepsilon, \quad 1 \le i \le n, \quad t > T.$$
 (2.4")

Lemma 2. Let (1.5) and (1.6) (or (2.2) and (2.3)) hold. Let u(t) be a solution to (1.1) with $u(t_0) \in \operatorname{int}(R_+^n)$, for some $t_0 \in R$. Then its right maximal interval of existence is $[t_0, +\infty)$ and there exist positive numbers $t_1, \eta_1, ..., \eta_n, \Delta_1, ..., \Delta_n$ $(t_1 > T)$ such that $\eta_i < u_i(t) < \Delta_i$ $(t \ge t_1, 1 \le i \le n)$.

Proof. Since $\inf_{t \in R} a_{ii}(t) > 0 \ (1 \le i \le n)$, it follows that

$$0 < u_i(t) \le \max \left\{ u_i(t_0), \sup \frac{b_i(t)}{a_{ii}(t)} \right\} := \Delta_i, \quad t > t_0.$$

Let $t_2 = \max\{T, t_0\}$. From (2.3), it follows that there exists a $\gamma > 0$ (for example, $\gamma = \min_{1 \le i \le n} \{\epsilon/2 \Big[\sum_{j=1}^n \sup_{t \ge T} a_{ij}(t) \Big]^{-1} \}$) such that

$$b_i(t) - \gamma \, a_{ii}(t) - \sum_{j \in J_i} a_{ij}(t) \left[U_j^0(t) + \gamma \right] > 0 \quad (1 \le i \le n, \ t \ge t_2). \tag{2.5}$$

Let us denote by $U_i(t)$ the solution to (1.3j) given by $U_i(t_2) = u_i(t_2)$. From (1.1) and (1.3j), it is easy to see that

$$u_i(t) < U_i(t), \quad t > t_2.$$
 (2.6)

By Lemma 1, $U_i(t) - U_i^0(t) \to 0$ as $t \to +\infty$ $(1 \le i \le n)$. Consequently, there is $t_3 > t_2$ such that

$$U_i(t) \le U_i^0(t) + \gamma \quad (t \ge t_3, \ 1 \le i \le n).$$
 (2.7)

We claim that

$$u_i(t) \ge \eta_i := \min\{u_i(t_3), \gamma\}, \quad t \ge t_3, \quad 1 \le i \le n.$$
 (2.8)

Suppose that it is false. For each $i=1, 2, \ldots, n$, let us define $g_i(t)=\eta_i-u_i(t)$. Then there exist i and $t_4>t_3$ such that $g_i(t_4)>0$. Since $g_i(t_3)\leq 0$, there exists $t_5>t_3$ such that $g_i(t_5)>0$ and $\dot{g}_i(t_5)>0$. It follows that

$$0 < -b_i(t_5) + a_{ii}(t_5) u_i(t_5) + \sum_{i \in I_i} a_{ij}(t_5) u_j(t_5).$$

Hence,

$$0 < -b_i(t_5) + a_{ii}(t_5) \gamma + \sum_{j \in J_i} a_{ij}(t_5) u_j(t_5). \tag{2.9}$$

From (2.6), (2.7), and (2.9), we have

$$0 < -b_i(t_5) + a_{ii}(t_5) \gamma + \sum_{i \in J_i} a_{ij}(t_5) [U_j^0(t_5) + \gamma],$$

which contradicts (2.5). The claim is proved. Therefore, the lemma is proved.

3. Proof of the Main Result

Proof of Theorem 1. By Remark 2, we assume (2.2), (2.3), (2.4') and (2.4'') instead of (1.5)–(1.7).

Existence. Let us define, for each $1 \le i$, $j \le n$,

$$\overline{a}_{ij}(t) = \begin{cases} a_{ij}(t), & t < -T, \\ a_{ij}(-T), & t \ge -T, \end{cases} \quad \overline{b}_{i}(t) = \begin{cases} b_{i}(t), & t < -T, \\ b_{i}(-T), & t \ge -T. \end{cases}$$

Consider

$$\dot{\overline{u}}_i = \overline{u}_i \left[\overline{b}_i(t) - \sum_{j=1}^n \overline{a}_{ij}(t) \, \overline{u}_j \right], \quad 1 \le i \le n.$$
 (3.1)

Clearly, (3.1) satisfies all conditions in Theorem 2.3 in [7]. Therefore, (3.1) has a unique solution $\overline{u}^0(t)$ defined on $(-\infty, +\infty)$ whose components are all bounded above and below by positive constants. Let u(t) be the solution to (1.1) with $u(-T) = \overline{u}^0(-T)$. By Lemma 2, the right maximal interval of existence of u(t) is $[-T, +\infty)$. It is easy to see that

 $u^{0}(t) := \begin{cases} \overline{u}^{0}(t), & t \leq -T, \\ u(t), & t > -T, \end{cases}$

is a solution to (1.1). From Lemma 2, $u_i^0(t)$ $(1 \le i \le n)$ is bounded above and below by positive constants.

Uniqueness. Suppose $u^1(t)$ is a solution to (1.1) defined on $(-\infty, +\infty)$ whose components are bounded above and below by positive constants. Let $\overline{u}^1(t)$ be the solution to (3.1) with $\overline{u}^1(-T) = u(-T)$. By Lemma 2 applying to (3.1), the right maximal interval of existence of $\overline{u}^1(t)$ is $[-T, +\infty)$.

Define

$$\widetilde{u}^{1}(t) = \begin{cases} \overline{u}^{1}(t), & t \ge -T, \\ u^{1}(t), & t < -T, \end{cases}$$

then $\widetilde{u}^1(t)$ is a solution to (3.1). From Lemma 2, $\widetilde{u}_i^1(t)$ $(1 \le i \le n)$ is bounded above and below by positive constants. By Theorem 2.3 in [7] applying to (3.1), $\widetilde{u}^1(t) = \overline{u}^0(t)$, $t \in R$.

Thus, $u^1(t) = u^0(t)$, $t \le -T$, and this leads to $u^1 \equiv u^0$. The uniqueness is proved.

Asymptoticity. Let $u^k(t)$ (k = 1, 2) be solutions to (1.1) with $u^k(t_0) \in \operatorname{int}(R_+^n)$, $t_0 \in R$. It suffices to show that $u_i^1(t) - u_i^2(t) \to 0$ as $t \to +\infty$.

Let us define $t_1 := \max\{T, t_0\}$ and

$$\widetilde{a}_{ij}(t) = \begin{cases} a_{ij}(t), & t > t_1, \\ a_{ij}(t_1), & t \le t_1, \end{cases} \quad \widetilde{b}_i(t) = \begin{cases} b_i(t), & t > t_1, \\ b_i(t_1), & t \le t_1, \end{cases} \quad 1 \le i, \ j \le n.$$

Consider

$$\widetilde{u}_i = \widetilde{u}_i \left[\widetilde{b}_i(t) - \sum_{i=1}^n \widetilde{a}_{ij}(t) \, \widetilde{u}_j \right], \quad 1 \le i \le n.$$
 (3.2)

Clearly, $u^1(t)$ and $u^2(t)$ are solutions to (3.2) for $t \ge t_1$.

By Theorem 2.3 in [7] applying to (3.2), we have $u_i^1(t) - u_i^2(t) \to 0$ as $t \to +\infty$ $(1 \le i \le n)$. The theorem is proved.

Corollary. Let $\liminf_{t\to\pm\infty} b_i(t) = b_{iL}^{\pm} > 0$, $\liminf_{t\to\pm\infty} a_{ij}(t) = a_{ijL}^{\pm} > 0$. If

$$b_{iL}^{\pm} - \sum_{j \in J_i} a_{ijM}^{\pm} \frac{b_{jM}^{\pm}}{a_{jjL}^{\pm}} > 0, \quad 1 \le i \le n,$$
 (3.3)

where $a_{ijM}^{\pm} = \limsup_{t \to \pm \infty} a_{ij}(t)$, $b_{iM}^{\pm} = \limsup_{t \to \pm \infty} b_i(t)$, hold. Then the assertion in Theorem 1 is valid.

Proof. It is not hard to see that $\limsup_{t\to\pm\infty} U_j^0(t) \le b_{jM}^{\pm}/a_{jjL}^{\pm}$, $1 \le i \le n$. Thus, (3.3) implies (1.6).

It is suffices to show that (3.3) implies (1.7). Let $B = (b_{ij})$ be the real $n \times n$ matrix defined by

$$b_{ij} = \begin{cases} 0, & i = j, \\ a_{ijM}^{+}/a_{jjL}^{+}, & i \neq j. \end{cases}$$

It follows from (3.3) that $B\beta < \beta$, where $\beta = (b_{1L}^+, ..., b_{nL}^+)^T$. Let $\overline{\varepsilon} > 0$ be such that $B_{\overline{\varepsilon}}\beta < \beta$, where $B_{\overline{\varepsilon}} = B + \overline{\varepsilon} I$ (I is the identity matrix). By Perron's theorem, there exists a real positive eigenvalue λ of $B_{\overline{\varepsilon}}$ such that $\lambda < 1$ and $|\mu| \le \lambda$ for all eigenvalue μ of $B_{\overline{\varepsilon}}$. Once again, from Perron's theorem, we have $B_{\overline{\varepsilon}}^* \alpha^+ = \lambda \alpha^+$ for some vector $\alpha^+ > 0$, where $B_{\overline{\varepsilon}}^*$ is the adjoint matrix of $B_{\overline{\varepsilon}}$. Therefore, $B^* \alpha^+ = (\lambda - \overline{\varepsilon}) \alpha^+ < \alpha^+$ which implies

$$\liminf_{t \to +\infty} \left[\alpha_i^+ a_{ii}(t) - \sum_{i \in I} a_{ji}(t) \alpha_j^+ \right] > 0 \quad (1 \le i \le n).$$

Similarly, we can prove that there exists a vector $\alpha^- > 0$ such that

$$\liminf_{t \to -\infty} \left[\alpha_i^- a_{ii}(t) - \sum_{i \in L} a_{ji}(t) \alpha_j^- \right] > 0 \quad (1 \le i \le n).$$

Therefore, (3.3) implies (1.7). The corollary is proved.

Acknowledgement. The authors thank Mr. Trinh Tuan Anh for very useful discussions during the preparation of the paper.

References

- S. Ahmad, On almost periodic solution of the competing species problems, Proc. Amer. Math. Soc. 102 (1988) 855–861.
- S. Ahmad, On the nonautonomous Volterra–Lotka competition equations, Proc. Amer. Math. Soc. 117 (1993) 199–204.
- K. Gopalsamy, Global asymptotic stability in a periodic Lotka-Volterra system, J. Austral. Math. Soc. Ser. B 27 (1985) 66-72.
- K. Gopalsamy, Global asymptotic stability in an almost Lotka-Volterra system, J. Austral. Math. Soc. Ser. B 27 (1986) 346-360.

- A. Tineo and C. Alvarez, A different consideration about the globally asymptotic stable solution of the periodic competing-species problem, J. Math. Anal. Appl. 159 (1991) 45–50.
- N. Rouche, P. Habets, and M. Laloy, Stability Theory by Liapunov's Direct Methods, Springer-Verlag, New York, 1977.
- Trinh T. Anh, On the almost periodic n-competing species problem, Acta Math. Vietnam. 23 (1998) 35–43.