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In a recent paper [4], Barron, Jensen, and Liu found the explicit viscosity solution of the
problem

4+ H(,Du) =0, (t,x) €[0,TIxR"*, u(T,x)=gx), x €R"
to be given by

u(t,x) =inf {y e R: el g, P+ T -nHW,p) <0}, ()
peR”

where
g (y,p)=sup{px:xeR", gx) <y}, yeR, peR”

is the first quasiconvex conjugate of the terminal function g(x), x € IR". This is an
important result generalizing the Hopf formula while the Hamiltonian H depends on u
and the terminal function may not be convex.

In this note, we consider the Cauchy problem for Hamilton—Jacobi equations, where
the Hamiltonians depend on ¢, u and Dxu, namely,

3
—3% + H(t,u, D) = 0, (t,x) € Q:= (0, T) x R”, @)

1(0,x) = gx), x e R™. 3)
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Under the suitable assumptions, the viscosity solution is given by

t
u(t, x) = inf {y eR: su]lg Up,x) —g* (v, p)— /H(r, y, p)dt) < 0},
peR”
0

(t,x) € Q. 4

Formula (1) in [4] was proved to be a viscosity solution under the assumption that the
Hamiltonian H (y, p) is Lipschitz continuous in the variable p. Here, apart from the ¢
dependence in the Hamiltonian H (¢, y, p), we remove this assumption and require that
the initial function g is quasiconvex and has L-Isc property. We will show later that the
class of functions having L-lsc property contains the continuous functions f which are
convex or strictly quasiconvex, and satisfy the following growth condition

f(x) > +oo as |x| = 4o0. 5)

We first recall the definition of the quasiconvex dual according to the point of view of
[2-4]. We also refer to [7] for multifunctions, [5, 6, 9] for viscosity solutions, and [1, 8,
10, 12, 13] for the Hopf formula. Let f : R" — R := R U {—oc} U {4+00}. For any
y € IR, denote

Efy ={x eR": f(x) <y},

Argmin f = {xo e R" : f(x0) < f(x), Vx e R"}.

A function f : R” — R is said to be quasiconvex if Ey,,, is a convex set in R” for any
y € IR. Equivalently, f is quasiconvex if

fOx+ A=Ay <max{f(x), f»}, 0=<r=<1 x,yeR".
The function £ is said to be strictly quasiconvex if
fOx+ A =0y <max{f(x), f(M}, 0<i<l, Vx#y.
Given a quasiconvex function f on IR”, the first quasiconvex conjugate of f is defined

by
¥, p) :=sup{(p,x) : x €eR", f(x) <y}, vy eR,peR".

If {x : f(x) <y} = @ for some y, then f*(y, p) = —o0. The second conjugate of f
is defined by

f*#(x) ;= inf{y e R: sup ({p, x) — f*(y, p)) < 0}.
peR”

Let f be a function defined on IR*. Set y* = in]lg f(x). Consider the multifunction
xelR”

L:(y* 4o0) —» 2K\@
y = Efy,

which will be accordingly called the generated multi (by f).
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Definition. The function f is said to have L-Isc property if the generated multi L is
& — 8-Isc.

If a continuous function f satisfies the growth condition (5), then Ey,, is a compact
setforeach y € IR. This means that the multi L has compact values. Therefore, by virtue
of Proposition 2.1 in [7], we obtain

Proposition 1. If f is continuous and satisfies the growth condition (5), then the multi
L is e — §-Isc if and only if L is Isc.

The class of functions having L-Isc property may be described by the next proposition.
Its proof can be found in [14].

Proposition 2. Let the continuous function f not attain its local minimum in any open
subset of R"\Argmin f, and let f satisfy the growth condition (5). Then f has L-Isc
property.

It is known that a local minimum point of a strictly quasiconvex function must be
a (unique) global minimum point (see [11, Chapter 9]). Of course, this statement also
holds true for convex functions. Hence, from Proposition 2, we obtain the following:

Corollary 1. Given a continuous function f satisfying (5), assume either f is strictly
quasiconvex or f is convex. Then f has L-Isc property.

Apart from that, an example of nonquasiconvex functions having L-1sc property can
be regarded as
cos x if |x| <3m/2,
£(x) 1= [ .
x| =37/2 if |x|>3=%/2.
We are considering the Cauchy problem (2)—(3). The following conditions will be
imposed upon the Hamiltonian H and the initial data.
(A) The initial function g € C(IR") is quasiconvex, has L-Isc property, and satisfies the
growth condition
g(x) > +o0 as x| - +o0. (6)
(B) The Hamiltonian H : [0, T] x R x IR” — IR is continuous and
@ H@,y,Ap) =AH(t,y,p)forall(t,y,p) € [0,T] x R x R" A > 0;
(ii)) H(t, y, p) is nondecreasing in y € IR for each (¢, p) € [0, T] x IR".
(C) The Hamiltonian H satisfies one of the following two:
(i) Toevery fixed tp € (0, T), there exists a function 4 : [0, T] x R — IR, h(z, y)
is positive for almost every ¢ € (0, T'), and h(., y) is integrable for any y, such
that

H(t,y,p) =h(t,y)H@, v, p), Y(t,y,p) € [0,T1 x R x R".
m
@) ¥O0<a; <1,|p;l=1,i=1,...,m,and ) o; = 1, then

i=1

m m
H(,y, Z%‘Pi) > Z%‘H(t, Y, Pi),
i=1 i=1

forall (¢, y) € [0, T] x IR.

Our main result is given by
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Theorem 1. Under the hypotheses (A)—(C), the formula (4) determines a viscosity
solution of problem (2)—(3):

t
u(t,x) =inf {y e R: sulg‘((p,X) - 8", p) — /H(r, v, p)dz) <0},
PER?
0

(t,x) € Q.
As an immediate consequence of Corollary 1 and Theorem 1, we have

Corollary 2. Let(B)—(C) hold, and let g be continuous and satisfy the growth condition
(6). In addition, suppose that g is either strictly quasiconvex or convex. Then formula
(4) determines a viscosity solution of (2)—(3).

Example. Consider the following Cauchy problem:

3 1
a_l;t_(1+t)_u|Dx”|=0v (t,x) € Q, )

u(0, x) = |x], x e R". (8)

Evidently, alt the assumptions of Corollary 2 are fulfilled. Hence, problem (7)—(8) has
the viscosity solution given by the Hopf-type formula (4) as follows, for (¢, x) € €2,

u(t, x) =y,
t
where yp > 0 is the unique solution of the equation y — f(l + )y 7dr — |x| =0.
0

The proof of Theorem 1 can be found in [14].
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