Vietnam Journal

of
MATHEMATICS

© Springer-Verlag 1999

Left ℵ-Coherent Dimension of Rings*

Zhongkui Liu

Department of Mathematics, Northwest Normal University Lanzhou, Gansu 730070, China

> Received December 31, 1997 Revised May 29, 1998

Abstract. Let \aleph be an infinite cardinal number. A ring R is said to be left \aleph -coherent if every finitely generated left ideal of R is \aleph -finitely presented. In this paper, we define a dimension called the *left* \aleph -coherent dimension for a ring R. We show that a ring R is left \aleph -coherent if and only if the left \aleph -coherent dimension of R is equal to zero. Some characterizations of this dimension are given. We also show that if a ring S is an excellent extension of a ring R, then the left \aleph -coherent dimension of S is equal to that of R.

1. Introduction

A ring R is called left coherent if every finitely generated left ideal is finitely presented. It is well known that R is left coherent if and only if every finitely presented left R-module M has a finite 2-presentation in the sense of Bourbaki [3], that is, there exists an exact sequence $0 \longrightarrow K_2 \longrightarrow F_1 \longrightarrow F_0 \longrightarrow M \longrightarrow 0$ such that F_0 and F_1 are finitely generated free left R-modules and K_2 is finitely generated (see, for example, [7] or [9]). In [13], the concept of left \aleph -coherent rings was introduced and investigated for any infinite cardinal number \aleph . A ring R is said to be left \aleph -coherent if every finitely generated left ideal is \aleph -finitely presented.

In this paper, using the concepts of finite n-presentations, as defined in [3], and \aleph -finite n-presentations, we define a dimension called the *left* \aleph -coherent dimension for a ring R. We show that a ring R is left \aleph -coherent if and only if the left \aleph -coherent dimension of R is equal to zero. Thus, the left \aleph -coherent dimension can be used to measure how far a ring is from being left \aleph -coherent. In Sec. 2, we give the definition and show some characterizations of this dimension. In Sec. 3, we show that if S is an excellent extension of R, then the left \aleph -coherent dimension of S is equal to that of R. Take the special infinite cardinal number \aleph , we obtain some results for left coherent dimension of R.

^{*}This work was supported by the National Natural Science Foundation of China, 19501007 and the Natural Science Foundation of Gansu, ZQ-96-01.

Throughout this paper, R denotes an associative ring with identity. For any left R-module M, we denote by M^+ the character module $Hom_{\mathbb{Z}}(M,\mathbb{Q}/\mathbb{Z})$ of M. If N_R is a submodule of M_R , the notation $N_R|M_R$ means that N_R is a summand of M_R .

2. Definition and Characterizations

Let \aleph be an infinite cardinal number and M a left R-module. Following Loustaunau [13], M is said to be \aleph -finitely generated, denoted by \aleph -fg, if every subset X of M, with $|X| < \aleph$, is contained in a finitely generated submodule of M. For example, every left R-module is \aleph 0-fg, and every finitely generated left R-module is \aleph -fg for all $\aleph > \aleph$ 0. If $\aleph > |M|$ and M is \aleph -fg, then M is finitely generated.

Let M be a finitely generated left R-module. Then M is said to be \aleph -finitely presented, denoted by \aleph -fp, if there exists an exact sequence $0 \longrightarrow K \longrightarrow F \longrightarrow M \longrightarrow 0$ with F free of finite rank and $K \aleph$ -fg. A ring R is said to be left \aleph -coherent if every finitely generated left ideal is \aleph -fp. For example, every ring is left \aleph_0 -coherent. If R is left coherent, then it is left \aleph -coherent for all infinite cardinal number \aleph . If $\aleph > \aleph'$, then every left \aleph -coherent ring is left \aleph' -coherent.

Let M be a left R-module. According to [3], we will say that M is n-finitely presented $(n-\aleph$ -finitely presented), denoted by n-FP $((n, \aleph)$ -FP, respectively), if there exists an exact sequence:

$$0 \longrightarrow K_n \longrightarrow F_{n-1} \longrightarrow \cdots \longrightarrow F_0 \longrightarrow M \longrightarrow 0,$$

where F_0, \ldots, F_{n-1} are finitely generated free modules and K_n is finitely generated (\aleph -fg, respectively). In this case, we also say that M has a finite n-presentation (\aleph -finite n-presentation, respectively).

It is easy to see that a left R-module M is finitely presented if and only if M is 1-FP, and that M is \aleph -FP if and only if M is $(1, \aleph)$ -FP. Clearly, (n+1)-FP implies $(n+1, \aleph)$ -FP and $(n+1, \aleph)$ -FP implies n-FP, but not conversely.

From Theorem 3.3 in [9], it is clear that R is left coherent if and only if every 1-FP left R-module is 2-FP. Generalizing this result, we give the following definition.

Definition 2.1. Let R be a ring. We define the left \aleph -coherent dimension of R, denoted by \aleph -lc.dim R, as

$$\inf\{n \mid every\ (n+1)\text{-}FP\ left\ R\text{-}module\ is\ (n+2, \aleph)\text{-}FP\}.$$

If no such n exists, we say that \aleph -lc.dim $R = \infty$.

Take $\aleph > |R|^{\aleph_0}$. For every \aleph -fg left R-module K with $K \leq F$ for some free left R-modules F of finite rank, we have $|K| \leq |F| \leq |R|^{\aleph_0} < \aleph$. This implies that K is finitely generated. Thus, when $\aleph > |R|^{\aleph_0}$, Definition 2.1 gives a concept of left coherent dimension, denoted by lc.dimR, that is,

$$\operatorname{lc.dim} R = \inf\{n \mid \text{ every } (n+1)\text{-}FP \text{ left } R\text{-module is } (n+2)\text{-}FP\}.$$

If no such n exists, we say that $lc.dim R = \infty$.

The following result appeared in [13].

Lemma 2.2. Let M_1, \ldots, M_k be left R-modules. Then $\bigoplus_{i=1}^k M_i$ is \aleph -fg if and only if every M_i is \aleph -fg.

Proposition 2.3. R is left \aleph -coherent if and only if \aleph -lc.dimR = 0.

Proof. Suppose R is left \aleph -coherent. Then, by Theorem 1.6 in [13], every finitely generated submodule of every \aleph -fp left R-module is \aleph -fp. Let M be a 1-FP left R-module. Then there exists an exact sequence:

$$0 \longrightarrow K_1 \longrightarrow F_0 \longrightarrow M \longrightarrow 0$$

such that F_0 is free of finite rank and K_1 is finitely generated. Since F_0 is \aleph -FP, it follows that K_1 is \aleph -fp. Thus, there exists an exact sequence:

$$0 \longrightarrow K_2 \longrightarrow F_1 \longrightarrow K_1 \longrightarrow 0$$

such that F_1 is free of finite rank and K_2 is \aleph -fg. Now, it is clear that M is $(2, \aleph)$ -FP.

Conversely, suppose \aleph -lc.dim R=0. Then every 1-FP left R-module is $(2, \aleph)$ -FP. Let L be a finitely generated left ideal of R. Then R/L is 1-FP. Thus, R/L is $(2, \aleph)$ -FP. So there exists an exact sequence:

$$0 \longrightarrow K_2 \longrightarrow F_1 \longrightarrow F_0 \longrightarrow R/L \longrightarrow 0$$

such that F_0 , F_1 are free of finite rank and K_2 is \aleph -fg. Take an exact sequence $0 \longrightarrow H \longrightarrow F \longrightarrow L \longrightarrow 0$ such that F is free of finite rank. Then by the Schanuel' lemma, $H \oplus F_1 \oplus R \simeq K_2 \oplus F \oplus F_0$. Now, by Lemma 2.2, it follows that H is \aleph -fg, which implies that L is \aleph -fp. Thus, R is left \aleph -coherent.

Because of this proposition, we may regard our left \aleph -coherent dimension as a measure of how far a ring R is from being left \aleph -coherent. Since a ring R is left coherent if and only if every 1-FP left R-module is 2-FP, it follows that when $\aleph > |R|^{\aleph_0}$, we may regard the left \aleph -coherent dimension as a measure of how far a ring R is from being left coherent.

Lemma 2.4. Let M be a left R-module and \aleph an infinite cardinal number. Then M is n-FP $((n, \aleph)$ -FP) if and only if there exists an exact sequence:

$$0 \longrightarrow K_n \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow M \longrightarrow 0,$$

where P_0, \ldots, P_{n-1} are finitely generated projective left R-modules and K_n is finitely generated (\Re -fg, respectively).

Proof. By induction for n, it follows from the Schanuel' lemma and standard techniques.

In order to establish some characterization of left ℵ-coherent dimension, we need the following lemma.

Lemma 2.5. If $lc. \dim R = m$, then for any $n \ge m$, every (n + 1)-FP left R-module is $(n + 2, \aleph)$ -FP.

Proof. Suppose left R-module M is (m + 2)-FP. Then there exists an exact sequence:

$$0 \longrightarrow K_{m+2} \longrightarrow F_{m+1} \longrightarrow F_m \longrightarrow \cdots \longrightarrow F_0 \longrightarrow M \longrightarrow 0,$$

where $F_{m+1}, F_m, \ldots, F_0$ are finitely generated free modules and K_{m+2} is finitely generated. Denote $K_1 = \text{Ker } (F_0 \longrightarrow M)$. Then K_1 is (m+1)-FP. Since lc.dimR = m, it follows that K_1 is $(m+2, \aleph)$ -FP. Thus, there exists an exact sequence:

$$0 \longrightarrow H_{m+2} \longrightarrow G_{m+1} \longrightarrow G_m \longrightarrow \cdots \longrightarrow G_0 \longrightarrow K_1 \longrightarrow 0,$$

where $G_{m+1}, G_m, \ldots, G_0$ are finitely generated free modules and H_{m+2} is \aleph -finitely generated. Therefore, M is $(m+3, \aleph)$ -FP.

Now, the result follows by induction.

Proposition 2.6. Let R, S be rings. Then

$$\aleph - lc. \dim(R \oplus S) = \sup(\aleph - lc. \dim R, \aleph - lc. \dim S).$$

Proof. Suppose \aleph -lc.dim $(R \oplus S) = k < \infty$. Let A be a k+1-FP left R-module. For any left R-module X, we can regard X as an $(R \oplus S)$ -module by defining (r,s)x = rx, for $r \in R$, $s \in S$, and $x \in X$. Then $(1,0)X \simeq X$ as an R-module. It is well known that RX is projective if and only if $(R \oplus S)X$ is projective. Thus, by Lemma 2.4, it is easy to see that A is a k+1-FP left $(R \oplus S)$ -module. Hence, $(R \oplus S)A$ is $(k+2, \aleph)$ -FP, that is, there exists an exact sequence:

$$0 \longrightarrow K_{m+2} \longrightarrow F_{m+1} \longrightarrow F_m \longrightarrow \cdots \longrightarrow F_0 \longrightarrow A \longrightarrow 0,$$

where $F_{m+1}, F_m, \ldots, F_0$ are finitely generated free $(R \oplus S)$ -modules and K_{m+2} is \aleph -fg. Thus, we have the following exact sequence:

$$0 \longrightarrow (1,0)K_{m+2} \longrightarrow (1,0)F_{m+1} \longrightarrow \cdots \longrightarrow (1,0)F_0 \longrightarrow A \longrightarrow 0,$$

where $(1,0)F_{m+1},(1,0)F_m,\ldots,(1,0)F_0$ are finitely generated projective left R-modules and $(1,0)K_{m+2}$ is \aleph -fg. This means that RA is $(k+2,\aleph)$ -FP. Thus, \aleph -lc.dim $R \le k$. Similarly, we have \aleph -lc.dim $S \le k$. Thus, $\sup(\aleph$ -lc.dimR, \aleph -lc.dimS) $\le \aleph$ -lc.dim $(R \oplus S)$. If \aleph -lc.dim $(R \oplus S)$ = ∞ , then clearly $\sup(\aleph$ -lc.dim $(R \otimes S)$.

Let \aleph -lc.dim $R = m < \infty$ and \aleph -lc.dim $S = n < \infty$, $m \ge n$. Let M be an m + 1-FP left $(R \oplus S)$ -module. Then there exists an exact sequence:

$$0 \longrightarrow K_{m+1} \longrightarrow F_m \longrightarrow \cdots \longrightarrow F_0 \longrightarrow M \longrightarrow 0,$$

where F_m, \ldots, F_0 are finitely generated free left $(R \oplus S)$ -modules and K_{m+1} is finitely generated left $(R \oplus S)$ -module. Thus, we have exact sequences:

$$0 \longrightarrow (1,0)K_{m+1} \longrightarrow (1,0)F_m \longrightarrow \cdots \longrightarrow (1,0)F_0 \longrightarrow (1,0)M \longrightarrow 0$$

and

$$0 \longrightarrow (0,1)K_{m+1} \longrightarrow (0,1)F_m \longrightarrow \cdots \longrightarrow (0,1)F_0 \longrightarrow (0,1)M \longrightarrow 0,$$

where $(1,0)F_m,\ldots,(1,0)F_0$ are finitely generated projective left R-modules, $(1,0)K_{m+1}$ is R-finitely generated, $(0,1)F_m,\ldots,(0,1)F_0$ are finitely generated projective left S-modules, and $(0, 1)K_{m+1}$ is S-finitely generated. By Lemma 2.5, every m+1-FP left R-(left S-) module is $(m+2,\aleph)$ -FP. Thus, (1,0)M, (0,1)M is an $(m+2, \Re)$ -FP left R-, left S-, respectively, module. Now, by Lemma 2.4, it is easy to see that M is an $(m+2, \aleph)$ -FP left $R \oplus S$ -module. Therefore, \aleph -lc.dim $(R \oplus S)$ $m = \sup(\Re - \operatorname{lc.dim} R, \Re - \operatorname{lc.dim} S)$. If $\sup(\Re - \operatorname{lc.dim} R, \Re - \operatorname{lc.dim} S) = \infty$, then obviously

$$\aleph$$
-lc.dim $(R \oplus S) \leq \sup(\aleph$ -lc.dim R, \aleph -lc.dim S).

Lemma 2.7. Let X be a right R-module and M a left R-module. Then the following conditions are equivalent:

- (1) Ext $_{R}^{n}(X, M^{+}) = 0;$ (2) Tor $_{n}^{R}(X, M) = 0;$ (3) Ext $_{R}^{n}(M, X^{+}) = 0.$

Proof. By standard techniques, we have an isomorphism:

$$\operatorname{Ext}_R^n(X, \operatorname{Hom}_{\mathbf{Z}}(M, \mathbf{Q}/\mathbf{Z})) \cong \operatorname{Hom}_{\mathbf{Z}}(\operatorname{Tor}_n^R(X, M), \mathbf{Q}/\mathbf{Z}).$$

Thus,
$$(1) \iff (2)$$
 follows. The proof of $(2) \iff (3)$ is similar.

Suppose I is a set and $\{M_i | i \in I\}$ is a family of right R-modules. Let $x = (x_i)_{i \in I} \in I$ $\prod_{i \in I} M_i$. We define the support of x as supp $(x) = \{i \in I | x_i \neq 0\}$. For an infinite cardinal number \aleph , define the \aleph -product of the M_i 's as

$$\prod_{i \in I}^{\aleph} M_i = \left\{ x \in \prod_{i \in I} M_i \mid |\operatorname{supp}(x)| < \aleph \right\}.$$

Clearly, one may view the direct sum and the direct product of a family of modules as two special cases of the same object, namely, the ℵ-product of the family of modules. 8-products of some families of modules have been studied by Loustaunau [13], Dauns [5, 6], Teply [20, 21], and Oyonarte and Torrecillas [15]. The following lemma appeared in [13].

Lemma 2.8. Let \times be an infinite cardinal number and M a right R-module. Then the following statements are equivalent:

- (1) M is ℵ-fp;
- (2) if $\{L_i|i\in I\}$ is any family of left R-modules and if $\phi:M\otimes_R\left(\prod_{i\in I}^{\aleph}L_i\right)\longrightarrow$ $\prod_{i\in I}^{\aleph}(M\otimes L_i) \text{ is defined via } \phi(m\otimes (x_i)_{i\in I}) = (m\otimes x_i)_{i\in I}, \text{ then } \phi \text{ is an isomorphism};$
- (3) if I is any index set and if $\phi: M \otimes_R \left(\prod_{i \in I}^{\aleph} R\right) \longrightarrow \prod_{i \in I}^{\aleph} M$ is defined via $\phi(m \otimes (r_i)_{i \in I}) = (mr_i)_{i \in I}$, then ϕ is an isomorphism.

We are now ready to give our characterizations of left ℵ-coherent dimension of rings.

Theorem 2.9. Let \aleph be an infinite cardinal number or an integer $m \geq 0$. The following conditions on a ring R are equivalent:

- (1) \aleph -lc.dim $R \leq m$;
- (2) if $(L_i)_{i\in I}$ is a family of flat right R-modules, then $\operatorname{Tor}_{m+1}^R(\prod_{i\in I}^\aleph L_i, M)=0$ for each (m+1)-FP left R-module M;
- (3) Tor $_{m+1}^R(\prod_{i=1}^k R, M) = 0$ for each (m+1)-FP left R-module M and for every set I;
- (4) for each set I, if $\operatorname{Tor}_{m+1}^{R}(\prod_{I}^{\aleph}R, N) = 0$ for all $(m+2, \aleph)$ -FP left R-modules N, then $\operatorname{Tor}_{m+1}^{R}(\prod_{I}^{\aleph}R, M) = 0$ for all (m+1)-FP left R-modules M;
- (5) if X is a right R-module such that Ext $_R^{m+1}(X, N^+) = 0$ for all $(m+2, \aleph)$ -FP left R-modules N, then Ext $_R^{m+1}(X, M^+) = 0$ for all (m+1)-FP left R-modules M.

Proof. (1) \Longrightarrow (2) Suppose M is (m+1)-FP. Then M is $(m+2, \aleph)$ -FP by Lemma 2.5. Thus, there exists an exact sequence:

$$0 \longrightarrow K_{m+2} \longrightarrow F_{m+1} \longrightarrow F_m \longrightarrow \cdots \longrightarrow F_0 \longrightarrow M \longrightarrow 0,$$

where $F_{m+1}, F_m, \ldots, F_0$ are finitely generated free modules and K_{m+2} is \Re -finitely generated. Denote $K_{m+1} = \operatorname{Ker}(F_m \to F_{m-1})$ and $K_m = \operatorname{Ker}(F_{m-1} \to F_{m-2})$. If m = 0, then take $K_m = F_{m-1} = M$. Consider the following exact sequence:

$$0 \longrightarrow K_{m+1} \longrightarrow F_m \longrightarrow K_m \longrightarrow 0.$$

We obtain a commutative diagram

where f is a monomorphism. When K_{m+2} is \aleph -fg, K_{m+1} is \aleph -fp and hence β is an isomorphism by Lemma 2.8. Thus, α is an isomorphism and hence $\operatorname{Tor}_1^R(\prod^\aleph L_i, K_m) = 0$. Now, it is easy to see that $\operatorname{Tor}_{m+1}^R(\prod^\aleph L_i, M) = 0$.

The implications (2) \Longrightarrow (3) and (3) \Longrightarrow (4) are clear.

(4) \Longrightarrow (1) Let N be an $(m+2,\aleph)$ -FP left R-module. By analogy with the proof of (1) \Longrightarrow (2), we can obtain $\operatorname{Tor}_{m+1}^R(\prod_I^\aleph R,N)=0$ for every set I. Thus, by (4), it follows that $\operatorname{Tor}_{m+1}^R(\prod_I^\aleph R,M)=0$ for all (m+1)-FP left R-modules M. In order to complete the proof, it is enough to show that every (m+1)-FP left R-module is $(m+2,\aleph)$ -FP.

Let M be an (m+1)-FP left R-module. If m=0, then the result follows from Proposition 2.3 and from the fact that R is left \aleph -coherent if and only if every \aleph -product of any family of copies of R is flat as a right R-module (see [13]) since every left R-module is a direct limit of finitely presented left R-modules. Now, suppose $m \ge 1$. Then there exists an exact sequence:

$$0 \longrightarrow K_{m+1} \longrightarrow F_m \longrightarrow \cdots \longrightarrow F_0 \longrightarrow M \longrightarrow 0$$

where F_m, \ldots, F_0 are finitely generated free left R-modules and K_{m+1} is finitely generated. Denote $K_m = \operatorname{Ker}(F_{m-1} \longrightarrow F_{m-2})$ (if m = 1, then set $K_m = \operatorname{Ker}(F_0 \longrightarrow M)$). Then $\operatorname{Tor}_1^R(\prod^\aleph R, K_m) \cong \operatorname{Tor}_{m+1}^R(\prod^\aleph R, M) = 0$. Thus, we obtain a commutative diagram

$$0 \longrightarrow (\prod^{\aleph} R) \otimes K_{m+1} \longrightarrow (\prod^{\aleph} R) \otimes F_m \longrightarrow (\prod^{\aleph} R) \otimes K_m$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad$$

with exact rows, where β and α are isomorphisms by Lemma 2.8 since F_m and K_m are finitely presented. Thus, γ is an isomorphism and, hence K_{m+1} is \aleph -fp by Lemma 2.8. Now, the result follows.

- $(1) \Longrightarrow (5)$ It follows from Lemma 2.5.
- (5) \Longrightarrow (3) Let N be an $(m+2, \aleph)$ -FP left R-module. By analogy with the proof of $(1) \Longrightarrow (2)$, we can obtain

$$\operatorname{Tor}_{m+1}^{R}(\prod_{I}^{\aleph}R,N)=0,$$

or every set I. Thus, $\operatorname{Ext}_R^{m+1}(\prod_I^{\aleph} R, N^+) = 0$ by Lemma 2.7. From (5), it follows that $\operatorname{Ext}_R^{m+1}(\prod_I^{\aleph} R, M^+) = 0$ for every (m+1)-FP left R-module M. Now, we have $\operatorname{Tor}_{m+1}^R(\prod_I^{\aleph} R, M) = 0$ for every set I and every (m+1)-FP left R-module M by Lemma 2.7.

We use w.gl.dimR to denote the weak global dimension of ring R. As a direct consequence of Definition 2.1 and Theorem 2.9, we have

Corollary 2.10. \aleph -lc.dim $R \le \text{lc.dim}R \le \text{w.gl.dim}R$.

Example 1. We remark that $\operatorname{lc.dim} R$ can be much smaller than w.gl.dim R. Take R = F[x], the polynomial ring over a field F. Then $\operatorname{lc.dim} R = 0$ but w.gl.dim $R \neq 0$.

We also remark that \aleph -lc.dimR can be much smaller than lc.dimR. For example, let ω_1 be the first uncountable ordinal number and $R = \mathbb{Z}_2[x_\mu | \mu \le \omega_1]$ the commutative polynomial ring with relations $x_\alpha = x_\alpha x_\beta$ for $\alpha < \beta \le \omega_1$ and $x_\alpha^2 = x_\alpha$ for $\alpha < \omega_1$. By [13], R is \aleph_1 -coherent but not coherent. Thus, \aleph_1 -lc.dimR = 0 but lc.dimR > 0.

Example 2. Couchot [5] pointed out that there exists a commutative ring R such that w.gl.dim $R \le 1$ but R is not semi-hereditary. It is well known that R is semi-hereditary if and only if w.gl.dim $R \le 1$ and R is left coherent. Thus, there exists a commutative ring R such that w.gl.dim $R \le 1$ but R is not coherent. For these rings, we have lc.dimR = w.gl.dimR = 1 by Corollary 2.10. Take $\aleph > |R|^{\aleph_0}$. Then R is not left \aleph -coherent. Therefore, \aleph -lc.dimR = 1 by Corollary 2.10 and Proposition 2.3.

According to [7], a left (right) R-module X is called 2-FP-injective (2-FP-flat) if $\operatorname{Ext}^1_R(M,X)=0$ ($\operatorname{Tor}^R_1(X,M)=0$) for each 2-FP left R-module M. We will say that a left (right) R-module X is called (2, \aleph)-FP-injective ((2, \aleph)-FP-flat) if $\operatorname{Ext}^1_R(M,X)=0$ ($\operatorname{Tor}^R_1(X,M)=0$) for each (2, \aleph)-FP left R-module M. A left R-module X is called FP-injective if $\operatorname{Ext}^1_R(M,X)=0$ for each finitely presented left R-module M. As an immediate consequence of Theorem 2.9 when M = 0, we have the following result, some parts of which are well known.

Corollary 2.11. The following are equivalent for a ring R.

- (1) R is left ℵ-coherent.
- (2) The \(\mathbb{R}\)-product of any family of flat right R-modules is flat.
- (3) For every set I, $\prod_{i=1}^{\infty} R$ is a flat right R-module.
- (4) For every set I, if the right R-module $\prod_{i=1}^{\aleph} R$ is $(2, \aleph)$ -FP-flat, then it is flat.
- (5) For every set I, if $(\prod_{I}^{\aleph} R)^+$ is $(2, \aleph)$ -FP-injective, then it is FP-injective.

Proof. The result follows from Theorem 1.6 in [13], Theorem 2.9, Proposition 2.3 and Lemma 2.7, bearing in mind that each left R-module is a direct limit of finitely presented modules, and that the functor $\operatorname{Tor}_{1}^{R}(X, -)$ preserves direct limits.

For special \aleph (for example, $\aleph > |R|^{\aleph_0}$), we have

Corollary 2.12. (See [9]) For an integer $m \ge 0$, the following conditions on a ring R are equivalent.

- (1) $\operatorname{lc.dim} R \leq m$.
- (2) If $(L_i)_{i\in I}$ is a family of flat right R-modules, then $\operatorname{Tor}_{m+1}^R(\prod_{i\in I}L_i,M)=0$ for each (m+1)-FP left R-module M.
- (3) $\operatorname{Tor}_{m+1}^R(\prod_I R, M) = 0$ for each (m+1)-FP left R-module M and for every set I.
- (4) For each set I, if $\operatorname{Tor}_{m+1}^R(\prod_I R, N) = 0$ for all (m+2)-FP left R-modules N, then $\operatorname{Tor}_{m+1}^R(\prod_I R, M) = 0$ for all (m+1)-FP left R-modules M.
- (5) If X is a right R-module such that $\operatorname{Ext}_R^{m+1}(X, N^+) = 0$ for all (m+2)-FP left R-modules N, then $\operatorname{Ext}_R^{m+1}(X, M^+) = 0$ for all (m+1)-FP left R-modules M.

3. Left ℵ-Coherent Dimension of Excellent Extensions

Suppose R is a subring of the ring S, and R and S have the same identity.

- (1) The ring S is said to be an excellent extension of R if
 - (i) S is a free normalizing extension of R with a basis that includes 1, that is, there is a finite set $\{a_1, \ldots, a_n\} \subseteq S$ such that $a_1 = 1$, $S = Ra_1 + \cdots + Ra_n$, $a_i R = Ra_i$ for all $i = 1, \ldots, n$ and S is free with basis $\{a_1, \ldots, a_n\}$ as both a right and left R-module, and
 - (ii) S is right R-projective, that is, if N_S is a submodule of M_S , then $N_R | M_R$ implies $N_S | M_S$.

Excellent extensions were introduced by Passman [17], named by Bonami [2], and recently studied in [10–12, 16, 22]. Examples include finite matrix rings (see [17]), and crossed product R * G where G is a finite group with $|G|^{-1} \in R$ (see [18]).

The following lemma is well known.

Lemma 3.1.

(1) Let $R \longrightarrow S$ be a homomorphism of rings and let there be given modules U_R and SV. Assume RS is a flat left R-module. Then there exists an isomorphism

$$\operatorname{Tor}_n^R(U, {}_RV) \cong \operatorname{Tor}_n^S(U \otimes_R S, V).$$

(2) Let R, S be rings and let there be given modules U_S , ${}_SV_R$, and ${}_RW$. Assume ${}_SV$ and ${}_RW$ are flat. Then there exists an isomorphism

$$\operatorname{Tor}_n^R(U \otimes_S V, W) \cong \operatorname{Tor}_n^S(U, V \otimes_R W).$$

Theorem 3.2. Let S be an excellent extension of R. Then

$$\aleph$$
-lc.dim $R = \aleph$ -lc.dim S .

Proof. Suppose \aleph -lc.dim $R=m<\infty$. Let M be an (m+1)-FP left S-module. There exists an exact sequence:

$$0 \longrightarrow K_{m+1} \longrightarrow F_m \longrightarrow \cdots \longrightarrow F_0 \longrightarrow_S M \longrightarrow 0,$$

where F_m, \ldots, F_0 are finitely generated free left S-modules and K_{m+1} is finitely generated. Suppose K_{m+1} is generated by x_1, \ldots, x_p . Since S is an excellent extension of R, it follows that $R(K_{m+1})$ is generated by $y_{ij} = a_i x_j$, $1 \le i \le n$, $1 \le j \le p$. It is easy to see that $R(K_{m+1})$ are finitely generated free left R-modules. Thus, R(M) is an R(M) is an R(M) is flat right R-module, it follows that

$$\operatorname{Tor}_{m+1}^{R}(\prod_{I}^{\aleph}S, M) = 0$$

for every set I by Theorem 2.9. Thus, by Lemma 3.1, we have

$$\operatorname{Tor}_{m+1}^S((\prod_{I}^\aleph S)\otimes_R S,M)=0.$$

Define an S-homomorphism $f: (\prod_{I}^{\aleph} S) \otimes_{R} S \longrightarrow \prod_{I}^{\aleph} S$ via $f(x \otimes s) = xs$, where $s \in S$ and $x \in \prod_{I}^{\aleph} S$. Then we have an exact sequence of right S-modules

$$0 \longrightarrow \operatorname{Ker}(f) \longrightarrow (\prod_{I}^{\aleph} S) \otimes_{R} S \longrightarrow \prod_{I}^{\aleph} S \longrightarrow 0.$$

Define an R-homomorphism $g: \prod_{I}^{\aleph} S \longrightarrow (\prod_{I}^{\aleph} S) \otimes_{R} S$ via $g(x) = x \otimes 1$. Then fg = 1. This means that the exact sequence $0 \longrightarrow (\operatorname{Ker}(f))_{R} \longrightarrow ((\prod_{I}^{\aleph} S) \otimes_{R} S)_{R} \longrightarrow (\prod_{I}^{\aleph} S)_{R} \longrightarrow 0$ splits. Thus, $(\operatorname{Ker}(f))_{R}|((\prod_{I}^{\aleph} S) \otimes S)_{R}$, which implies that $(\operatorname{Ker}(f))_{S}|((\prod_{I}^{\aleph} S) \otimes S)_{S}$ by the right R-projectivity of S. Hence, $\prod_{I}^{\aleph} S$ is isomorphic to a direct summand of $(\prod_{I}^{\aleph} S) \otimes S$. It now follows that

$$\operatorname{Tor}_{m+1}^{S}(\prod_{I}^{\aleph}S,M)=0,$$

and so \aleph -lc.dim $S \le m$ by Theorem 2.9.

If \aleph -lc.dim $R = \infty$, then obviously \aleph -lc.dim $S \leq \aleph$ -lc.dimR.

Conversely, suppose \Re -lc.dim $S=m<\infty$. Let M be an (m+1)-FP left R-module. Then there exists an exact sequence:

$$0 \longrightarrow K_{m+1} \longrightarrow F_m \longrightarrow \cdots \longrightarrow F_0 \longrightarrow M \longrightarrow 0,$$

where F_m, \ldots, F_0 are finitely generated free left R-modules and K_{m+1} is finitely generated. Since S_R is flat, we obtain an exact sequence:

$$0 \longrightarrow S \otimes K_{m+1} \longrightarrow S \otimes F_m \longrightarrow \cdots \longrightarrow S \otimes F_0 \longrightarrow S \otimes M \longrightarrow 0.$$

It is clear that $S \otimes F_m, \ldots, S \otimes F_0$ are finitely generated projective left S-modules and $S \otimes K_{m+1}$ is finitely generated. This means that $S \otimes M$ is an (m+1)-FP left S-module by Lemma 2.4. Thus, by Theorem 2.9, we have

$$\operatorname{Tor}_{m+1}^{S}(\prod_{I}^{\aleph}S,S\otimes_{R}M)=0$$

for every set I, which implies that $\operatorname{Tor}_{m+1}^R((\prod_I^{\aleph}S)_R,M)=0$ by Lemma 3.1. Now, it follows that

$$\operatorname{Tor}_{m+1}^{R}(\prod_{I}^{\aleph}R,M)=0,$$

since $(\prod_{I}^{\aleph} S)_{R} \cong \prod_{I}^{\aleph} (\bigoplus_{i=1}^{n} R) \cong \bigoplus_{i=1}^{n} (\prod_{I}^{\aleph} R)$, and hence, \aleph -lc.dim $R \leq m = \aleph$ -lc.dimS by Theorem 2.9.

If \aleph -lc.dim $S = \infty$, then clearly \aleph -lc.dim $R \leq \aleph$ -lc.dimS.

Corollary 3.3.

- (1) \aleph -lc.dim $R = \aleph$ -lc.dim $(M_n(R))$ for every ring R, where $M_n(R)$ is the matrix ring over R.
- (2) If G is a finite group such that $|G|^{-1} \in R$, then \aleph -lc.dim $R = \aleph$ -lc.dim(R * G), where R * G is a crossed product of R with G.

Let R be graded by a finite group G. The smash product, $R\#G^*$, is a free right and left R-module with basis $\{p_a | a \in G\}$ and multiplication determined by

$$(rp_a)(sp_b) = rs_{ab^{-1}}p_a,$$

where $s_{ab^{-1}}$ is the ab^{-1} component of s.

Corollary 3.4. Let R be graded by a finite group G, and $|G|^{-1} \in R$. Then \aleph -lc.dim $R = \Re$ -lc.dim $(R \# G^*)$.

Proof. The group G acts as automorphisms on $R\#G^*$ with

$$a(rp_a)=rp_{ba},$$

so we may form the skew group ring $(R\#G^*)*G$. By [14] or [19], it follows that $(R\#G^*)*G\cong M_n(R)$, the ring of $n\times n$ matrices over R, where n=|G|. Thus, the result follows from Corollary 3.3.

Now, we give a generalization of Corollary 3.3(1).

Proposition 3.5. If R and S are two equivalent rings, then \aleph -lc.dim $R = \aleph$ -lc.dimS.

Proof. Let $F: R \approx S$ define an equivalence and \aleph -lc.dim $S = m < \infty$. Assume M is an (m + 1)-FP left R-module. Then there exists an exact sequence:

$$0 \longrightarrow K_{m+1} \longrightarrow H_m \longrightarrow \cdots \longrightarrow H_0 \longrightarrow M \longrightarrow 0,$$

such that H_m, \ldots, H_0 are finitely generated free left R-modules and K_{m+1} is finitely generated. By [1, pp. 254, 258], we obtain an exact sequence of left S-modules:

$$0 \longrightarrow F(K_{m+1}) \longrightarrow F(H_m) \longrightarrow \ldots \longrightarrow F(H_0) \longrightarrow F(M) \longrightarrow 0,$$

where $F(H_m), \ldots, F(H_0)$ are finitely generated projective left S-modules and $F(K_{m+1})$ is finitely generated. Thus, by Lemma 2.4, F(M) is (m+1)-FP. Since \aleph -lc.dimS=m, it follows that F(M) is $(m+2, \aleph)$ -FP. Similar arguments will show that M is $(m+2, \aleph)$ -FP by [1, p. 256] and Lemma 2.4. Thus, \Re -lc.dim $R \le m$. If \Re -lc.dim $S = \infty$, then obviously \Re -lc.dim $R \leq \Re$ -lc.dimS. Now, the result follows.

References

- 1. F.W. Anderson and K.R. Fuller, Rings and Categories of Modules, Springer-Verlag, Berlin-New York, 1974.
- 2. L. Bonami, On the Structure of Skew Group Rings, Algebra Berichte, Vol. 48, Verlag Reinhard Fischer, Munchen, 1984.
- N. Bourbaki, Algebre Homologique, Algebre, Masson, 1980, Chpt. 10.
- F. Couchot, Example d'anneaux auto-injectifs, Comm. Alg. 10 (1982) 339–360.
- J. Dauns, Subdirect products of injectives, Comm. Alg. 17(1) (1989) 179–196.
- 6. J. Dauns, Uniform dimensions and subdirect products, Pacific J. Math. 126 (1987) 1-19.
- N.R. Gonzalez, On relative coherence and applications, Comm. Alg. 21 (1993) 1529–1542.
- J.M. Hernandez, λ-Dimension de Anillos Respecto de Radicales Idempotentes, Publicaciones del Departamento de Algebra y Fundamentos, Universidad de Murcia, 1982.
- 9. M.F. Jones, Coherence relative to an hereditary torsion theory, Comm. Alg. 10 (1982) 719-739.
- 10. Z. Liu, Excellent extensions of rings, Acta Math. Sinica 34 (1991) 818-824 (Chinese).
- Z. Liu, Excellent extensions and homological dimensions, Comm. Alg. 22 (1994) 1741–1745.
- 12. Z. Liu, Rings with flat left socle, Comm. Alg. 23 (1995) 1645-1656.
- 13. P. Loustaunau, Large subdirect products of projective modules, Comm. Alg. 17(1) (1989) 197-215.
- 14. C. Nastasescu and N. Rodino, Localization on graded modules, relative Maschke's theorem and applications, Comm. Alg. 18 (1990) 811-832.
- 15. L. Oyonarte and B. Torrecillas, Large subdirect products of flat modules, Comm. Alg. 24(4) (1996) 1389-1407.
- 16. M.M. Parmenter and P.N. Stewart, Excellent extensions, Comm, Alg. 16 (1988) 703-713.
- 17. D.S. Passman, The Algebraic Structure of Group Rings, Wiley Interscience, New York, 1977.
- 18. D.S. Passman, It's essentially Maschke's theorem, Rocky Mountain J. Math. 13 (1983) 37-54.
- 19. D. Quinn, Group graded rings and duality, Trans. Amer. Math. Soc. 292 (1985) 154-167.
- 20. M.L. Teply, Large Subdirect Products, Proceedings of the International Conference of Ring Theory, Granada. Spain, Lecture Notes in Mathematics, Vol. 1328, Springer-Verlag, Berlin, 1986, pp. 283-304.
- 21. M.L. Teply, Semicocritical Modules, University of Murcia Press, Murcia, 1987.
- 22. Y. Xiao, SF-rings and excellent extensions, Comm. Alg. 22 (1994) 2463-2471.