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Let P, = Fa[x1, ..., xx] be the polynomial algebra on k generators xj, ..., xi, each of
dimension 1. Here, F, denotes the field of two elements. Let the general linear group
GL; = GL(k, F;) and the mod 2 Steenrod algebra .4 act on Py in the usual way.

The Dickson algebra of k variables, Dy, is the algebra of invariants

Dy :=Fy[x1,..., xk]GL" .

As the action of A and that of GL; on P, commute with each other, Dy is an algebra
over A. We are interested in the Lannes—Zarati homomorphism

o : Ext T (Fy, Fp) — (F, ® D)},

which is compatible with the Hurewicz one
H : 75(8%) = m.(Q0S%) = Hi(Q0S%),
(see [9, 10, p.46]). Here and throughout the paper, the coefficient ring for homology and

cohomology is always F,. The definition of ¢ will be recalled later.
The classical conjecture on spherical classes reads as follows.

Conjecture 1. (Conjecture on Spherical Classes) There are no spherical classes in
Q080 except the elements of Hopf invariant one and those of Kervaire invariant one.

(See [4, 16, 17] for a discussion.)

The Hopf invariant one and the Kervaire invariant one elements are respectively
represented by certain permanent cycles in Exti{* (F2, Fy) and Extii* (F», F»), on which
@1 and ¢; are non-zero (see [1, 3, 10].)

Conjecture 1 is a consequence of the following:
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Conjecture 2. ¢ = 0 in any positive stem i for k > 2.

(See [6-8] for a discussion.)
To state our main result, we need to summarize Singer’s invariant-theoretic description
of the Lambda algebra [14]. According to Dickson [5], one has

Dy =F[0kk—1,.--, Qrol,

where Qy; denotes the Dickson invariant of dimension Pl Singer sets I'y =
Dk[Q,Z(l)], the localization of Dy given by inverting Q¢ o, and defines I'}} to be a certain
“not too large” submodule of T'x. He also equips I'" = @'}’ with a differential
d : Ty — TI'{_, and a coproduct. Then he shows that the differential coalgebra I'"*
is dual to the Lambda algebra of [2]. Thus, Hi(['"") = Tor;c“(Fz, F,).

The main result of this paper is the following theorem, which has been conjectured in
our paper [7, Conjecture 5.3].

Theorem 1. The inclusion Dy C T} is a chain-level representation of the Lannes—
Zarati dual homomorphism

o;  (F2 § Dy); — TOf/ka (F2, Fy).

An immediate consequence of this theorem is the equivalence between Conjecture 2
and the following:

Conjecture 3. Ifg € D}, then [q] = 0 in Torg*(F2, F2) for k > 2.

This has been established for £ = 3 in Theorem 4.8 in [7], while Conjecture 2 has
been proved for k = 3 in Corollary 3.5 in [6]. From the viewpoint of this conjecture,
it seems that Singer’s model of the dual of the Lambda algebra, I'"*, is somehow more
natural than the Lambda algebra itself.

Now, we recall the definition of ¢} after [10].

Let P; = Fy[x] with |x| = 1. Let Pc F,[x, x~1] be the submodule spanned by all
powers x' with i > —1. The canonical 4-action on P; is extended to an .4-action on
Fo[x, x~!]. Then P is an A-submodule of F>[x, x1]. One has a short-exact sequence
of .A-modules

0>P>P5 s 'F,—>o0,

where ¢ is the inclusion and 7 is given by m(x!) = 0ifi £ —1 and 7(x ') = 1. Let ¢;
be the corresponding element in Exth(E —1F,, Py).

Definition 1. [15)
() ex=e1® - ® e € Ext(T7FF,, Py).

k times
() ex(M)=¢, QM € Ext’;(E—kM, P, ® M), for M a left A-module. Here, M also
means the identity map of M.

Following [10], the destabilization of M is defined by DM = M/EM, where
EM := Span{Sq'x|i > degx,x € M). They show that the functor associating M
to DM is a right exact functor. Then they define Dy, to be the kth left derived functor of
D. That means Dy (M) = Hp(DF,(M)), where F.(M) is an A-free (or A-projective)
resolution of M.
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The cap-product with e; (M) gives rise to the homomorphism
ex(M) : Dy(E7¥M) — Do(Pe ® M) = P, ® M
ee(M)(z) =ex(M)Nz.

Theorem 2. [10] Let D C Py be the Dickson algebra of k variables. Then oy =
e (ZF2) : Dy (T1Fy) — Dy is an isomorphism of internal degree 0.

This theorem will explicitly be formulated in Proposition 2 below.
By definition of the functor D, one has a natural homomorphism : D(M ) — F; ® M.

Then it induces a homomorphism iy, : F2§Dk(M) — Tor (Fy, M), 1§[Z] > [1<§>Z].

The following definition uses this homomorphism for M = X !~*F, together with the
suspension ¥ and the desuspension X 1.

Definition 2. [10]
of =27l %ak_l)ﬁ :F, ® Dy — Torg‘(Fz, T4y .

Remark. In Theorem 1, we also denote by ¢ the composite of the above ¢; with the
suspension isomorphism >k Tor,fi (F,, }:_sz) =0 Tor;c‘}k +i(Fz, Fy).

We now prepare some materials for proving Theorem 1.

Let T}, be the Sylow 2-subgroup of G L consisting of all upper triangular k x k-matrices
with 1 on the main diagonal. The T;-invariant ring, My = PkT", is called the Mii algebra.
In [12], Mui shows that P* = Fa[V1, ..., Vi, where

Vi = H (axr + - -+ A—axior + x).
A.jGFz

Then the Dickson invariant, Qy ;, can inductively be defined by Q. ; = Q,%_l,i_l + Vi -
Qk-1,i, where, by convention, Qx x = 1 and Qx; = 0fori < 0. In [14], Singer sets
=V, vy =Vi/ V1 Vi1 (k= 2), so that

k=2 k—
\V = v% v% o vp—1 (k> 2).
As Dy C Fa[vy, ..., v], every element g € Dk has a unique expansion
7= Z vl o
where ji, ..., jir are non-negative. We associate with g € Dy the following element:

Definition 3.
g= ) S ® @S¢ @3 Fle B (3" Ry,

where B, (M) denotes the bar resolution of M over A, for M a left A-module.

Let 3, : Du(S'""Fy) = Hy(DB.(Z'"*F2)) —> Hi_i(EB.(S!"*F3)) be the
connecting isomorphism associated to the short exact sequence

0 — EB.(Z'7*F,) > B.(S'7*F,) = DB.(Z'*F,) - 0.
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Proposition 1. Ifq € Dy, then § is a cycle in EBy_1(X'%F,)). Furthermore,

0«[1 ® g1 = [q].

The next proposition deals with the isomorphism o treated in Theorem 2. It is actually
an exposition of the Adem relations.

Proposition 2. Ifg € Dy, then
arlg]l = Zgq.

Theorem 1 is proved by means of the above two propositions. To this end, using
Singer’s isomorphism I';' = A}, we need an explicit homotopy equivalence between
the dual of the Lambda algebra and the bar resolution B, (F3). This is given by Priddy
[13] as follows:

AZ — Bi(F>)
M) > 10857 @ @S¢t @ 1.
The canonical .A-action on Dy is extended to an .A-actionon I" +. This action commutes

with 9 (see [14]), so it determines an .A-action on Ker 9, the submodule of all cycles
in I';’. We also prove

Theorem 3. ¢} factors through ¥ @ Ker 0 as shown in the commutative diagram:
A

F> ® Dy —> Tor; (F2, F)
A

PN\ /" pr
Fr, ® Keroy ,
A

where i is induced by the inclusion Dy C Ket 8, and P is an epimorphism induced by
the canonical projection pr : Kerdy — Hp (") = Tor,“c“(Fz, F).

In [7], we have stated the following conjecture: D,'c" C AT -Kerd fork > 2.
QObviously, this is stronger than Conjectures 2 and 3 and equivalent to the following:

Conjecture 4. The homomorphism i:F §> D> F, %Ker Ok, induced by the inclusion

i : Dy — Kerdy, is trivial for k > 2.
Based on the above discussion, we believe that the problem of determining
F, ? Ker 9 is something of interest.

The results of this note will be published in detail elsewhere.
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