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Abstract. In this paper the sample continuity of random mappings between a separable metric space
and a separable Banach space is considered. It is shown that the well-known Kolmogorov criterion
does not hold if the domain of the random mapping is a bounded set in an infinite-dimensional
Hilbert space.

1. Introduction

Let (X, d) be a separable metric space and Y a separable Banach space. By a random
mapping ® from X to ¥ (or a Y-valued random mapping), we mean a family & =
{<I>x, xeX } of Y-valued random variables (r.v.’s) indexed by the parameter set X. If X
is an interval of the real line R!, we say that @ is a Y-valued stochastic process, and if
Y =R! we say that ® is a random function on X.

An important result on the existence of sample continuous modification of the
stochastic process on an interval [0, T] is provided by a well-known Kolmogorov
criterion (see [5]). This criterion was extended by Totoki [7] to the case of a ¥-valued
random mapping on a bounded set of a finite-dimensional Euclidean space. Namely, if
® = (dx) is a Y-valued random mapping on a bounded set X C R* such that, for some
p>0,a>0andall x;,x;in X

E||[®x; — ®x2||? < Cllxg — xq[F*+¢,

then @ is sample continuous (i.e., there exists a modification of ® whose sample
paths are continuous). By applying this result, it is not difficult to show that, if ® is
a Y-valued Gaussian random mapping with mean O defined on a bounded set X of a
finite-dimensional Euclidean space, then the condition

E||®x; — ®x2|% < Cllxy — xz||" (1.1)
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some C > 0,7 > 0 and all x;, x» € X is sufficient for the sample continuity

eorem 2.4). However, Theorem 2.5 shows that the above assertion does not hold if X
‘bounded set in an infinite-dimensional Hilbert space. A sufficient condition, which
ures the sample continuity of ¥-valued random mappings satisfying (1.1), is found. In
. 3, we restrict ourselves to random operators and obtain some new results about their
iple continuity. Many other properties of random operators have been considered in
8-10].

Sample Continuity of Random Mapping

(€2, F, P) be a complete probability space, (X, d) a separable metric space, and ¥
parable Banach space.

inition 2.1. A family ® = {®x,x € X} of Y-valued rv’s ®x indexed by the
ameter set X is called a random mapping from X into Y or a Y-valued random
pping on X. We set

P(x, w) = Px(w) forall x € Xandw € Q.

( is an interval [0, T') of the real line, then ® is said to be a Y-valued stochastic
cess on [0, T].

‘or each w € Q, the mapping P (., ®) : x — P(x, w) is called a sample path of .
other random mapping W from X into Y is said to be a modification of ® if

Vx € X ®x(w) = Vx(w) almost surely (a.s.).
hould be noted that the set of @ in which the above equality holds depends on x.

inition 2.2.
A random mapping ® from X into Y is said to be stochastically continuous at xg € X
if
Ve >0  lim P{||®x, — ®xoll > ¢} =0.

Xp—>Xg
® is stochastically continuous on X if it is stochastically continuous at every point
of X.

® is said to be sample continuous if there exists a modification V of ® such that all
sample paths of ¥ are continuous.

inition 2.3. A random mapping ® from X into Y is called a Gaussian random
oping (with mean 0, resp.) if the stochastic process {(Cbx, a),(x,a) e X xY '} isa
ussian stochastic process (with mean 0, resp.).

eorem 2.4. Let X be a bounded set in a finite-dimensional Euclidean space and ®
-valued Gaussian random mapping with mean 0 on X. Suppose for some C > 0,
-0 and all x1, x, € X, we have

E||®x1 — ®x2|* < Cd®(x1, x2), 2.1

1 @ is sample continuous.
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Proof. Let X C R¥ and without loss of generality, assume d(x1, x3) = ||x1 — x2]|.
By the crucial property of Gaussian random variables with values in Banach spaces
(see [3]), for each p > 0, there exists a positive number C, such that

2
2

El|®x; — ®x|” < Cp ENlOm — @x, )}
From (2.1), we obtain
8,
E|[®x1 — @x2]|” < Dplix1 = x2]| 2

for all x1, x € X, where D), = CPCEZE. Let p be sufficiently large such that

dp
= >k+1
> T k+

and M the diameter of X. We have the following estimation:

[
& || X] — X2 |2
E||®x; — ®x2||? < DM~

k+1
= Lllx1 — x2||

& || X — A2

k+1
SDpM2 +9

where L = DpMéiLk_l.
By the extended Kolmogorov’s criterion due to Totoki [7] (which holds for Y -valued
random mappings on a bounded set in R¥), we conclude that ® is sample continuous. &

Next, we shall show that condition (2.1) is not sufficient for sample continuity
of Gaussian random mappings on X with mean O if X is a bounded set of an
infinite-dimensional Hilbert space H . To this end, let (¢, ) be the sequence of independent
identical distributive (i.i.d. for short) N(0, 1) random variables and (y,) a bounded
sequence in Y. Suppose X is the unit ball of a Hilbert space H with the orthonormal
basis (e,). We have the following theorem.

Theorem 2.5. Assume Y is a Banach space of type 2. Then

(1) foreach x € X, the series

o0
Dx =D an¥n(x, €n)

n=1

converges a.s. in Y and define a Gaussian random mapping ® with mean 0 satisfying
the condition

E|®x; — ®x2l* < Clx1 — x2? (2.2)

for all x1, x € X and some C > 0.
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oo
(i) if Y llynll> < 00, then ® is sample continuous.
n=1

(iit) a necessary condition for sample continuity of @ is that there exists a positive number

K > 0 such that -
K
nE=1 exp{ — D ”2} < 00. (2.3)

In particular, if y, =y, y # 0 for all n, then ® is not sample continuous.

Proof. (i) Because Y is of type 2, there exists C > 0 such that, for all independent
Y-valued r.v’s X, X5, ..., X,, with mean O and finite second moment, we have

n R
E|Y Xil* <C) EIX|*. 2.4
i=1 i=1

So we find (with A = sup ||y, ||?)

n

n
E| Y cuy(x, en* < CAY  |(x, en)l?,
k=m

k=m

o0

which proves that the series Y o, yn(x, e,) converges in probability, and hence,
n=1

converges a.s. by Ito—Nisio theorem. It is easy to check that ® is a Gaussian random

mapping with mean 0. Moreover, using (2.4), we obtain
n n 2
E” Y ciyilen,e) — Y aiyi(x, ei)H < CAllx; — x|?
i=1 k=1

for all n which proves (2.2).
(it) We have

o0 e ¢}
E( Y lanynl®) = Elea? Y lisnll? < o0,
n=1

n=1

xQ
$0 Y |lotayn|I? < 00 a.s. Put

n=1

2 ={oe: ) @l <oo}.

n=1

For each w € @y, x € X, we have

| im(w)yi(x, )|

=m

< D les@yill I, ) < (3 es(@)il) il

o0

From this it follows that the series Y o, (w)yn (x, €,) converges in Y for each w € Qo
n=1

and x € X.
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Define a mapping W : X x £ — Y by

Zan ({U)_"‘ir(A‘-- €y )i if o (S QO

n=I

0, otherwise.

U(x,w) =

oo
For each x € X, by definition, the series Zan Yn(x, e,) converges a.s. to ¥V (x, w).

n=1
Consequently,

P{w €Q: U, w) = x, w)} S

It remains to show that all sample paths of ¥ are continuous. Indeed, it is easy to see
that the mapping

x —> Zai(a))yn(x, e;)

i=1

is linear and continuous. By the Banach—-Steinhaus theorem, the mapping x — ¥ (x, w)
is continuous as desired.

(iii) Suppose there exists a modification W with continuous sample paths. Because
®(x, w) = V(x, w) a.s., we can find a set Qg of probability 1 such that

D(re,, w) = V(re,, )
for all rational number r € Q |r| < 1 and all e,. Clearly, for eachr € Q, |r| < 1 and

each e,
D(re,) =rd(e,) as.

Hence, we can find a set Q¢ of probability 1 such that
O (ren, w) =rP(en, w)

forallw € Qo,allr € Q, |[r| <1, and all e,.
Now, fix w € 21 N Qg. For each rational number » € [0, 1] and each r, we have

Y(re,, w) = O(rey, w) =rP(e,, w) =r¥(e,, »).

Since the mapping x — W(x, ») is continuous at O and ¥ (0, w) = 0, there exists
r € 0,0 <r < 1suchthat [|W(x, w)| < 1 whenever ||x|| < r.Consequently,

r Y rey
Ell‘ll(en,w)ll = ””2‘\11(571:(1))” = II‘P(T,w)II <1 foralln.
From this, we obtain
2
| (en, )| = ¥ (en, @} < — < oo,

for all #» and all w € 21 N Q.
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Since P (21 N Q) = 1, this means that

sup || ®(ey, w)|| < 00 as.,
n

ie.,

sup |ax ) llynll < oo. (2.5)
n

By Vakhania’s theorem [12], (2.5) implies (2.3) as desired.
Now, let ® be a random mapping from X into ¥ (Gaussian or not) satisfying the
following conditions:
G VxeX E||®Px|? < oo,
(i) 3C > 0, 38 > O such that

L
2

(Elox - @x2l?)’ < CaP a1, x2) @.6)

for all x1, x, € X.

Without loss of generality, we can assume
d{x1,x) <M Vx1,x € X.

The problem considered here is to determine sufficient conditions for ® to be sample
continuous.

Denote by L,(<2) the Hilbert space of real-valued random variable £ with

I6 = (E16F) < oo.

If C(X, Y) stands for the set of all bounded continuous mappings from X into ¥, then
C(X, Y) becomes a Banach space under the norm

I flic = sup | fF G
xeX

It should be noted that C (X, ¥) is not necessarily separable.

We associate to ¢ a mapping T from L3(S2) into the set of all mappings from X into
Y defined by

(T8)x = / §(0)Px(w)d P(w). Q.7
Q

Here, the Bochner integral (2.7) exists since E||®x||> < 0o. [ |

Lemma 2.6. T is a linear continuous mapping from L,(Q) into C(X, Y).
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Proof. We have to show that T¢ € C(X, Y) for x1, xp € X we have

I(T&)x1 — (TE)x2|l = / &] | Dx; — Pxz]ld P
Q

< (EIEIP)} (E1®x1 — ox)I1?)} < ClENd @, x2)

showing that T £ is continuous.
Fix xg € X. For all x € X, we have

I < 1Tl + (TE)x — (TE)sol
< 1§1{ (E19x01?)* + Cd*(x, o)
< eI (E1@x0l?)* + o’
L @8®)

which proves that 7§ is bounded. The linearity of T is obvious. Hence, T is a linear
mapping from X into C(X, 7).
Moreover, from (2.8), we obtain

IT6lc < KII€1l,

which proves the continuity of T'. =

Lemma 2.7. Suppose there exists a Radon measure i on C(X, Y) such that, for all
(*1,%2, ..., %) in X, all (a3, a2, ..., an) in Y’ and all Borel set B in R",

P[(cb.x-,-_.a,-)j.‘:[ € Bl = ,u,{f (fxi, @), € Bl. 2.9)
Then & is sample continuous.

Proof. For each pair v = (x,a) € X x Y/, the mapping v : C(X,Y) — R given by
v(f) = (fx, a) is linear and continuous. Suppose (x,,) is the countable set dense in X
and (a,) C Y’ is a sequence in Y’ such that

lyll = sup |(y,an)| Yy €Y.
n

Let
M= {(xn,am):?mﬂ} cXxY.

M is a countable set in X x Y’, so it can be written as a sequence M = {v1, v, ...}.
For brevity, if v = (x, a) € X x Y’, then v(®) denotes the r.v. (®x, a), i.e.,

v(PHw) = (<I>x(a)), a).
Define the mapping A : C(X,Y) — R® by

o0
i=1

A ={un}
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It is easy to verify that A is one-to-one and continuous. Since y is a Radon measure,
here exists a sequence of compact sets (K,) C C(X, ¥) such that lim p(K,) = 1. Put
n

K = U K, then K is a Borel setand u(K) = 1 and A(K) = U A(K,) is a Borel set
n=1

n R*. The restriction of A on K has an inverse from A(K) 1nto C(X, Y) denoted by
B. Put
2 ={wecQ: {u@}, e 4m}.

[hen by (2.9),
P0) = Plo: {u(@)}7, € A®)}
=u{f e @0 uO), e A

=u{r: a0 e A} 2 u®) = 1.
Consider the mapping G : Q¢ — A(K) defined by
G@) = {u(®]7,
ind the mapping ¥ : Q¢ — C(X,Y) by
Y(w) = B(G(w)).

By (2.9), the distribution of A is the same as the distribution of G.
Fix an element v € M. We have

P{w : (D) (w) = v(q’(w))}
= Plo: (@)@ = v[B(G®))]
= u{f eCX,Y):v(f) = v[B(A(f))]]

> u{f: f=BAGD) :
> u(K)=1. (2.10)
Consider the random mapping W given by
V(x,w) = V(w)x.

It is obvious that all sample paths of W are elements of C(X, Y). We shall show that
U is a modification of @. From (2.10), we have

(Pxn; am) = (Vxn, am) as.
vhich implies thatVn =1, 2, . ..
Ox,(w) = ¥x,(w) as.

Now, if x is an arbitrary element in X, then we can choose a subsequence (x,, ) bending
0 x. By (2.6), ®x;,, converges to ®x in probability.
On the other hand, W, (w) converges to Wx(w) for all ® € Q. Consequently,

Ox(w) = Ux () as.

he lemma is proved. n

We are now ready to prove the following:
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Theorem 2.8. A sufficient condition for © to be sample continuous is that the linear
continuous mapping T : L(2) — C(X, Y) given by (2.7) is 2-summing.

Proof. Let y be a cylindrical measure mapping Iz : Ly(2) — L,(€). In other words,
y is defined by the formula

(81,82,---agn)€L2(Q):Vg1 ,,,,, gn=£(g1,---agn),

or
y[g €Ly:(E.g), € B] = P[w (@), € B}. 2.11)

v 1s a cylindrical measure of type 2 because

sup / |t1*dyg(t) = sup E|gl* < 1.
llgll=1 llgli=<1

Since T is 2-summing, by Schwartz’s Radonification Theorem (see [4]), the image
measure i = T'(y) is a Radon measure on C(X, Y). Now, for (x1, x2,...,x,) C X,
(a1, ...,a,) C Y’ and for all Borel sets B C R” by (2.11), we obtain

ulf ec v (fxia)l, < B}

r{e e Lo : (TO)x, ), € B
g e La@: (. @x,a))]_, € B]
[

w: (<I>x,~,a,-)fl i B}.

i=

According to Lemma 2.7, we conclude that & is sample continuous. [ ]

3. Sample Continuity of Random Operators

Throughout this section, X is assumed to be a separable Banach space.

Definition 3.1.

(a) A random mapping ® from X into Y is said to be stochastically linear if, for each
A1, Ay € Rand each x(, x» € X,

D(Aix1 + Axp) = A Dx; + A Pxy as.

It is important that the set of w in which the above equality holds depends on A1,
A2, X1 and x3.

(b) If a random mapping @ is stochastically linear and stochastically continuous, then
® is called a random operator from X into Y.
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Theorem 3.2. Let X = £, (p > 1) and ® be a random operator from X into Y.
@ If
0.0)
> I®e,|” < oo as.,
n=1
then ® is sample continuous, where (e,) is the standard basis in £, and p' is the
1 1
conjugate number of p (— +—= 1).
p p

(ii) A necessary condition for the sample continuity of ® is that

o0
Z|(d>en,a)|pl<oo a.s. forallaeY’

n=1

and

sup || Pe,|| < 00 a.s.
neN

Proof. (i) Put
X
Qo = {w : Z | Pen(@)||? < oo}.
n=1
If w € Qg, then
oo
3 11, en)Den(@)]| < 00,

n=1

(o]
which implies that the series Y (x, e,) Pe,(w) is convergent in Y. Define a random
n=1

mapping ¥ by 3,
Y (x, en)Pen(@), if w € Q,

n=1
0 otherwise.

V(x, w) =

By the Banach—Steinhaus theorem, all sample paths of ¥ are continuous. Since P is

o0
stochastically continuous, linear and x = Y _ (x, e»)e,, we obtain that
n=1

o0

Ox = Z(x, e,)Pe,, ,

n=1

[o2]

where the series converges in probability. Clearly, the series ) (x, e,)®e, converges
n=1

a.s. to Wx. Consequently, ®x = Wx a.s., i.e., ¥ is a modification of ®.

(ii) In order to prove (ii), we need the following lemma.

Lemma 3.3. Suppose V is a modification of ® with continuous sample paths. Then for '
almost all w, sample paths V (.; w) are linear.
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Proof. Let Z be a countable set dense in X and [Z] a linear space spanned over the field
Q of rational number of Z. From the stochastic linearity of ® and the countability of
[Z], it follows that there exists a set Qp with P(g) = 1 such that

Yo € Qo, Vx1,x2 € [Z], Vri,rp € Q
D(r1x1 + r2x2, w) = r1®P(x1, @) + P (x2, w).

Since W is a modification of ® and [Z] is countable, we can find a set Qywith P(Qy) =1
such that
Plx,w) = V(x,w)

forall x € [Z]and all w € ;.
Now, we claim that, for each w € Qg N Q1, the sample path W(., w) is linear. Irideed,
for x1, x; € [Z] and r € Q, we have

W(x1 + X2, 0) = P(x1 + x2, 0) = P(x1, ) + Px2, W) = W (x1, ®) + ¥ (x2, )
V(rx1, w) = @(rxr, w) = r®(x1, w) = r¥(x1, o).

Forx € X,x" € X and A € R, we can choose sequences (x,) C [Z], (x}) C [Z] and
(rn) C Q such that x, — x, x,, — x" and r, — A. Using the continuity of the mapping
x = W(x, w), we obtain

U (x, w) + ¥(x', w) = im ¥ (x,, @) + lim W (x,, »)
=1lm¥(x, + x,, w) = V(x + x', w),
AV (x, @) = lim 7, W (xp, @) = lim ¥ (r,x,, w) = W(ix, ).
The lemma is proved. |

Proof of part (ii). By Lemma 3.3, there exists a set Qo with P(£) = 1 such that Ve € Qo
and the mapping
T(w):x —> V(x,w)

is a linear continuous operator. Moreover, we can find a set Q with P(21) = 1 such that
D(en, w) = V(ep, w) = T(w)e,

foralw e Qq,alln=1,2,....
Consequently, for each w € Qo N Qy,

sup || @ (en, @)|| = sup | T (@)en || < | T (w)]| < oo,

ie.,
sup || De, || < 00 as.
n

and foreacha e Y, n=1,2,...,

Y H®en(@),a)lP =Y (T (@)en, a)|”

n=1 n=1

= D llew, T*@a)l” = T (@)all” < oo,
n=1

ie.,

o0
> ®en. @)l <00 as,

n=1

This completes the proof of the theorem. |
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Proof. (i) We have
D lyax, e)lI” < sup flyall [1x[I7.

Hence, because Y is of stable type p, the series Y y,y,(x, e,) converges a.s. By the
n=1
properties of stable measures on Banach spaces [4], there exists a constant K > 0 such

that

Pl1oxt > e} = P{I3 vuonte el > e}

n=1

K K sup ||y, [|? ||lx||?
i P
= E ICx, en)ynll?” < o7 .

This shows that @ is a random operator.
(ii) If ® is sample continuous, then by Theorem 3.2, we have

Sup [|yn ¥l = sup [Pen || < 0o as. (3.3)
n

By the Borel-Cantelli lemma, condition (3.3) holds if and only if

> P{iwml > 1} < o0

n=1

for some ¢ > 0.
t |y 12
~ , itfollows that Z [y2 117 < o0.

Si P{ ‘}_ {
mce P {iynyul > Ival > lyall tp

In order to prove the converse, by Theorem 3.2, it suffices to show that

Z [ De,]|” < oo as.

n=1

Indeed, since p’ > p, the space £,y is of stable type p. Therefore, condition (3.2) implies

o
that the series > (|ynlleny» converges a.s. in £ . Hence, we obtain

n=1
o0 oo
7 /
Y 1Penll” = liyayal? < 00 as.
n=1 n=1

as desired. u

The following corollary shows that the necessary condition stated in Theorem 3.2(ii)
is sufficient only if the case Y is finite-dimensional.

Corollary 3.5. Let Y be a separable Banach space of stable type p (1 < p < 2). Then
the following assertions are equivalent:

(1) Y is finite-dimensional,

(i1) for every random operator ® from £, into Y, the condition

o0
Z|(<1>en,a)|p < 00 a.s.

n=1

forall a € Y' is sufficient for the sample continuity of ®.
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Proof. (i) — (ii) Let Y = R* and hy, h, .. ., hy be the standard basis in R*. By the
assumption, for each #;,

20 /
Z[(d>en,hj)lp < 00 as.
n=1

It is obvious that we can find a constant C > 0 such that
k
IyI1” < €Y1, hIP
j=1

forall y € R*.
Consequently,

Zn<1>en ¥ <c

|<d>e,,, h)¥

(Cbe,,, R)IP < oo as.

I M8 I M*

By Theorem 3.2, & is sample continuous.
(ii) — (i) Suppose Y is infinite-dimensional. By the weak Dvoretzsky—Rogers theorem,
there exists a sequence (y,) C Y such that

x>
foralla € Y, ) (3, a)I? < 00 (3.4)
n=1
but
o0
Y yall? = oo (3.5)

Taking into account that [2, p.32]

Il = sup Gn.@)| < sup (X Omar) <o,

fall<1 *, 4

we see that (y,) is a bounded sequence in Y. Define a random mapping & from £, into
Y by

oo
Ox =) yayn(x, en),
n=1

® is a random operator (Corollary 3.4). By the same argument as shown in the proof of
Corollary 3.4, condition (3.4) implies that

o0 o
Y (@en, )P = lyaOn @IF <00 as.

=1 n=1
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Using assumption (ii), we conclude that & is sample continuous. Thanks to Corollary
3.4, this fact implies that

o0
D lyall? < 00
n=1

which contradicts (3.5). Therefore, Y is finite-dimensional. [ ]
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