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Abstract. In this paper the sample continuity of random mappings between a separable metric space
and a separable Banach space is considered. It is shown that the well-known Kolmogorov criterion
does not hold if the domain of the random mapping is a bounded set in an infinite-dimensional
Hilbert space.

1. Introduction

Let (X, d) be a separable metric space and Y a separable Banach space. By a random
yappin O jrom X to Y (or a l-valued random mapping), we mean a family O -

{Ox, x X} of Y-valued random variables (r.v.'s) indexed by the parameter set X. If X
is an interval of the real line Rl, we say that o is a r-valued stochastic process, and if
Y : Rl, we say that O is a random function on X.

An important result on the existence of sample continuous modification of the
stochastic process on an interval [0,7] is provided by a well-known Kolmogorov
criterion (see [5]). This criterion was extended by Totoki [7] to the case of a y-valued
random mapping on a bounded set of a finite-dimensional Euclidean space. Namely, if
6 : (Ox) is a l-valued random mapping on a bounded set X c Rk such that, for some
p > 0,a > 0 and all x1, x2 in X

El l<Dx1 -  Qxzl lP < Cl lxr  -  
" ,  

l l f r * " .

then o is sample continuous (i.e., there exists a modification of <D whose sample
paths are continuous). By applying this result, it is not difficult to show that, if O is
a r-valued Gaussian random mapping with mean 0 defined on a bounded set X of a
finite-dimensional Euclidean space, then the condition

Ell0xl  -  Qxzl l"  < Cl lxt  -  xzl l ' ( 1 . 1 )

*This paper was supported in part by the National Basic Research Program in Natural Sciences,
Vietnam.
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someC > O,r  > 0andal lx1,x2 e Xissuf f ic ient for thesamplecont inui ty
reorem 2.4). However, Theorem 2.5 shows that the above assertion does not hold if X
bounded set in an infinite-dimensional Hilbert space. A sufficient condition, which

ures the sample continuity of Y-valued randommappings satisfying (1.1), is found. In
:. 3, we restrict ourselves to random operators and obtain some new results about their
rple continuity. Many other properties of random operators have been considered in
8-101.

Sample Continuity of Random Mapping

(4, F, P) be a complete probability space, (X, d) a separable metric space, and I
rparable Banach space.

flnition 2.1. Afamily O - {Ox, x e X} of Y-valued rv.'s (Dx indexed by the
'ameter set X is called a random mapping from X into Y or a Y-valued random
oping on X. We set

a? 'o)  :  Qx(a)  fora l l  x  e X and@ € o.

( is an interval l0,Tl of the real line, then Q is said to be a Y-valued stochastic
cess on fO, Tf.

ior each ro e {2, the mapping O(., ar) i x -----> Q(x, rrl) is called a sample path of O.
other random mapping V from X into Y is said to be a modification of O if

Yx e X Qx(a) : Vx(o) almost surely (a's.).

hould be noted that the set of a.l in which the above equality holds depends on r.

flnition 2.2.
A random mapping Q from X into Y is said to be stochastically continuous at xs e X
if

Ve > 0 , lr31. P{l lox, - oxoll  > s} :0.

Q is stochastically continuous on X if it is stochastically continuous at every point
of x.

Q is said to be sample continuous if there exists a modification V of A such that all
sample paths of V are continuous.

ilnition 2,3. A random mapping Q from X into Y is called a Gaussian random
oping (with mean 0, resp.) if the stochastic process {(Ox, a), (x, a) e X x Y'l is a
,tssian stochastic process (with mean 0, resp.).

eorem 2.4. Let X be a bounded set in a finite-dimensional Euclidean space and Q
'-valued 

Gaussian random mapping with mean 0 on X. Suppose for some C > 0,
O and all xr, xz e X, we have

EllOxr -  Qxzl lz < Cd\ qx1, x21,

n Q is sample continuous.

(2.r)



Sample Continuity of Random Mappings 9

Proof. Let X C Rft and without loss of generality, assume d(xt, x) : llxl - x2ll.

By the crucial property of Gaussian random variables with values in Banach spaces
(see [3]), for each p > 0, there exists a positive number Co such that

Elaxt -  Qxzl lP = ColnPxt -  ax2f l i  .

From (2.1), we obtain

Ell<D.rr - Qxzll1 < Dollxr - rrll?

for all x1 , x2 e X,where Dp : C.CT .Let p be sufficiently large such that

6p--:- > k+ I
2

and M the diameter of X. We have the following estimation:

El lox l  -Qxz l lP=DpM+i l  i l ?l t t l

< DoM+ ll l l ' . t : Lllxr - *zllk+r,' i l t l

where,L : Do|,4Y-t'-t.

By the extended Kolmogorov's criterion due to Totoki [7] (which holds for Y-valued
random mappings on a bounded set in Rft), we conclude that O is sample continuous. r

Next, we shall show that condition (2.1) is not sufficient for sample continuity
of Gaussian random mappings on X with mean 0 if X is a bounded set of an
infinite-dimensional Hilbert space 11. To this end, let (cv, ) be the sequence of independent
identical distibutive (i.i.d. for short) N(0, 1) random variables and (yn) a bounded
sequence in I. Suppose X is the unit ball of a Hilbert space I/ with the orthonormal
basis (e,). We have the following theorem.

Theorem 2.5. Assume Y is a Banach space of type 2. Then

(l) for each x e X, the series

g
Q x :  L d n l r ( x , e r )

n : l

c onv e r g e s o. s. in Y and define a G au s s i an random mapp in g Q w ith me an 0 s ati sfu in g

the condition

Elaxl  -  Qxzl lz < Cl lxr -  *zl l2 (2.2)

for all xr, x2 e X and some C > 0.
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@

(ii) ,/ I llynll2 . 6, then Q is sample conttnuous.
n : l

(111) anecessaryconditionforsamplecontinuityofQisthatthereexistsapositivenumber
K > 0 suchthat

In particulari if yn : y, y + 0 for all n, then Q is not sample continuous.

Proof. (i) Because Y is of type 2, there exists C > O such that, for all independent
I-valued r.v.'s X1 , X2, . . ., Xn with mean 0 and finite second moment. we have

S 1 K l

2"*'l- tt;tP l '-

El lD xi l l2 < c ln lx;112.

(2.3)

(2.4)
i : 1

So we find (with A : sup lly,ll2)

n

El l  I  a*y*(x ,eDl lz
k:m

@

which proves that the series I oh!n(x,er) converges in probability, and hence,

converges a.s. by Ito-Nisio ,rr"3i"-. It is easy to check that o is a Gaussian random
mapping with mean 0. Moreover, using (2.4), we obtain

i : l

n

=  c A D l @ ,  e t ) 1 2 ,
k:m

nllf*,t,at, ei) -fo,r,(,r,,,lll ' = cAllxl - *zttz
i : l

for all n which proves (2.2).

(ii) We have

oo

so !  l lcv,y, l l2 .  m a.s.Put

I : m

From this it follows that the series

a n d x e X .

@ @
- /  s . .  . . 1 \  , ?  \ - . ,  , , )E\ L l lo t "y" l l ' )  :  E lat l '  l l l t , l l '  .  oo,

t , - 1

oo

O6 : {,o e Cl : f llan(a)y)l2 = *}.t 7 - r r

For each @ € f,26, x e X, we have

n n n

j l  I",t , lr ,(",",) l l  s I l loir,)yi l l  l(x, , , t l  = ( i  t to,t,)r,t ') i l ' t t .
:m

@

D on(r)yn(x, en) converges in Y for each ar e e6
n : l
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Defineamapping V : X x O -+ Yby

V(x, to) :
if ro e S2o

otherwise.

m

For each x e X,by definition, the series Do,r,(*,e,) converges a.s. to .{r(x, a).
n :1

Consequently,

P [ ,  e O  :  V ( x , r o )  :  O ( x , r ) ]  :  t .
t  

' J

It remains to show that all sample paths of V are continuous. Indeed, it is easy to see
that the mapping

* -io,(a)y,(x,e;)
i : l

is linear and continuous. By the Banach-Steinhaus theorem, the mapping x --> V(x, o)
is continuous as desired.

(iii) Suppose there exists a modification V with continuous sample paths. Because
O(x, ar) - V(x, ar) a.s., we can find a set O6 of probability 1 such that

Q(ren,  a)  = V(rer ,  a)

fora l l ra t ionalnumber r  e Qlr l  < l  and a l le" .Clear ly , foreachr  e Q, l r l  <  l  and
each en

Q(re") - rQ(er) a.s.

Hence, we can find a set Qs of probability I such that

Q(re,, a) : r0(er, a)

for all ar e Q6, all r e Q, lr | < 1, wrd all e".
Now, fix ar € O1 n Qs. For each rational number r e [0, 1] and each n,wehave

l{^t(rer; a) : Q(ren, o) : rQ(en,a) : rV(en, a).

Since the mapping r -+ V(x, ar) is continuous at O and V(0, ar) : 0, there exists
r € Q,0 < r < I suchthat l lv(x, at)l l  < 1 whenever l lxl l < r. Consequently,

lll*{r,,4,)ll 
: ll l*rr,, 

a)ll : llw(+, @)ll < 1 for all n.

From this, we obtain

1 1

l lO(e",o) l l :  l lV(e",  al) l l  <

for alln and all ar € O1 o S26.

2
r

< oo,
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Since P(O1 fl S26) : 1, this means that

sup llO(e,, ar)ll < oo 4.S.,
n

sup ldnl lly,ll < oo.
n

(2.s)

By Vakftania's theorem II2l, (2.5) implies (2.3) as desired.
Now, let O be a random mapping from X into Y (Gaussian or not) satisfying the,

following conditions:
( i )  V r e X  E l l O x l l 2 < o o ,
(ii) lC > 0, 16 > 0 such that

(r11o', - qrrll')i . cd61*1, *21

for all 11, x2 e X.

Without loss of generality, we can assume

(2.6)

d(x1, x2) < M Yx1, x2 e X.

The problem considered here is to determine sufficient conditions for O to be sample
continuous.

Denote by Zz(A) the Hilbert space of real-valued random variable f with

z  . r , f
1 1 6 l l  = ( 1 1 6 l ' ) ' . * .

If C(X,I) stands for the set of all bounded continuous mappings from X into I, then
C(X, y) becomes a Banach space under the norm

l l " f  l lc :  sup l l / ( . r ) l l .
xeX

It should be noted that C(X, Y) is not necessarily separable.
![e associate to o a mapping 7 from zz(Q) into the set of all mappings from X into

I defined bv

Here, the Bochner integral (2.7) exists since E ll @r ll2 = oo.

Lemma 2.6. T is a linear continuous mapping from Lz(A\ into C(X, Y\.

(2.7)

T

f
(T$)x : I E@)axko)dP(a).

I

o
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We have to show that T $ e C (X, Y) for x1, x2 c X we have

f
l l (rf)xr -Q€)xzl l  s , 16l l loxr - ax2lldP

J

s (r11gtt ') i(r11or1 - o*)l l2)i s c116llds(xt,xz)

Sowing thatT$ is continuous.
Fix.16 e X. For all x e X, we have

l l(rf)xll < i l(rf)xoll + l l(rf )r - (zf)roll

s 116 ll { (E ll o *oll")i + c ds (x , xsll

s 116il{(Ello,oll ')L + cM6l

:  116l lK, (2.8)

which es that 7f is bounded. The linearity of Z is obvious. Hence, T is a linear
mapping from X into C(X,Y).

Moreover, from (2.8), we obtain

l l 16 l l c  <  K l l 6 l l ,

which proves the continuity of T.

Lemma 2,7. Suppose there exists a Radon rneasure p, on C(X,Y) such that, for all
( x t , x 2 , . . . , x n )  i n X ,  a l l ( a t , a 2 , . . . , a n )  i n Y ' a n d a l l B o r e l  s e t  B  i n R n ,

(2.e)

Then Q is sample continuous.

Proof.  For eachpair  v:  (x,a) e X x I ' , themapping u: C(X,I)  + R givenby
u(f) : (f x, a) is linear and continuous. Suppose (xr) is the countable set dense in X
and (a") C I/ is a sequence in Y' such that

llyll : slp l(y, a")l Yy e Y.

Let 
L \oo I --M : llx",o^)f,,^:rl c x x Y'.

M is acountable set in X x Y/, so it can be written as a sequence M : {q, uz, ...1.
For brevity, tf v = (x, a) e X x Yt , then u(O) denotes the r.v. ((bx, a), i.e.,

u(O)(ar)  :  (Ax61,a) .

Define the mapping A : C(X,I) + R@ by

A(f ) :  { r , ( / ) } - ,
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It is easy to verify that A is one-to-one and continuous. Since p is a Radon measure,
fiere exists a sequence of compact sets (Kn) C C(X, Z) such thatlim p,(K) : 1. put

oo oo
K:  U Kn, thenKisaBore lse tand p(K)=  landA(K) :  U  A(K" ) isaBore lse t

n :L  n= l
m Roo. The restriction of A on K has an inverse from A(K) into C(X, y) denoted by
B 'Pu t  

L  ,  I
s 2 o :  

{ a r e  
A :  l u ; ( O ) l  , e  A ( X ) 1 .

lhen by (2.9),

P(ao)  :  r f r i ' :  {u ; (o) }  I  €A(K)}

:  , [ . f  e  (x ,y) :  {u i ( . f ) }  ,  e  a( r ) }

:  p [ f  I  A( f )  e  a( r ) ]  >  p. (K) :  r .'  t -  ' J  - '

Consider the mapping G : Oo -+ A(K) defined by

G(a) :  {u ; (O) }  I
urd the mapping V : O6 + C (X, Y) by

Y(dt) = B(G(a)).

By (2.9), the distribution of A is the same as the distribution of G.
Fix an element u e M. have

P{a;:  u(O)(ar) = u(V(ar))}

: nfra: u(a)(rrr): r[a1c1or);]

= *{ f  e C(x,Y) :  u( f ) :  ,1a1a1yi l ] }

z u , [ f t f : B A U ) I
>  t - t (K )  : 7 .

Consider the random mapping V given by

rlr(x, a) : V(ar)x.

It is obvious that all sample paths of v are elements of c(x, r). we shall show that
U is a modification of O. From (2.10), we have

(Qxr,  a*)  :  (Vxn,  a, )  a.s .

vhich implies thatYn : 1,2, ...

Qxn(a) : Vx"ktt) a.s.

{ow if x is an arbitrary element in X, then we can choose a subsequence (**) bending
o x. By (2.6), Qxro converges to @x in probability.

On the other hand, Vru(a) converges to Vx(ar) for all ar e O. Consequently,

Qx(a) : Vx(a) a.s.

he lemma is proved.

We are now ready to prove the following:

(2.1,0)
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Theorem 2.8. A sufficient condition for O to be sample continuous is that the linear
continuous mapping T : Lz(Q) --> C(X, Y) given by (2.7) is 2-summing.

Proof. LeI y be a cylindrical measure mapping Ia : L2(Q) --> L2(Q).In other words,
y is defined by the formula

( g r ,  9 2 , . . . ,  E n )  e  L 2 ( 9 )  i  y s r , . . . , s ,  :  L ( g t , . . . ,  g , ) ,

or

rl€ e rz : G, s)i:t. u] : Pfro : (g1Qo))i:, . Bl. Q.rr)

y is a cylindrical measure of type 2 because

r ^
sup I  l r layr@ -  sup El lg l l2  .  t .

l l g l l < l  J  l l s l i s t

Since Z is 2-summing, by Schwartz's Radonification Theorem (see [4]), the image
measure pL : T(y) is a Radon measure on C(X,I). Now, for (x1, x2, ..., xr) C X,
(at, ..., a,) C Y' andfor all Borel sets B C R" by (2.11),we obtain

L t
p l f  €  C ( X , Y ) :  ( f  x i . a ; ) ' , _ ,  e  B I.  

f . "  
. , r : t  

I

: y[E e Lz(e) : (eilxi. ai)i_, e nl' f . -  ' ' t : t  
I

( , r
= y lE € Lz(Q) :  (6.  (Oxi,  ai)) ' ,_,  e B l' t '  " t I : ]  

|

:  r Ia:  (exi ,a i \ . i - ,  e nI .
[  \  "  ' ' t : t  

]

According to Lemma 2.1 , we conclude that O is sample continuous. I

3. Sample Continuity of Random Operators

Throughout this section, X is assumed to be a separable Banach space.

Definition 3.1.
(a) A random mapping Q from X into Y is said to be stochastically linear if, for each

)"1, )"2 e R and each xr, x2 € X,

O()'rxr I )"zx) : i.tOxt I ) '2Qx2 a.s.

It is important that the set of ro in which the above equality holds depends on ),1,
)"2, x1 and x2.

(b) If a random mapping Q is stochastically linear and stochastically continuous, then
Q is called a random operatorfrom X into Y.
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Theorem 3.2. Izt X : lp (p - l) and Q be a random operator from X into Y.

(i) rf

illor,11o'< oo 4.,t.'
n: l

then Q is sample continuous, where (en) is the standard basis in l, and pt is the

conjugate number q p (!+ 1 : r).
\ p p ' /

(1i) A necessary conditionfor the sample continuity of Q is that

m

) 
' 
l(or,, a)lo < oo a..s. for all a e Yl

L J  t '

n=l

and

Proof. (i)

If ar e C)9, then

which implies that the

mapping V by

sup ll<Denll < m
zeN

oo
a _ ,  I

Qs : f@ : l lQe"(a) l lP < oo1.' t " t
n : l

oo

l l(x,e)Qe"(al)ll < oo,
n= l

@

series ! (x,en)Qen(a) is co rgent in Y. Define a random
n : I

V(x ,a )  -

By the Banach-Steinhaus theorem, all sample paths of V are continuous. Since <D is

stochastically continuous, linear and r : f (x, en)en, we obtain that
n--l

@

_  \ - -qy  :  l ( x ,en)Qen,
n: l

where the series converges in probability. Clearly, the series f lx,enlQenconverges
n: l

a.s. to Vx. Consequently, Ox = Vx a.s., i.e., V is a modification of O.

(ii) In order to prove (ii), we need the following lernma.

Lemma 3,3, Suppo s e V is a modification of Q with contirutous sonplc paths. Then for
almost all a, sample paths V(.; o) are linean
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Proof. Let Z be acountable set dense in X and [Zl alinear space spanned over the field
Q of rutional number of Z. From the stochastic linearity of O and the countability of
[Z], it follows that there exists a set O6 with P(Oo) : 1 such that

Var e S26,  Yx1,x2 efZl ,  Yr1,12 e Q
Q(r1x1 * r2x2, a) : rtQ(xt, ro) I rzQ(xz, a).

Since v is a modification of o and lZlis countable, we can find a set e1 with p (e 1 ) : 1
such that

Q(x, a) : V (x, at)

for all x e lZl and all a,l e Q1.
Now, we claim that, for each al e os fl S21, the sample path v(., ar) is hnear. hideed,

for x1, x2 e lZl andr e Q, we have

V(xr  + x2,@) -  @(xr  + x2,a)  -  Q(x1,a)  *  Q(x2,ar)  :  V(r r ,  to)  - lV(xz,a)

V(rx1,  a)  :  Q(rxt ,  a)  :  r (D(xt ,  a)  :  rV(xt ,  a) .

Forx € X,x 'e Xand, l ,  e  R,wecanchoosesequences (x)  Clz l , (x , r )  c lZ land,
(r") C Q such that xn --> x, xt, --> x' and rn --> .1". Using the continuity of the mapping
x -+ V(x, a-l), we obtain

V (x , to) + V (x', ar) : lim V (xr, ro) i limV (xt,, a)
: lim V(-r, t xr, ttt) : V(x * x' , co),

),V(;, ar) :TimrrV(xn, a) : l imV(rrxr, a) : V().x, a).
The lemma is proved. I

Proofofpar t ( i l ) .ByLemma3.3, thereexistsasetQ6withp(Oo): lsuchthatVaree6
and the mapping

T(a) : x --> V(x, a)

is a linear continuous operator. Moreover, we can find a set e with p(Ar) : I such that

Q (e", a) : V (er, rrt) : T (a)e,

f o r a l l a r  €  S ) 1 ,  a l l  n  :  1 , 2 , . . .  .
Consequently, for each ar € Q9 O O1,

sup llO(en, ar)l l : supllT(ot)e"ll < l l /(ar)l l < oo,

L O . ,

sup l l0en l l  .m a .s .

and fo r  eacha e  Y ' ,  n  :  1 ,2 ,  . , , ,

i , ,*r,,r,,  a)rp' :  ir{r {dr,, o)ro'
n : l  n : l

@

Dlk,, T* (a;)a)lP : llT (a)allP' . oo,
N : I

i .e.,
oo

D l (* " , .  a) l \ '  <  x  a.s .
n : l

This completes the proof of the theorem. r

17
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Prcof. (i) We have

t9

Dl ly , (* ,e) l lq  < supl ly , l l  l lx l lp .

that
@

p{ l l ox t t  ' r }  :  r { l  f  y , ! n (x ,e , ) l l  >  e }
r  J  ,  - " '  

' " " '  
J

K  S , , , - .  -  \ - .  , o  ,  K s u P l l y r l l P  l l x l l Ps A Lll(.x, e")y"ll" = ---;-.
N : I

This shows that O is a random operator.
(ii) If O is sample continuous, then by Theorem 3.2, wehave

suPlly"y"l l : sup l lOe,ll < oo a.s. (3.3)

By the Borel-Cantelli lemma, condition (3.3) holds if and only if
@

s - 1  I
LPl l lY"Y" l l ' t l  .  *

f o r s o m e / > 0 .
( l r t t l l  v .  l l P o o

SincePl  l lvv- l l  -  r l :  r lW" l  t  , -  I  
-  t#- , i t fo l lowsthat  

I  l ly , l lp  = oo.1 " " " " " '  I  t ' " "  l l y , l l J  ,  n : l
In order to prove the converse, by Theorem 3.2, it suffices to show that

oo

I l l o " , l l p ' < m  a . s .
n : l

Indeed, sincep' > p,thespacelo, isof stable type p.Therefore,condition(3.2)implies
m

that the series I lly"lle"y, converges a.s. in lo,.Hence, we obtain
N : I

l l lo" , l lP '  :Dl lynynl l7 '  .  x  a .s .
n : \  n : l

as desired.

The following corollary shows that the necessary condition stated in Theorem 3.2(ii)
is sufficient only if the case I is finite-dimensional.

Corollary 3.5. Let Y be a separable Banach space of stabte type p (l < p < 2). Then
the following assertions are equivalent:
(1) Y is finite-dimensional;

(11) for every random operqtor Q from lo into Y, the condition

S
l l ( ae " ,a ) l '  <  oo  4 . s .
n : l

for all a e Y' is sufficient for the sample continuity of A.
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Rft and hr, h2, . . . , hk be the standard basis in nft. By the

oo

l l (ae" ,h i ) | "  .  oo a.s '
n= I

It is obvious that we can find a constant C > 0 such that

k

l lv l lP ' .  c l l { t , t t ) le '
j : r

fora l ly  e Rk.
Consequenfly,

o o o o k

lllor,lll < c D I l(Qen, h)lP'
n= l  n : l  i = I

k a

:  cDl l{o' , ,h) l . '  < x a's '
j= l  n=l

By Theorem 3.2, O is sample continuous.
(ii) + (i) Suppose Y is infinite-dimensional. By the weak Dvoretzsky-Rogers theorem,

there exists a sequence (y") C Y such that

20

Proof. (i) -+ (ii) Let Y :
assumption, for each hi,

@

for aTla .  Y' ,Dl(y, ,a) lP < a
n : l

but
@

I  l l r" l lp :  m'
n: l

Taking into account thatl2,p.32l

lly,ll : sup. 10,, a)l I .slp. (i tO,, ,Df)+ . a,
l la l l< l  l la l l< l  \2 :1

we see that (yr) is a bounded sequence in I. Define a random mapping <D from l, into
Y b v

*r :  i  Tn!n(x,en) ,
n = I

O is a random operator (Corollary 3.a). By the same argument as shown in the proof of
Corollary 3.4, condition (3.4) implies that

i , ,*r , ,  a) lp'  : iw,rr, ,a\ lp '  <oo a.s.

(3.4)

(3.s)
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Using assumption (ii), we conclude that O is sample continuous. Thanks to Corollary
3.4, this fact implies that

S
L l l Y ' l l '  <  o o

which contradicts (3.5). Therefore, ,1, o*,"-Ut.n"nsional. I
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