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Abstract. We are dealing with some eigenvalue problems with singularity for fourth order ordinary
differential equation. The existence of a countable set of real eigenvalues and eigenfunctions is
established. At the same time the high smoothness of the first eigenfunction is investigated.

1. Introduction

The eigenvalue problems in which the parameter is present in the boundary condition(s)
are called in [1] the eigenvalue problem with singularity and have been considered there
in some particular cases for second order ordinary differential equations. In this paper
we are dealing with such a problem for fourth order ordinary differential equation. We
shall prove the existence of a countable set of eigenvalues and eigenfunctions and the
high smoothness of the first eigenfunction.

2. The Problem in Strong Form

Let p(x), g(x), r(x) be given functions on [0, 1] and s a given constant satisfying
O<co=<px)<c, qx)20, O0<c2=<r(x) <c3, s>0, )]

where cg, ¢1, ¢, ¢3 are positive constants.
In addition, assume

p(x), p'®), p"(x), q(x), r(x) € C¥[0,1], p = integer > 0. 2
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The eigenvalue problem in the strong form is stated as: Find a scalar A called
cigenvalue and a function w(x) € C*[0,1] not identically equal to zero called
cigenfunction satisfying

Lw:=(puw") +qw=rw, 0<x<1, ?3)
lw := (pw”)' (0) = Asw(0), @
w0 =0, wl)=0, w'(1)=0. 5)

This problem arises from mechanics [1, p.447]. Note that the parameter A is also
present in the boundary condition and that is why the problem is called in [1, p. 446,
447] eigenvalue problem with singularity.

3. The Problem in the Weak Form

[nstead of (2), assume
px), gx), r(x) € C[0, 1]. ©6)
Denote by H k(0, 1) the Sobolev spaces Wz(k) (0, 1) [3]. According to the theorem on
he equivalence of norms in Sobolev spaces [3, p. 360, 361], we have

Lemma 1. In H%(0, 1), the following norms
Nl z20,1y := "l z,0,) + 14/l y0,1) + %1l 2, 0,1y »
lully := llu"llz,0,1) + [4(0)]
1
lell2 = {0112 0,1 + 14'13 0,1 + 1212, 0.1y}
are equivalent.
Let
V := {vlv € H%(0, 1), v(1) =0, v'(1) = 0}.
Let H be the closure of the space C[0, 1] with respect to the norm

q 1
|z == (u, u)fq, (u,v)y :=/(; r(x)ux)v(x)dx + su(@)v(0) .

It is obvious that V and H are Hilbert spaces (on R).

Letu € V C H*(0, 1). Then according to Lemma 1, x € L0, 1) and =(0) < oo.
5oV C H.

Now, letu € V ¢ H%(0, 1). Then we have

lullz,0.1) < lullr20,1)» 1O < luly < s =comsi> 0.
Chen by addition we see that the embedding ¥ 2
Now, by the embedding theorem [Z), = oS — s compact.
Jesides, if (¢} isabounded setm V. 5ee o & PR Seaee the embedding

/ — H is compact. Considerm W . © =
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We see that a(u, v) can be considered as an inner productin V denoted by V;,. It yields

another norm |||, := {a(u, u)}'/? equivalent to the norm in V.
The weak eigenvalue problem takes the following form: Find u € V such that

1
fo Loy ey () + g (e (x)ldx
1
= A[/ AR A +su(0)v(0)], VveV. %)
0

It is obvious that a(u, v) is symmetric. Moreover,

1
la(u, v)| < 05{/ (|u”|.1v"| + lul.lv)dx} < es{llullvlvllv}, ¢s = constant > O.
0

Then a(u, v) is continuous on V.
Letu € V. Thenu € H?(0, 1) and

1
alue,u) > /0 PO ©OFPdt > collu” 12, 1)

According to Lemma 1
u©)* < [ull} < coa(u,u), c6= constant > 0.
So
a(u,u) = cr{llu’ 7,01 + 14O} = csllullFp,1)» €7, cs = constant > 0.
Therefore, a(., .) is V-elliptic.
So all assumptions of Lemma 1 in [4] are verified.

Then under assumptions (1) and (6), we have

Theorem 1.

(1) Problem (7) has countably many eigenvalues which are real with no finite limit
points and can be arranged as

O<M =X =< - SAm = Ay — F00.
(2) The corresponding eigenfunctions {u,(x) € V C H 2 (0, 1)} are orthonormal in H
and the functions {)\;1/ 2um} form an orthonormal base in V,.
Now, we turn to the strong problem.

4. Solution of the Strong Problem

Under assumptions (1) and (2), we have
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Theorem 2.

(1) Each solution (1, w(x)) of the strong problem (3)—(5) is a solution of the weak
problem (7).

(2) To the solution (A1, ui1(x)) of the weak problem (7), there corresponds a solution
(A1, v1(x)) of the strong problem (3)—(5) such that

+3)/41+1
v € C*H0, 1], flvg — uillgzo,1 =0, villge+@,1) < 69)\[1(” Ll n ()
where ¢y is a positive constant independent upon u| and v;.

For the proof, we consider the following boundary problem:

Lz == (px)7"(x))" + gx)z(x) = f(x), 0 <x < 1, ©
Iz .= (p(0)z"0) =g, (10)
Z70)=0, z(1)=0, 7(1) =0, an
where p(x), p'(x), p”(x), g(x) satisfy (1) and (2), and
f(x) €C’[0,1], O<v= integer <p, geR. (12)

Then we have

Lemma 2. The boundary problem (9)—(12) has a unique solution
z € C"*0, 1], (13)
such that

lzllgz0,1) < c1olll fllz, 0,1y + 1gl}, P =1,2,3,4, (14)

p
lzllarmo < enlll fllzon +lgl+ Y 1 Plnon) p=12,...,v, (15
k=1

where c19 and c11 are positive constants independent upon z.

Proof. First, by taking the inner product in L»(0, 1) of Lz by z, we can prove that the
cotresponding homogeneous problem has only a trivial solution. From that, the existence
and uniqueness of Green function G(x, &) and of the solution z(x) satisfying (9)—(11)
(see [1]) follow. Then we have

1
i /0 Gx, E) f&)dE + G (x, 0)g.

Now, to prove that the solution z(x) satisfies (13), we must prove it analogously to
[2, p.74,75]. After that, taking the inner product in L>(0, 1) of (9) by z(x) and taking
into account boundary conditions (10) and (11), we have

a(z,z) = (F,2n .,

where

fx)/rix), if 0<x <1,

g/s, if x=0.

Then we have (13) for p = 1, 2. Since z verifies (14), we can differentiate (9)
successively, and with the help of (14), for p = 1,2, we obtain (14) for p = 3,4
and (15) step by step. [

F=Fm=[
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Proof of Theorem 2. The first part follows from the inner product in L, (0, 1) of (3) by
v{x) € V and boundary conditions (4) and (5).

For the second part, let (A1, u1(x)) be the solution of the weak problem (6). Then
ui € VC H*O,1), a(i,u))=r1, |ullg=1. (16)

Thus, u; € H2(0, 1). So by the imbedding theorem [2, p. 372], u1(0) is well defined
and u; is equal almost everywhere (a.e.) on [0, 1] to a function #; € C![0, 1].
Consider the auxiliary boundary value problem:

Lw; = (p(x)w](x))" + gx)wi(x) = Ar(x)i;(x), 0 <x < 1, (17)
lwy == (p(O)w](0)) = Asu;(0), (18)
w/ll(O) =0, wi(1)=0, wi(l) =0. (19)
According to Lemma 2, this problem has a unique solution:
wy € ChiM U+ 1] = Ccminlu+d.5) 0)
such that
lwillgre,1) < crzri{ll@nllz o0 + 41O} = craA{lluliz,0,1) + [#(0)]}
=cpiillullg =cpri, p=1,2,...,min{u + 4, 5}, c12 = constant > 0.

(21)

We shall prove
lwi — uillv=m2¢0,1) = 0. (22)

By taking the inner product in L3(0, 1) of (17) by v(x) € V < H?(0, 1), we have after
integration by parts

1
/0 [P)w] ()" (x) + g(wi(x)v()]dx — (p(O)w](0))'v(0) + p(O)w](0)v'(0)

1
= Al / r(x)i (x)v(x)dx. (23)
0
Then taking into account boundary conditions (18) and (19), Eq. (23) yields

1 1
/ [p(x)w] ()" (x) + g () w1 (x)v(x)]ldx = )»1[/ r(x)i (x)v(x)dx + sui(0)v(0)].
0 0
(24)
From (7) and (24), where ii; = u; (a.e.) on [0, 1], we obtain
a(uy,v) =a(wy,v), YveV.
Therefore, we have ||w; — u;]|, = 0 and hence (22) follows.

Thus, u1 = w (a.e.) and u; = #; (a.e.) on [0, 1]. Then &1; = w; (a.e.) on [0, 1]. So
i1 = w everywhere on [0, 1] because they are both continuous on [0, 1]. So the problem
(17)—=(19) coincides with the problem (3)—(5). Therefore, A1 and w; satisfy the problem
(3)-(5), and by (20)—(22), property (8) is verified for u = 0.

Since w; satisfies (3), (5) and (20), we successively have

wy € Cmin{,u+4,5} = w € Cmin[,u,+4,9} = ... w € C,u+4

with the help of Lemma 2.
The last inequality of (8) is proved by applying Lemma 2 to w; step by step. So
Theorem 2 is proved with v; = w;. [ ]
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temark 1. By taking into account the previous results, we can approximate the first
igenvalue A1 and the first eigenfunction u; (x) by finite element method.

. Another Problem

et there be given a function p(x) > co = constant > 0 and a constant ¢ > 0.
The corresponding strong eigenvalue problem is [1, p.447]: Find « such that

(pu")'=-z", 0<x <1, (24)
u"(0) =0, (pu")(0) + cu(0) = —2u'(0), ¢ =0, u(l)=u'1)=0. (25
Let
V = {vjv e H?0, 1), v(1) = v/(1) = 0},
H={vlve H(0, 1), v(1) = 0},
1 1
hH =/0 Wv'dx , lula = G wa?,
nd

1
au, v) =/ pu"v"dx + cu(Q)v(0), u,ve V.
0

The weak eigenvalue problem can be stated as follows: Find u € V such that

1 1
/ pu"v"dx + cu(@)v(0) = A/ wvdx, veVv. (26)
0 0

For problems (24)—(26), there are results analogous to Theorems 1 and 2.
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