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Abstract. Let 8 be an infinite cardinal number. A ring R is said to be left X-coherent if every
finitely generated left ideal of R is R-finitely presented. In this paper, we define a dimension called
the left R-coherent dimension for a ring R. We show that a ring R is left ¥-coherent if and only if
the left 8-coherent dimension of R is equal to zero. Some characterizations of this dimension are
given. We also show that if a ring S is an excellent extension of a ring R, then the left ¥-coherent
dimension of § is equal to that of R.

1. Introduction

Aring R is called left coherent if every finitely generated left ideal is finitely presented. It
is well known that R is left coherent if and only if every finitely presented left R-module
M has a finite 2-presentation in the sense of Bourbaki [3], that is, there exists an exact
sequence 0 — K, — F; — Fy — M — O such that F;y and Fy are finitely
generated free left R-modules and K> is finitely generated (see, for example, [7] or
[9D). In [13], the concept of left N-coherent rings was introduced and investigated for
any infinite cardinal number ®. A ring R is said to be left R-coherent if every finitely
generated left ideal is R-finitely presented.

In this paper, using the concepts of finite n-presentations, as defined in [3], and R-finite
n-presentations, we define a dimension called the left R-coherent dimension for a ring
R. We show that a ring R is left R-coherent if and only if the left R-coherent dimension
of R is equal to zero. Thus, the left 8-coherent dimension can be used to measure how
far a ring is from being left R-coherent. In Sec. 2, we give the definition and show some
characterizations of this dimension. In Sec. 3, we show that if S is an excellent extension
of R, then the left R-coherent dimension of S is equal to that of R. Take the special
infinite cardinal number ¥, we obtain some results for left coherent dimension of R.

*This work was supported by the National Natural Science Foundation of China, 19501007 and
the Natural Science Foundation of Gansu, ZQ-96-01.
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Throughout this paper, R denotes an associative ring with identity. For any left
R-module M, we denote by M the character module Homz (M, Q /Z) of M. If Ny is
a submodule of Mg, the notation Ng|My means that N is a summand of Mg.

2. Definition and Characterizations

Let ® be an infinite cardinal number and M a left R-module. Following Loustaunau
[13], M is said to be R-finitely generated, denoted by R-fg, if every subset X of M, with
|X| < R, is contained in a finitely generated submodule of M. For example, every left
R-module is R¢-fg, and every finitely generated left R-module is R-fg for all R > Rg. If
R > |M| and M is R-fg, then M is finitely generated.

Let M be a finitely generated left R-module. Then M is said to be R-finitely presented,
denoted by R-fp, if there exists an exact sequence 0 — K — F — M —> 0 with
F free of finite rank and K R-fg. A ring R is said to be left R-coherent if every finitely
generated left ideal is N-fp. For example, every ring is left 8g-coherent. If R is left
coherent, then it is left R-coherent for all infinite cardinal number R. If & > ®’, then
every left R-coherent ring is left R’-coherent.

Let M be aleft R-module. According to [3], we will say that M is n-finitely presented
(n-R-finitely presented), denoted by n-FP ((n, R)-FP, respectively), if there exists an
exact sequence:

0—K,—>F, | — - — Fp— M—0,

where Fy, ..., F,_ are finitely generated free modules and K, is finitely generated
(R-fg, respectively). In this case, we also say that M has a finite n-presentation (R-finite
n-presentation, respectively).

It is easy to see that a left R-module M is finitely presented if and only if M is 1-FP,
and that M is R-FP if and only if M is (1, R)-FP. Clearly, (n +1)-FP implies (n+1, ®)-FP
and (n 4 1, R)-FP implies #-FP, but not conversely.

From Theorem 3.3 in [9], it is clear that R is left coherent if and only if every 1-FP
left R-module is 2-FP. Generalizing this result, we give the following definition.

Definition 2.1. Let R be a ring. We define the left R-coherent dimension of R, denoted
by R-lc.dimR, as

inf{n| every (n 4+ 1)-F P left R-module is (n + 2, X)-F P}.

If no such n exists, we say that R-lc.dimR = co.

Take 8 > |R|™. For every ®-fg left R-module K with K < F for some free left
R-modules F of finite rank, we have |K| < |F| < |R|™ < R. This implies that K is
finitely generated. Thus, when & > |R|%°, Definition 2.1 gives a concept of left coherent
dimension, denoted by lc.dimR, that is,

lc.dimR = inf{n| every (n + 1)-F P left R-module is (n + 2)-F P}.

If no such r exists, we say that lc.dimR = oo.
The following result appeared in [13].
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Lemma 2.2, Let My, ..., M; be left R-modules. Then EBf: 1M is Rfg if and only if
every M; is R-fg.

Proposition 2.3. R is left R-coherent if and only if R-lc.dimR = 0.

Proof. Suppose R is left R-coherent. Then, by Theorem 1.6 in [13], every finitely
generated submodule of every R-fp left R-module is R-fp. Let M be a 1-FP left R-module.
Then there exists an exact sequence:

00— K —F—M—20

such that Fj is free of finite rank and K is finitely generated. Since Fj is R-FP, it follows
that K is R-fp. Thus, there exists an exact sequence:

0——>K2—>F1—>K1——)0

such that F; is free of finite rank and K> is R-fg. Now, it is clear that M is (2, ®)-FP.

Conversely, suppose R-lc.dimR = 0. Then every 1-FP left R-module is (2, ®)-FP. Let
L be a finitely generated left ideal of R. Then R/L is 1-FP. Thus, R/L is (2, ®)-FP. So
there exists an exact sequence:

0—K)— F— F—R/L—0

such that Fp, F; are free of finite rank and K is R-fg. Take an exact sequence
0 — H — F —> L —> Osuch that F is free of finite rank. Then by the Schanuel’
lemma, H @ F1 & R ~ K; & F @ Fy. Now, by Lemma 2.2, it follows that H is R-fg,
which implies that L is 8-fp. Thus, R is left R-coherent.

Because of this proposition, we may regard our left R-coherent dimension as a measure
of how far a ring R is from being left R-coherent. Since a ring R is left coherent if and
only if every 1-FP left R-module is 2-FP, it follows that when & > |R|%, we may
regard the left R-coherent dimension as a measure of how far a ring R is from being left
coherent. ]

Lemma 2.4. Let M be a left R-module and R an infinite cardinal number. Then M is
n-FP ((n, R)-FP) if and only if there exists an exact sequence:

0O—K,—P, 11— - —>Ph—M—0,

where Py, ..., P,_1 are finitely generated projective left R-modules and K, is finitely
generated (R-fg, respectively).

Proof. By induction for n, it follows from the Schanuel’ lemma and standard
techniques. n

In order to establish some characterization of left R-coherent dimension, we need the
following lemma.

Lemma 2.5. Ific.dim R = m, then for any n > m, every (n + 1)-FP left R-module is
(n + 2, R)-FP.
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Proof. Suppose left R-module M is (m + 2)-FP. Then there exists an exact sequence:
O—>Km+2——>Fm+1——>Fm——>~-——>F0——>M——>0,

where Fm+1, F,, ..., Fy are finitely generated free modules and K> is finitely

generated. Denote K; = Ker (Fp —> M). Then K is (m + 1)-FP. Since lc.dimR = m,
it follows that K1 is (m + 2, R)-FP. Thus, there exists an exact sequence:

0—>Hm+2—>Gm+1—)Gm—é---—>G0—>K1——>O,

where Gpt1, G, - . ., Go are finitely generated free modules and Hy, 2 is R-finitely
generated. Therefore, M is (m + 3, RX)-FP. []

Now, the result follows by induction.
Proposition 2.6. Let R, S be rings. Then

R-lc.dim(R @ S) = sup(R-lc.dim R, R-Ic.dim ).

Proof. Suppose R-lc.dim(R @ S) = k < oo. Let A be ak + 1-FP left R-module. For
any left R-module X, we can regard X as an (R & S)-module by defining (r, s)x = rx,
forr € R,s € S, and x € X. Then (1,0)X =~ X as an R-module. It is well known that
=X is projective if and only if (rgs)X is projective. Thus, by Lemma 2.4, it is easy to
see that A is a k + 1-FP left (R @ S)-module. Hence, (rgs)A is (k + 2, R)-FP, that is,
there exists an exact sequence:

0———)Km+2—>Fm+1—>Fm——>---——>F0—>A—>O,

where Fy, 11, Fpn, ..., Fo are finitely generated free (R & S)-modules and Ky, 42 is R-fg,
Thus, we have the following exact sequence:

0— (1,00Kpy2 — (1,OFpyr — -+ —> (1,0)Fp — A — 0,

where (1,0)F,41, (1, 0)Fpy, ..., (1,0)Fy are finitely generated projective left
R-modules and (1,0)K,42 is R-fg. This means that A is (k + 2, X)-FP. Thus,
N-lc.dimR < k. Similarly, we have R-Ic.dimS < k. Thus, sup(R-lc.dimR, R-lc.dimS) <
R-le.dim(R @ S). If R-lc.dim(R & S) = oo, then clearly sup(R-lc.dimR, R-lc.dimS) <
R-lc.dim(R & ).

Let R-le.dimR = m < oo and R-lc.dimS = n < oo, m > n. Let M be an m + 1-FP
left (R @ S)-module. Then there exists an exact sequence:

0 —> K1 —> Fn— - —> Fp — M — 0,

where F,,, ..., Fy are finitely generated free left (R ® S)-modules and K11 is finitely
generated left (R & S)-module. Thus, we have exact sequences:

0— (1,0Kps1 — 1,OF, — - — (1,00Fp — (1,00M — 0
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and
0— O, DKy — O, VHF, —--- — 0, 1)F — (0, )M — 0,

where (1,0)F,, ..., (1,0)Fy are finitely generated projective left R-modules,
(1,0)K,,+1 is R-finitely generated, (0, 1)Fy, ..., (0, 1) Fp are finitely generated pro-
jective left S-modules, and (0, 1)K,,4+1 is S-finitely generated. By Lemma 2.5, every
m + 1-FP left R-(left S-) module is (m + 2, R)-FP. Thus, (1,0)M, (0, 1)M is an
(m + 2, ®)-FP left R-, left S-, respectively, module. Now, by Lemma 2.4, it is easy
to see that M is an (m + 2, R)-FP left R & S-module. Therefore, R-lc.dim(R & §) <
m = sup(R-le.dimR, R-lc.dimS). If sup(R-lc.dimR, R-lc.dimS) = oo, then obviously

R-lc.dim(R & S) < sup(R-lc.dimR, R-lc.dimS).

Lemma 2.7. Let X be a right R-module and M a left R-module. Then the following
conditions are equivalent:

¢ Ext’é(X, M%) =0;

2) Tor (X, M)=0;

n

(3) Bxt,(M,XT)=0.

Proof. By standard techniques, we have an isomorphism:
Ext’ (X, Homz (M, Q/Z)) = Homz(TorX (X, M), Q/Z).
Thus, (1) < (2) follows. The proof of (2) <= (3) is similar. [ ]

Suppose I is a set and {M;|i € I}is a family of right R-modules. Let x = (x;)ies €
[1;cx Mi. We define the support of x as supp (x) = {i € I|x; # 0}. For an infinite
cardinal number R, define the R-product of the M;’s as

8
[1m: = [x € l_[Mi | |supp(x)| < x] )
iel iel

Clearly, one may view the direct sum and the direct product of a family of modules as
two special cases of the same object, namely, the R-product of the family of modules.
N-products of some families of modules have been studied by Loustaunau [13], Dauns
[5, 6], Teply [20, 21], and Oyonarte and Torrecillas [15]. The following lemma appeared
in [13].

Lemma 2.8. Let R be an infinite cardinal number and M a right R-module. Then the

following statements are equivalent:

(1) M is R-fp;

Q) if {(L;|i € I} is any family of left R-modules and if ¢ : M @r (I—[?el L,-) —
H?e] (MQL;) is definedviap(m®(x;)ic1) = (m®x;);cy, then ¢ is anisomorphism,

(3) if I is any index set and if ¢ : M ®r (]_[?61 R) — ]-[?GI M is defined via
¢(m ® (ri)ie1) = (mri)icr, then ¢ is an isomorphism.

We are now ready to give our characterizations of left R-coherent dimension of rings.
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Theorem 2.9. Let R be an infinite cardinal number or an integer m > 0. The following

conditions on a ring R are equivalent:

(1) RN-le.dimR < m;

) if (Li)icr is a family of flat right R-modules, then Tor ffl Jrl(]_[?e 1 Li, M) = 0 for
each (m 4+ 1)-FP left R-module M

3) Tor 5[“(]_[? R, M) = O for each (m - 1)-FP left R-module M and for every set

3

(4) for each set I, if Tor ,IfLH(H? R, N) =0 forall (m 4 2, R)-FP left R-modules N,
then Tor rIfLH(H? R, M) = O for all (m + 1)-FP left R-modules M

(5) if X is a right R-module such that Ext '£+1(X, N =0forall m+2, R)-FI'J left
'R-modules N, then ExtR™*1(X, M™) = 0 for all (m + 1)-FP left R-modules M.

Proof. (1) = (2) Suppose M is (m + 1)-FP. Then M is (m + 2, R)-FP by Lemma 2.5.
Thus, there exists an exact sequence:

0O —Kpyo—Fpy1 — Fp— - — F— M—0,

where F, 11, Fyp, ..., Fo are finitely generated free modules and K,,,; is R-finitely
generated. Denote K1 = Ker(F,, > F,_1) and K,, = Ker(F,,—; —> Fp,_2). If
m = 0, then take K,, = F,,_1 = M. Consider the following exact sequence:

0— Kpy1 — F, — K, — 0.

We obtain a commutative diagram

TorR([T* Li, Ky ) —— ((T°Lo) ® Kmir

| d

0 —— [T"&i ® K1)

where f is a monomorphism. When K, 17 is R-fg, K, 11 is 8-fp and hence B is an
isomorphism by Lemma 2.8. Thus, « is an isomorphism and hence Tor{e (I_[R AV =
0. Now, it is easy to see that TorffH_l(r[N L;,M)=0.

The implications (2) = (3) and (3) = (4) are clear.

(4) = (1) Let N be an (m + 2, R)-FP left R-module. By analogy with the proof
of (1) =— (2), we can obtain Torfl+1(]_[§ R, N) = O for every set I. Thus, by (4),
it follows that Torfl +1 (]‘[? R, M) = 0 for all (m + 1)-FP left R-modules M. In order
to complete the proof, it is enough to show that every (m + 1)-FP left R-module is
(m + 2, R)-FP.

Let M be an (m + 1)-FP left R-module. If m = 0, then the result follows from
Proposition 2.3 and from the fact that R is left 8-coherent if and only if every R-product
of any family of copies of R is flat as a right R-module (see [13]) since every left
R-module is a direct limit of finitely presented left R-modules. Now, suppose m > 1.
Then there exists an exact sequence:

0O—Kpy1 —Fp— -  —F—>M-—0
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where Fp, ..., Fy are finitely generated free left R-modules and K,y is finitely
generated. Denote K, = Ker(F,,—1 —> Fy,,—2) (if m = 1, then set K,,, = Ker(Fp —>
M)). Then Tor{e(l_[N R, K, = Torff;Jrl(]—[N R, M) = 0. Thus, we obtain a commutative
diagram

0—— (T"R®Kn1 —— (TR F, —— ("R ®Kn

l /| /| |

00— MKt v ——— T8, s T K

with exact rows, where 8 and « are isomorphisms by Lemma 2.8 since F}, and K,, are
finitely presented. Thus, y is an isomorphism and, hence K, is R-fp by Lemma 2.8.
Now, the result follows.

(1) = (5) It follows from Lemma 2.5.

(5) = (3) Let N be an (m + 2, B)-FP left R-module. By analogy with the proof of
(1) = (2), we can obtain

N

Tork ([ R. M) =0,
1

or every set I. Thus, Ext’,’é“(]‘[? R,N*') = 0 by Lemma 2.7. From (5), it follows
that Ext’,’é“(]’[? R, M*) = 0 for every (m + 1)-FP left R-module M. Now, we have

Torf; +1(]’[§ R, M) = 0 for every set I and every (m + 1)-FP left R-module M by
Lemma 2.7. [ ]

We use w.gl.dimR to denote the weak global dimension of ring R. As a direct
consequence of Definition 2.1 and Theorem 2.9, we have

Corollary 2.10. R-lc.dimR < lc.dimR < w.gl.dimR.

Example 1. We remark that lc.dimR can be much smaller than w.gl.dimR. Take
R = F[x], the polynomial ring over a field F. Then lc.dimR = 0 but w.gl.dimR # 0.

We also remark that R-Ic.dimR can be much smaller than lc.dimR. For example, let
) be the first uncountable ordinal number and R = Z» [xultt < w1] the commutative
polynomial ring with relations x, = xqxp fora < g < w; and xozl = x, for o < w;. By
[13], R is R -coherent but not coherent. Thus, 8;-lc.dimR = 0 but lc.dimR > 0.

Example 2. Couchot [5] pointed out that there exists a commutative ring R such that
w.gl.dimR < 1but R is not semi-hereditary. It is well known that R is semi-hereditary if
and only if w.gl.dimR < 1 and R is left coherent. Thus, there exists a commutative
ring R such that w.gl.dimR < 1 but R is not coherent. For these rings, we have
le.dimR = w.gl.dimR = 1 by Corollary 2.10. Take 8 > |R|®. Then R is not left
R-coherent. Therefore, R-lc.dimR = 1 by Corollary 2.10 and Proposition 2.3.
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According to [7], a left (right) R-module X is called 2-FP-injective (2-FP-flat) if
Ext}e M, X)=0¢( Torf (X, M) = 0) for each 2-FP left R-module M. We will say that a
left (right) R-module X is called (2, R)-FP-injective ((2, R)-FP-flat) if Ext}e M, X)=0
(Torf (X, M) = 0) for each (2, R)-FP left R-module M. A left R-module X is called
FP-injective if Ext}e (M, X) = O for each finitely presented left R-module M. As an
immediate consequence of Theorem 2.9 when m = 0, we have the following resullt,
some parts of which are well known.

Corollary 2.11. The following are equivalent for a ring R.

(1) R is left B-coherent.

(2) The R-product of any family of flat right R-modules is flat.

(3) Forevery set I, ]_[? R is a flat right R-module.

(4) For every set I, if the right R-module ]_[? R is (2, R)-FP-flat, then it is flat.
(5) ForeverysetI, zf(]_[i; R)T is (2, R)-FP-injective, then it is FP-injective.

Proof. The result follows from Theorem 1.6 in [13], Theorem 2.9, Proposition 2.3 and
Lemma 2.7, bearing in mind that each left R-module is a direct limit of finitely presented
modules, and that the functor Torf (X, —) preserves direct limits. [ |

For special ® (for example, 8 > |R|°), we have

Corollary 2.12. (See [9]) For an integer m > O, the following conditions on a ring R

are equivalent.

(1) lc.dimR < m.

(2) If (Li)ier is a family of flat right R-modules, then Torﬁ+1(]_[i€1 L;, M) = 0 for
each (m + 1)-FP left R-module M.

3) Torffl+1(]_[1 R, M) = 0 for each (m + 1)-FP left R-module M and for every set I.

(4) Foreachset I, ifTorf;Jrl (['l; R, N) = O for all (m + 2)-FP left R-modules N, then
TorX ([T, R, M) = 0 for all (m + 1)-FP left R-modules M.

(5) If X is a right R-module such that Ext’;“(X, N*1) = 0 for all (m + 2)-FP left
R-modules N, then Ext’l';"'1 (X, MT) =0 for all (m + 1)-FP left R-modules M.

3. Left X-Coherent Dimension of Excellent Extensions

Suppose R is a subring of the ring S, and R and S have the same identity.
(1) The ring S is said to be an excellent extension of R if
(i) Sisafree normalizing extension of R with a basis that includes 1, that s, there is
afinite set{ay, ..., a,} € Ssuchthata; = 1,5 = Ra1+---+Ra,, a;R = Ra;
foralli =1, ...,n and S is free with basis {ay, . .., a,} as both a right and left
R-module, and
(ii) Sisright R-projective, thatis, if N is a submodule of M, then Ng| Mg implies
Ns|Ms.
Excellent extensions were introduced by Passman [17], named by Bonami [2], and
recently studied in [10-12, 16, 22]. Examples include finite matrix rings (see [17]), and
crossed product R % G where G is a finite group with |G|~! € R (see [18]).
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The following lemma is well known.

Lemma 3.1.
(1) Let R — S be a homomorphism of rings and let there be given modules Ug and
sV. Assume gS is a flat left R-module. Then there exists an isomorphism
Tor® (U, rV) = Tors (U ®z S, V).
(2) Let R, S be rings and let there be given modules Ug, sVg, and rW. Assume sV
and Vg are flat. Then there exists an isomorphism

TorX (U ®s V, W) = Tor3 (U, V ®@r W).

Théorem 3.2. Let S be an excellent extension of R. Then
R-lc.dimR = R-lc.dimS.

Proof. Suppose R-lc.dimR = m < oc. Let M be an (m 4 1)-FP left S-module. There
exists an exact sequence:

0— Ky — Fp— - — Fp—s M — 0,

where F,,, ..., Fy are finitely generated free left S-modules and K,,;; is finitely
generated. Suppose K11 is generated by x1, ..., x,. Since § is an excellent extension
of R, it follows that g(Ku+1) is generated by y;; = a;xj,1 <i <n,1 < j < p.Itis
easy to see that g Fj,, ..., Fo are finitely generated free left R-modules. Thus, g M is
an (m + 1)-FP left R-module. Since R-lc.dimR = m and Sk is flat right R-module, it

follows that "

Tork ([ S, M) =0
1

for every set I by Theorem 2.9. Thus, by Lemma 3.1, we have
R
Tors ([ ] $) @& S, M) = 0.
I

Define an S-homomorphism f : (I‘[? S ®r S — ]‘[? Svia f(x ® s) = xs, where
s€Sandx € ]_[? S. Then we have an exact sequence of right S-modules
8 8
0— Ker(f) — ([ @S — [[s —0.
I 1
Define an R-homomorphism g : [[} § —> (I} S) ®& S via g(x) = x ® 1. Then
fg = 1. This means that the exact sequence 0 — (Ker(f))p —> ((]_[? S) ®g
SHr — (H? S)r —> 0 splits. Thus, (Ker(f))RI((]—[? S) ® S)g, which implies that
Ker())sI([T5 S) ® S)s by the right R-projectivity of S. Hence, [T} S is isomorphic
to a direct summand of (]_ﬁ§ S) ® S. It now follows that
N
Tors ([ [5. M) =0,
I
and so R-lc.dim$S < m by Theorem 2.9.
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If R-lc.dimR = oo, then obviously 8-lc.dimS < N-lc.dimR.
Conversely, suppose ®-lc.dimS = m < 0o. Let M be an (m + 1)-FP left R-module.
Then there exists an exact sequence:

O——)Km+1—>Fm——>---—>Fo——>M—>O,

where F,,,..., Fy are finitely generated free left R-modules and K1 is finitely
generated. Since Sy is flat, we obtain an exact sequence:

0—>S®Km+1—>S®Fm—>---—>S®F0—>S®M—>O.

Itisclearthat S ® F,,..., S ® Fp are finitely generated projective left S —modulps and
S ® K41 is finitely generated. This means that S ® M is an (m + 1)-FP left S-module
by Lemma 2.4. Thus, by Theorem 2.9, we have

8

Tor, ([ ]S, S® 4 =0
I

for every set I, which implies that Tor® +1((]’['f S)r, M) = 0 by Lemma 3.1. Now, it

m
follows that .

Torg ([ [R. M) =0,
14

since ([T} $)r = H¥(@?=1R) = @ ([T} R), and hence, R-lc.dimR <m =
R-lc.dimS by Theorem 2.9.
If R-lc.dimS = oo, then clearly R-lc.dimR < R-l¢.dimsS. [ ]

Corollary 3.3.

(1) R-le.dimR = R-le.dim(M, (R)) for every ring R, where M, (R) is the matrix ring
over R.

(2) If G is a finite group such that IG|™! € R, then 8-lc.dimR — R-le.dim(R * G),
where R x G is a crossed product of R with G.

Let R be graded by a finite group G. The smash product, R#G™, is a free right and
left R-module with basis {p,|a € G} and multiplication determined by

(rpa)(sps) = a1 pa,
where s,5-1 is the ab™! component of s,

Corollary 3.4. Let R be graded by a finite group G, and |G|~ € R. Then R-lc.dimR —
N-lc.dim(R#G*).

Proof. The group G acts as automorphisms on R#G* with
a(rpa) = rpha,

$o we may form the skew group ring (R#G*) x G. By [14] or [19], it follows that
(R#G*) * G = M,(R), the ring of n x n matrices over R, where n = |G|. Thus, the
result follows from Corollary 3.3. [ |

Now, we give a generalization of Corollary 3.3(1).
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Proposition 3.5. If R and S are two equivalent rings, then R-lc.dimR = R-lc.dimS.

Proof. Let F : R ~ § define an equivalence and R-lc.dim§ = m < oo. Assume M is
an (m + 1)-FP left R-module. Then there exists an exact sequence:

0——>Km+1——>Hm-—>---——>Ho—>M—>O,

such that Hy,, ..., Ho are finitely generated free left R-modules and K41 is finitely
generated. By [1, pp. 254, 258], we obtain an exact sequence of left S-modules:

0—> F(Kpy1) — F(Hp) — ... — F(Hy) — F(M) — 0,

where F(H,;), ..., F (Hy) are finitely generated projective left S-modules and F (K, +1)
is finitely generated. Thus, by Lemma 2.4, F(M) is (m+ 1)-FP. Since R-lc.dim§ = m, it
follows that F (M) is (m--2, ®)-FP. Similar arguments will show that M is (m+2, 8)-FP
by [1, p.256] and Lemma 2.4. Thus, R-le.dimR < m.If R-le.dimS = oo, then obviously
R-le.dimR < R-lc.dimS. Now, the result follows.
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