Vietnam Journal of MATHEMATICS © Springer-Verlag 1998

Short Communication

Spherical Classes and the Homology of the Steenrod Algebra*

Nguyên Hưu Việt Hưng

Department of Mathematics, National University of Hanoi 334 Nguyen Trai Street, Hanoi, Vietnam

Received July 4, 1998

Let $P_k = \mathbf{F}_2[x_1, \dots, x_k]$ be the polynomial algebra on k generators x_1, \dots, x_k , each of dimension 1. Here, \mathbf{F}_2 denotes the field of two elements. Let the general linear group $GL_k = GL(k, \mathbf{F}_2)$ and the mod 2 Steenrod algebra \mathcal{A} act on P_k in the usual way.

The Dickson algebra of k variables, D_k , is the algebra of invariants

$$D_k := \mathbf{F}_2[x_1, \ldots, x_k]^{GL_k}.$$

As the action of A and that of GL_k on P_k commute with each other, D_k is an algebra over A. We are interested in the Lannes–Zarati homomorphism

$$\varphi_k : \operatorname{Ext}_{\mathcal{A}}^{k,k+i}(\mathbf{F}_2,\mathbf{F}_2) \to (\mathbf{F}_2 \underset{\mathcal{A}}{\otimes} D_k)_i^*,$$

which is compatible with the Hurewicz one

$$H: \pi_*^s(S^0) \cong \pi_*(Q_0S^0) \to H_*(Q_0S^0)$$

(see [9, 10, p. 46]). Here and throughout the paper, the coefficient ring for homology and cohomology is always F_2 . The definition of φ_k will be recalled later.

The classical conjecture on spherical classes reads as follows.

Conjecture 1. (Conjecture on Spherical Classes) There are no spherical classes in Q_0S^0 except the elements of Hopf invariant one and those of Kervaire invariant one.

(See [4, 16, 17] for a discussion.)

The Hopf invariant one and the Kervaire invariant one elements are respectively represented by certain permanent cycles in $\operatorname{Ext}_{\mathcal{A}}^{1,*}(\mathbf{F}_2,\mathbf{F}_2)$ and $\operatorname{Ext}_{\mathcal{A}}^{2,*}(\mathbf{F}_2,\mathbf{F}_2)$, on which φ_1 and φ_2 are non-zero (see [1, 3, 10].)

Conjecture 1 is a consequence of the following:

^{*}This research was supported in part by the National Research Program, No. 1.4.2.

Conjecture 2. $\varphi_k = 0$ in any positive stem i for k > 2.

(See [6-8] for a discussion.)

To state our main result, we need to summarize Singer's invariant-theoretic description of the Lambda algebra [14]. According to Dickson [5], one has

$$D_k \cong \mathbf{F}_2[Q_{k,k-1},\ldots,Q_{k,0}],$$

where $Q_{k,i}$ denotes the Dickson invariant of dimension $2^k - 2^i$. Singer sets $\Gamma_k = D_k[Q_{k,0}^{-1}]$, the localization of D_k given by inverting $Q_{k,0}$, and defines Γ_k^{\wedge} to be a certain "not too large" submodule of Γ_k . He also equips $\Gamma^{\wedge} = \bigoplus_k \Gamma_k^{\wedge}$ with a differential $\partial: \Gamma_k^{\wedge} \to \Gamma_{k-1}^{\wedge}$ and a coproduct. Then he shows that the differential coalgebra Γ^{\wedge} is dual to the Lambda algebra of [2]. Thus, $H_k(\Gamma^{\wedge}) \cong \operatorname{Tor}_k^A(\mathbf{F}_2, \mathbf{F}_2)$.

The main result of this paper is the following theorem, which has been conjectured in our paper [7, Conjecture 5.3].

Theorem 1. The inclusion $D_k \subset \Gamma_k^{\wedge}$ is a chain-level representation of the Lannes–Zarati dual homomorphism

$$\varphi_k^*: (\mathbf{F}_2 \underset{\mathcal{A}}{\otimes} D_k)_i \to \mathrm{Tor}_{k,k+i}^{\mathcal{A}}(\mathbf{F}_2, \mathbf{F}_2).$$

An immediate consequence of this theorem is the equivalence between Conjecture 2 and the following:

Conjecture 3. If
$$q \in D_k^+$$
, then $[q] = 0$ in $\operatorname{Tor}_k^{\mathcal{A}}(\mathbf{F}_2, \mathbf{F}_2)$ for $k > 2$.

This has been established for k=3 in Theorem 4.8 in [7], while Conjecture 2 has been proved for k=3 in Corollary 3.5 in [6]. From the viewpoint of this conjecture, it seems that Singer's model of the dual of the Lambda algebra, Γ^{\wedge} , is somehow more natural than the Lambda algebra itself.

Now, we recall the definition of φ_k^* after [10].

Let $P_1 = \mathbf{F}_2[x]$ with |x| = 1. Let $\hat{P} \subset \mathbf{F}_2[x, x^{-1}]$ be the submodule spanned by all powers x^i with $i \ge -1$. The canonical \mathcal{A} -action on P_1 is extended to an \mathcal{A} -action on $\mathbf{F}_2[x, x^{-1}]$. Then \hat{P} is an \mathcal{A} -submodule of $\mathbf{F}_2[x, x^{-1}]$. One has a short-exact sequence of \mathcal{A} -modules

$$0 \to P_1 \stackrel{\iota}{\to} \hat{P} \stackrel{\pi}{\to} \Sigma^{-1} \mathbf{F}_2 \to 0$$
,

where ι is the inclusion and π is given by $\pi(x^i) = 0$ if $i \neq -1$ and $\pi(x^{-1}) = 1$. Let e_1 be the corresponding element in $\operatorname{Ext}^1_{\mathcal{A}}(\Sigma^{-1}\mathbf{F}_2, P_1)$.

Definition 1. [15]

(i)
$$e_k = \underbrace{e_1 \otimes \cdots \otimes e_1}_{k \text{ times}} \in \operatorname{Ext}_{\mathcal{A}}^k(\Sigma^{-k}\mathbf{F}_2, P_k).$$

(ii) $e_k(M) = e_k \otimes M \in \operatorname{Ext}_{\mathcal{A}}^k(\Sigma^{-k}M, P_k \otimes M)$, for M a left A-module. Here, M also means the identity map of M.

Following [10], the destabilization of M is defined by $\mathcal{D}M = M/EM$, where $EM := \operatorname{Span}\{Sq^ix|i > \deg x, x \in M\}$. They show that the functor associating M to $\mathcal{D}M$ is a right exact functor. Then they define \mathcal{D}_k to be the kth left derived functor of \mathcal{D} . That means $\mathcal{D}_k(M) = H_k(\mathcal{D}F_*(M))$, where $F_*(M)$ is an \mathcal{A} -free (or \mathcal{A} -projective) resolution of M.

The cap-product with $e_k(M)$ gives rise to the homomorphism

$$e_k(M): \mathcal{D}_k(\Sigma^{-k}M) \to \mathcal{D}_0(P_k \otimes M) \equiv P_k \otimes M$$

 $e_k(M)(z) = e_k(M) \cap z.$

Theorem 2. [10] Let $D_k \subset P_k$ be the Dickson algebra of k variables. Then $\alpha_k := e_k(\Sigma F_2) : \mathcal{D}_k(\Sigma^{1-k}F_2) \to \Sigma D_k$ is an isomorphism of internal degree 0.

This theorem will explicitly be formulated in Proposition 2 below.

By definition of the functor \mathcal{D} , one has a natural homomorphism : $\mathcal{D}(M) \to \mathbf{F}_2 \otimes M$.

Then it induces a homomorphism $i_k : \mathbf{F}_2 \underset{\mathcal{A}}{\otimes} \mathcal{D}_k(M) \to \mathrm{Tor}_k^{\mathcal{A}}(\mathbf{F}_2, M), 1 \underset{\mathcal{A}}{\otimes} [Z] \mapsto [1 \underset{\mathcal{A}}{\otimes} Z].$

The following definition uses this homomorphism for $M = \Sigma^{1-k} \mathbf{F}_2$ together with the suspension Σ and the desuspension Σ^{-1} .

Definition 2. [10]

$$\varphi_k^* := \Sigma^{-1} i_k (1 \underset{A}{\otimes} \alpha_k^{-1}) \Sigma : \mathbf{F}_2 \underset{A}{\otimes} D_k \to \mathrm{Tor}_k^{\mathcal{A}} (\mathbf{F}_2, \, \Sigma^{-k} \mathbf{F}_2) \,.$$

Remark. In Theorem 1, we also denote by φ_k^* the composite of the above φ_k^* with the suspension isomorphism $\Sigma^k : \operatorname{Tor}_{k,i}^{\mathcal{A}}(\mathbf{F}_2, \Sigma^{-k}\mathbf{F}_2) \stackrel{\cong}{\longrightarrow} \operatorname{Tor}_{k,k+i}^{\mathcal{A}}(\mathbf{F}_2, \mathbf{F}_2)$.

We now prepare some materials for proving Theorem 1.

Let T_k be the Sylow 2-subgroup of GL_k consisting of all upper triangular $k \times k$ -matrices with 1 on the main diagonal. The T_k -invariant ring, $M_k = P_k^{T_k}$, is called the Mùi algebra. In [12], Mùi shows that $P_k^{T_k} = \mathbb{F}_2[V_1, \ldots, V_k]$, where

$$V_i = \prod_{\lambda_j \in \mathbb{F}_2} (\lambda_1 x_1 + \dots + \lambda_{i-1} x_{i-1} + x_i).$$

Then the Dickson invariant, $Q_{k,i}$, can inductively be defined by $Q_{k,i} = Q_{k-1,i-1}^2 + V_k \cdot Q_{k-1,i}$, where, by convention, $Q_{k,k} = 1$ and $Q_{k,i} = 0$ for i < 0. In [14], Singer sets $v_1 = V_1$, $v_k = V_k/V_1 \cdots V_{k-1}$ $(k \ge 2)$, so that

$$V_k = v_1^{2^{k-2}} v_2^{2^{k-3}} \cdots v_{k-1} v_k \quad (k \ge 2).$$

As $D_k \subset \mathbb{F}_2[v_1, \dots, v_k]$, every element $q \in D_k$ has a unique expansion

$$q = \sum_{(j_1,\ldots,j_k)} v_1^{j_1} \cdots v_k^{j_k},$$

where j_1, \ldots, j_k are non-negative. We associate with $q \in D_k$ the following element:

Definition 3.

$$\tilde{q} = \sum_{(j_1,\ldots,j_k)} Sq^{j_1+1} \otimes \cdots \otimes Sq^{j_k+1} \otimes \Sigma^{1-k} 1 \in B_{k-1}(\Sigma^{1-k}\mathbf{F}_2),$$

where $B_*(M)$ denotes the bar resolution of M over A, for M a left A-module.

Let $\partial_*: \mathcal{D}_k(\Sigma^{1-k}\mathbf{F}_2) := H_k(\mathcal{D}B_*(\Sigma^{1-k}\mathbf{F}_2)) \xrightarrow{\cong} H_{k-1}(EB_*(\Sigma^{1-k}\mathbf{F}_2))$ be the connecting isomorphism associated to the short exact sequence

$$0 \to EB_*(\Sigma^{1-k}\mathbf{F}_2) \to B_*(\Sigma^{1-k}\mathbf{F}_2) \to \mathcal{D}B_*(\Sigma^{1-k}\mathbf{F}_2) \to 0.$$

Proposition 1. If $q \in D_k$, then \tilde{q} is a cycle in $EB_{k-1}(\Sigma^{1-k}\mathbf{F}_2)$). Furthermore,

$$\partial_*[1\otimes \tilde{q}]=[\tilde{q}].$$

The next proposition deals with the isomorphism α_k treated in Theorem 2. It is actually an exposition of the Adem relations.

Proposition 2. If $q \in D_k$, then

$$\alpha_k[\tilde{q}] = \Sigma q$$
.

Theorem 1 is proved by means of the above two propositions. To this end, using Singer's isomorphism $\Gamma_k^{\wedge} \cong \Lambda_k^*$, we need an explicit homotopy equivalence between the dual of the Lambda algebra and the bar resolution $B_*(\mathbf{F}_2)$. This is given by Priddy [13] as follows:

$$egin{aligned} \Lambda_k^* & o B_k(\mathbb{F}_2) \ (\lambda_{j_1} \cdots \lambda_{j_k})^* & \mapsto 1 \otimes Sq^{j_1+1} \otimes \cdots \otimes Sq^{j_k+1} \otimes 1. \end{aligned}$$

The canonical A-action on D_k is extended to an A-action on Γ_k^{\wedge} . This action commutes with ∂_k (see [14]), so it determines an A-action on Ker ∂_k , the submodule of all cycles in Γ_k^{\wedge} . We also prove

Theorem 3. φ_k^* factors through $\mathbf{F}_2 \otimes \operatorname{Ker} \partial_k$ as shown in the commutative diagram:

$$\mathbf{F}_2 \underset{\mathcal{A}}{\otimes} D_k \xrightarrow{\varphi_k^*} \mathrm{Tor}_k^{\mathcal{A}}(\mathbf{F}_2, \mathbf{F}_2)$$
 $\bar{i} \searrow \nearrow \bar{p}\bar{r}$
 $\mathbf{F}_2 \underset{\mathcal{A}}{\otimes} \mathrm{Ker}\,\partial_k$,

where \bar{i} is induced by the inclusion $D_k \subset \operatorname{Ker} \partial_k$ and \overline{pr} is an epimorphism induced by the canonical projection $pr : \operatorname{Ker} \partial_k \to H_k(\Gamma^{\wedge}) \cong \operatorname{Tor}_k^{\mathcal{A}}(\mathbb{F}_2, \mathbb{F}_2)$.

In [7], we have stated the following conjecture: $D_k^+ \subset \mathcal{A}^+ \cdot \operatorname{Ker} \partial_k$ for k > 2. Obviously, this is stronger than Conjectures 2 and 3 and equivalent to the following:

Conjecture 4. The homomorphism $\bar{i}: \mathbb{F}_2 \underset{A}{\otimes} D_k \to \mathbb{F}_2 \underset{A}{\otimes} \operatorname{Ker} \partial_k$, induced by the inclusion $i: D_k \to \operatorname{Ker} \partial_k$, is trivial for k > 2.

Based on the above discussion, we believe that the problem of determining $\mathbf{F}_2 \otimes \operatorname{Ker} \partial_k$ is something of interest.

The results of this note will be published in detail elsewhere.

References

 J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. Math. 72 (1960) 20–104.

- A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector, and J. W. Schlesinger, The mod p lower central series and the Adams spectral sequence, Topology 5 (1966) 331–342.
- 3. W. Browder, The Kervaire invariant of a framed manifold and its generalization, *Ann. Math.* **90** (1969) 157–186.
- 4. E. B. Curtis, The Dyer–Lashof algebra and the Lambda algebra, *Illinois Jour. Math.* **18** (1975) 231–246.
- 5. L. E. Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, *Trans. Amer. Math. Soc.* 12 (1911) 75–98.
- N. H. V. Hung, Spherical classes and the algebraic transfer, Trans. Amer. Math. Soc. 349 (1997) 3893–3910.
- 7. N. H. V. Hung, The weak conjecture on spherical classes, Math. Zeit. (to appear).
- N. H. V. Hurng and F. P. Peterson, Spherical classes and the Dickson algebra, Math. Proc. Camb. Phil. Soc. 124 (1998) 253–264.
- J. Lannes and S. Zarati, Invariants de Hopf d'ordre supérieur et suite spectrale d'Adams, C. R. Acad. Sci. 296 (1983) 695–698.
- J. Lannes and S. Zarati, Sur les foncteurs dérivés de la déstabilisation, Math. Zeit. 194 (1987) 25–59.
- 11. I. Madsen, On the action of the Dyer–Lashof algebra in $H_*(G)$, Pacific Jour. Math. 60 (1975) 235–275.
- 12. H. Mùi, Modular invariant theory and cohomology algebras of symmetric groups, *Jour. Fac. Sci. Univ. Tokyo* **22** (1975) 310–369.
- 13. S. B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970) 39-60.
- W. M. Singer, Invariant theory and the lambda algebra, Trans. Amer. Math. Soc. 280 (1983) 673–693.
- 15. W. M. Singer, The transfer in homological algebra, Math. Zeit. 202 (1989) 493-523.
- V. Snaith and J. Tornehave, On π^S_{*}(BO) and the Arf invariant of framed manifolds, Amer. Math. Soc. Contemporary Math. 12 (1982) 299–313.
- 17. R. J. Wellington, The unstable Adams spectral sequence of free iterated loop spaces, *Memoirs Amer. Math. Soc.* **258** (1982).