An Eigenvalue Problem with Singularity for Fourth Order Ordinary Differential Equation*

Ta Van Dinh
Department of Applied Mathematics
Hanoi University of Technology, Hanoi, Vietnam

Received January 14, 1995
Revised March 10, 1997

Abstract

We are dealing with some eigenvalue problems with singularity for fourth order ordinary differential equation. The existence of a countable set of real eigenvalues and eigenfunctions is established. At the same time the high smoothness of the first eigenfunction is investigated.

1. Introduction

The eigenvalue problems in which the parameter is present in the boundary condition(s) are called in [1] the eigenvalue problem with singularity and have been considered there in some particular cases for second order ordinary differential equations. In this paper we are dealing with such a problem for fourth order ordinary differential equation. We shall prove the existence of a countable set of eigenvalues and eigenfunctions and the high smoothness of the first eigenfunction.

2. The Problem in Strong Form

Let $p(x), q(x), r(x)$ be given functions on $[0,1]$ and s a given constant satisfying

$$
\begin{equation*}
0<c_{0} \leq p(x) \leq c_{1}, \quad q(x) \geq 0, \quad 0<c_{2} \leq r(x) \leq c_{3}, \quad s>0 \tag{1}
\end{equation*}
$$

where $c_{0}, c_{1}, c_{2}, c_{3}$ are positive constants.
In addition, assume

$$
\begin{equation*}
p(x), p^{\prime}(x), p^{\prime \prime}(x), q(x), r(x) \in C^{\mu}[0,1], \quad \mu=\text { integer } \geq 0 \tag{2}
\end{equation*}
$$

[^0]The eigenvalue problem in the strong form is stated as: Find a scalar λ called eigenvalue and a function $w(x) \in C^{4}[0,1]$ not identically equal to zero called eigenfunction satisfying

$$
\begin{gather*}
L w:=\left(p w^{\prime \prime}\right)^{\prime \prime}+q w=\lambda r w, \quad 0<x<1, \tag{3}\\
l w:=\left(p w^{\prime \prime}\right)^{\prime}(0)=\lambda s w(0), \tag{4}\\
w^{\prime \prime}(0)=0, \quad w(1)=0, \quad w^{\prime}(1)=0 . \tag{5}
\end{gather*}
$$

This problem arises from mechanics [1, p.447]. Note that the parameter λ is also present in the boundary condition and that is why the problem is called in [1, p.446, 447] eigenvalue problem with singularity.

3. The Problem in the Weak Form

Instead of (2), assume

$$
\begin{equation*}
p(x), q(x), r(x) \in C[0,1] \tag{6}
\end{equation*}
$$

Denote by $H^{k}(0,1)$ the Sobolev spaces $W_{2}^{(k)}(0,1)$ [3]. According to the theorem on the equivalence of norms in Sobolev spaces [3, p. 360, 361], we have

Lemma 1. In $H^{2}(0,1)$, the following norms

$$
\begin{aligned}
\|u\|_{H^{2}(0,1)} & :=\left\|u^{\prime \prime}\right\|_{L_{2}(0,1)}+\left\|u^{\prime}\right\|_{L_{2}(0,1)}+\|u\|_{L_{2}(0,1)} \\
\|u\|_{1} & :=\left\|u^{\prime \prime}\right\|_{L_{2}(0,1)}+|u(0)| \\
\|u\|_{2} & :=\left\{\left\|u^{\prime \prime}\right\|_{L_{2}(0,1)}^{2}+\left\|u^{\prime}\right\|_{L_{2}(0,1)}^{2}+\|u\|_{L_{2}(0,1)}^{2}\right\}^{\frac{1}{2}}
\end{aligned}
$$

are equivalent.
Let

$$
V:=\left\{v \mid v \in H^{2}(0,1), v(1)=0, v^{\prime}(1)=0\right\}
$$

Let H be the closure of the space $C[0,1]$ with respect to the norm

$$
\|u\|_{H}:=(u, u)_{H}^{\frac{1}{2}},(u, v)_{H}:=\int_{0}^{1} r(x) u(x) v(x) d x+s u(0) v(0)
$$

It is obvious that V and H are Hilbert spaces (on R).
Let $u \in V \subset H^{2}(0,1)$. Then according to Lemma $\mathbf{1}, u \in \mathbf{L}_{\mathbf{2}}(\mathbf{1}, \mathbf{1}) \geq(\mathbb{1})<\infty$. oo $V \subset H$.
Now, let $u \in V \subset H^{2}(0,1)$. Then we have

Then by addition we see that the embedres $\mathrm{V} \hookrightarrow B$ is com unos
Now, by the embedding theore [2] the emhodfan $V-L=1,1)$ is compact.
 $V \mapsto H$ is compact. Conciderin V

We see that $a(u, v)$ can be considered as an inner product in V denoted by V_{a}. It yields another norm $\|u\|_{a}:=\{a(u, u)\}^{1 / 2}$ equivalent to the norm in V.

The weak eigenvalue problem takes the following form: Find $u \in V$ such that

$$
\begin{align*}
& \int_{0}^{1}\left[p(x) u^{\prime \prime}(x) v^{\prime \prime}(x)+q(x) u(x) v(x)\right] d x \\
= & \lambda\left[\int_{0}^{1} r(x) u(x) v(x) d x+s u(0) v(0)\right], \quad \forall v \in V . \tag{7}
\end{align*}
$$

It is obvious that $a(u, v)$ is symmetric. Moreover,

$$
|a(u, v)| \leq c_{5}\left\{\int_{0}^{1}\left(\left|u^{\prime \prime}\right| \cdot\left|v^{\prime \prime}\right|+|u| \cdot|v|\right) d x\right\} \leq c_{5}\left\{\|u\|_{V}\|v\|_{V}\right\}, \quad c_{5}=\text { constant }>0
$$

Then $a(u, v)$ is continuous on V.
Let $u \in V$. Then $u \in H^{2}(0,1)$ and

$$
a(u, u) \geq \int_{0}^{1} p(x)\left[u^{\prime \prime}(t)\right]^{2} d t \geq c_{0}\left\{\left\|u^{\prime \prime}\right\|_{L_{2}(0,1)}^{2}\right\}
$$

According to Lemma 1

$$
|u(0)|^{2} \leq\|u\|_{1}^{2} \leq c_{6} a(u, u), \quad c_{6}=\text { constant }>0
$$

So

$$
a(u, u) \geq c_{7}\left\{\left\|u^{\prime \prime}\right\|_{L_{2}(0,1)}^{2}+|u(0)|^{2}\right\} \geq c_{8}\|u\|_{H^{2}(0,1)}^{2}, \quad c_{7}, c_{8}=\text { constant }>0
$$

Therefore, $a(.,$.$) is V$-elliptic.
So all assumptions of Lemma 1 in [4] are verified.
Then under assumptions (1) and (6), we have

Theorem 1.

(1) Problem (7) has countably many eigenvalues which are real with no finite limit points and can be arranged as

$$
0<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{m} \leq \cdots \lambda_{m} \rightarrow+\infty
$$

(2) The corresponding eigenfunctions $\left\{u_{m}(x) \in V \subset H^{2}(0,1)\right\}$ are orthonormal in H and the functions $\left\{\lambda_{m}^{-1 / 2} u_{m}\right\}$ form an orthonormal base in V_{a}.
Now, we turn to the strong problem.

4. Solution of the Strong Problem

Under assumptions (1) and (2), we have

Theorem 2.

(1) Each solution $(\lambda, w(x))$ of the strong problem (3)-(5) is a solution of the weak problem (7).
(2) To the solution $\left(\lambda_{1}, u_{1}(x)\right)$ of the weak problem (7), there corresponds a solution ($\lambda_{1}, v_{1}(x)$) of the strong problem (3)-(5) such that

$$
\begin{equation*}
v_{1} \in C^{\mu+4}[0,1],\left\|v_{1}-u_{1}\right\|_{H^{2}(0,1)}=0,\left\|v_{1}\right\|_{H^{\mu+4}(0,1)} \leq c_{9} \lambda_{1}^{[(\mu+3) / 4]+1} \tag{8}
\end{equation*}
$$

where c_{9} is a positive constant independent upon u_{1} and v_{1}.
For the proof, we consider the following boundary problem:

$$
\begin{gather*}
L z:=\left(p(x) z^{\prime \prime}(x)\right)^{\prime \prime}+q(x) z(x)=f(x), 0<x<1, \tag{9}\\
l z:=\left(p(0) z^{\prime \prime}(0)\right)^{\prime}=g, \tag{10}\\
z^{\prime \prime}(0)=0, \quad z(1)=0, z^{\prime}(1)=0 \tag{11}
\end{gather*}
$$

where $p(x), p^{\prime}(x), p^{\prime \prime}(x), q(x)$ satisfy (1) and (2), and

$$
\begin{equation*}
f(x) \in C^{v}[0,1], \quad 0 \leq v=\text { integer } \leq \mu, \quad g \in R . \tag{12}
\end{equation*}
$$

Then we have
Lemma 2. The boundary problem (9)-(12) has a unique solution

$$
\begin{equation*}
z \in C^{\nu+4}[0,1], \tag{13}
\end{equation*}
$$

such that

$$
\begin{align*}
\|z\|_{H^{p}(0,1)} & \leq c_{10}\left\{\|f\|_{L_{2}(0,1)}+|g|\right\}, \quad p=1,2,3,4 \tag{14}\\
\|z\|_{H^{p+4}(0,1)} & \leq c_{11}\left\{\|f\|_{L_{2}(0,1)}+|g|+\sum_{k=1}^{p}\left\|f^{(k)}\right\|_{L_{2}(0,1)}\right\}, \quad p=1,2, \ldots, v, \tag{15}
\end{align*}
$$

where c_{10} and c_{11} are positive constants independent upon z.
Proof. First, by taking the inner product in $L_{2}(0,1)$ of $L z$ by z, we can prove that the corresponding homogeneous problem has only a trivial solution. From that, the existence and uniqueness of Green function $G(x, \xi)$ and of the solution $z(x)$ satisfying (9)-(11) (see [1]) follow. Then we have

$$
z(x)=\int_{0}^{1} G(x, \xi) f(\xi) d \xi+G(x, 0) g
$$

Now, to prove that the solution $z(x)$ satisfies (13), we must prove it analogously to [2, p. 74,75]. After that, taking the inner product in $L_{2}(0,1)$ of (9) by $z(x)$ and taking into account boundary conditions (10) and (11), we have

$$
a(z, z)=(F, z)_{H},
$$

where

$$
F=F(x)= \begin{cases}f(x) / r(x), & \text { if } 0<x<1, \\ g / s, & \text { if } x=0 .\end{cases}
$$

Then we have (13) for $p=1,2$. Since z verifies (14), we can differentiate (9) successively, and with the help of (14), for $p=1,2$, we obtain (14) for $p=3,4$ and (15) step by step.

Proof of Theorem 2. The first part follows from the inner product in $L_{2}(0,1)$ of (3) by $v(x) \in V$ and boundary conditions (4) and (5).

For the second part, let $\left(\lambda_{1}, u_{1}(x)\right)$ be the solution of the weak problem (6). Then

$$
\begin{equation*}
u_{1} \in V \subset H^{2}(0,1), \quad a\left(u_{1}, u_{1}\right)=\lambda_{1}, \quad\left\|u_{1}\right\|_{H}=1 \tag{16}
\end{equation*}
$$

Thus, $u_{1} \in H^{2}(0,1)$. So by the imbedding theorem [2, p. 372], $u_{1}(0)$ is well defined and u_{1} is equal almost everywhere (a.e.) on $[0,1]$ to a function $\tilde{u}_{1} \in C^{1}[0,1]$.

Consider the auxiliary boundary value problem:

$$
\begin{gather*}
L w_{1}:=\left(p(x) w_{1}^{\prime \prime}(x)\right)^{\prime \prime}+q(x) w_{1}(x)=\lambda r(x) \tilde{u}_{1}(x), 0<x<1, \tag{17}\\
l w_{1}:=\left(p(0) w_{1}^{\prime \prime}(0)\right)^{\prime}=\lambda s u_{1}(0) \tag{18}\\
w_{1}^{\prime \prime}(0)=0, \quad w_{1}(1)=0, w_{1}^{\prime}(1)=0 . \tag{19}
\end{gather*}
$$

According to Lemma 2, this problem has a unique solution:

$$
\begin{equation*}
w_{1} \in C^{\min \{\mu, 1\}+4}[0,1]=C^{\min \{\mu+4,5\}} \tag{20}
\end{equation*}
$$

such that

$$
\begin{align*}
\left\|w_{1}\right\|_{H^{p}(0,1)} \leq c_{12} \lambda_{1}\left\{\left\|\tilde{u}_{1}\right\|_{L_{2}(0,1)}+\left|u_{1}(0)\right|\right\}=c_{12} \lambda\left\{\|u\|_{L_{2}(0,1)}+|u(0)|\right\} \\
=c_{12} \lambda_{1}\|u\|_{H}=c_{12} \lambda_{1}, \quad p=1,2, \ldots, \min \{\mu+4,5\}, c_{12}=\mathrm{constant}>0 . \tag{21}
\end{align*}
$$

We shall prove

$$
\begin{equation*}
\left\|w_{1}-u_{1}\right\|_{V=H^{2}(0,1)}=0 \tag{22}
\end{equation*}
$$

By taking the inner product in $L_{2}(0,1)$ of (17) by $v(x) \in V \subset H^{2}(0,1)$, we have after integration by parts

$$
\begin{align*}
\int_{0}^{1}\left[p(x) w_{1}^{\prime \prime}(x) v^{\prime \prime}(x)+q(x)\right. & \left.w_{1}(x) v(x)\right] d x-\left(p(0) w_{1}^{\prime \prime}(0)\right)^{\prime} v(0)+p(0) w_{1}^{\prime \prime}(0) v^{\prime}(0) \\
& =\lambda_{1} \int_{0}^{1} r(x) \tilde{u}_{1}(x) v(x) d x \tag{23}
\end{align*}
$$

Then taking into account boundary conditions (18) and (19), Eq. (23) yields

$$
\begin{equation*}
\int_{0}^{1}\left[p(x) w_{1}^{\prime \prime}(x) v^{\prime \prime}(x)+q(x) w_{1}(x) v(x)\right] d x=\lambda_{1}\left[\int_{0}^{1} r(x) \tilde{u}_{1}(x) v(x) d x+s u_{1}(0) v(0)\right] \tag{24}
\end{equation*}
$$

From (7) and (24), where $\tilde{u}_{1}=u_{1}$ (a.e.) on [0,1], we obtain

$$
a\left(u_{1}, v\right)=a\left(w_{1}, v\right), \quad \forall v \in V
$$

Therefore, we have $\left\|w_{1}-u_{1}\right\|_{a}=0$ and hence (22) follows.
Thus, $u_{1}=w$ (a.e.) and $u_{1}=\tilde{u}_{1}$ (a.e.) on [0,1]. Then $\tilde{u}_{1}=w_{1}$ (a.e.) on [0, 1]. So $\tilde{u}_{1}=w$ everywhere on $[0,1]$ because they are both continuous on [0,1$]$. So the problem (17)-(19) coincides with the problem (3)-(5). Therefore, λ_{1} and w_{1} satisfy the problem (3)-(5), and by (20)-(22), property (8) is verified for $\mu=0$.

Since w_{1} satisfies (3), (5) and (20), we successively have

$$
w_{1} \in C^{\min \{\mu+4,5\}} \Rightarrow w_{1} \in C^{\min \{\mu+4,9\}} \Rightarrow \cdots \Rightarrow w_{1} \in C^{\mu+4}
$$

with the help of Lemma 2.
The last inequality of (8) is proved by applying Lemma 2 to w_{1} step by step. So Theorem 2 is proved with $v_{1}=w_{1}$.

Remark 1. By taking into account the previous results, we can approximate the first igenvalue λ_{1} and the first eigenfunction $u_{1}(x)$ by finite element method.

Another Problem

et there be given a function $p(x) \geq c_{0}=$ constant >0 and a constant $c \geq 0$.
The corresponding strong eigenvalue problem is [1, p.447]: Find u such that

$$
\begin{align*}
& \left(p u^{\prime \prime}\right)^{\prime \prime}=-\lambda u^{\prime \prime}, 0<x<1, \tag{24}\\
& u^{\prime \prime}(0)=0,\left(p u^{\prime \prime}\right)^{\prime}(0)+c u(0)=-\lambda u^{\prime}(0), c \geq 0, \quad u(1)=u^{\prime}(1)=0 . \tag{25}
\end{align*}
$$

Let

$$
\begin{aligned}
V & =\left\{v \mid v \in H^{2}(0,1), v(1)=v^{\prime}(1)=0\right\} \\
H & =\left\{v \mid v \in H^{1}(0,1), v(1)=0\right\} \\
(u, v)_{H} & =\int_{0}^{1} u^{\prime} v^{\prime} d x,\|u\|_{H}=(u, u)_{H^{\frac{1}{2}}}, \\
a(u, v) & =\int_{0}^{1} p u^{\prime \prime} v^{\prime \prime} d x+c u(0) v(0), u, v \in V
\end{aligned}
$$

The weak eigenvalue problem can be stated as follows: Find $u \in V$ such that

$$
\begin{equation*}
\int_{0}^{1} p u^{\prime \prime} v^{\prime \prime} d x+c u(0) v(0)=\lambda \int_{0}^{1} u^{\prime} v^{\prime} d x, \quad v \in V \tag{26}
\end{equation*}
$$

For problems (24)-(26), there are results analogous to Theorems 1 and 2.

eferences

L. Collatz, Eigenwertaufgaben mit Technischen Anwendungen, Akademische Verlagsgesellschaft, Leipzig, 1963; Nauka, Moscow, 1968 (Russian).
V.I. Smirnov, Course of Higher Mathematics, Vol. 5, Gostekhizdat, Moscow, 1959 (Russian). G.I. Marchuk and V.V. Shaydurov, Increase of Accuracy of Solution to Difference Schemes, Nauka, Moscow, 1979 (Russian).
Ta Van Dinh, On eigenvalue problems with singularity for second order ordinary differential equations, Vietnam J. Math. 26(2) (1998) 111-120.

[^0]: * This work was supported in part by the National Basic Research Program in Natural Sciences, Vietnam.

