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1. Introduction

Let X1, X1, ... be independent random variables with the common distribution function
F. For any but fixed n € N, denote by F), the empirical distribution of (X1, ... , X;,) and
by X, X>,, ... independent identically distributed (i.i.d.) random variables with the
distribution F},. By N,, we mean a positive integer-valued random variable independent
of X1,..., X, such that

N, —p 00 asn — 00, (1)

where — , denotes the convergence in probability.

We study the following bootstrap procedure with a random sample size for estimating
P(/n(X,—u) < x), where X, =n"! Zl 1 Xi, 4 = E(X1) is the expectation of X.
Then the bootstrap estimate is P*(/n Xy - Xn) < x) and the bootstrap estimate with
random sample size N, will be P*(/n(X;N" B %%, < x)or P*(JN_n(X* —-X,) <
x) Where P* denotes the conditional law P( |X1, o Xn), X* =p1y7" 1 X

ni’
=n"! Zl X3 and X3 = N,;! Zl = X Itis known that bootstrap is (weakly)
cons1stent if and only 1f X belongs to the domam of attraction of the normal law (see

[1-5]) and then if

Ny
— —p lasn — o0,
n

P*(Jn(XN — M. ¥,) < x) can be used as an estimate of P(y/n(X, — u) < x) (see
[7, 8, 10, 11]). In this case, when EX} < oo and (1) holds, P*(v/N,(X}, — X») < x)
can be used as given in [10].
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The purpose of this paper is to study the rate of convergence of the bootstrap estimates
with a random sample size in that case.

2. Results

n =
In what follows, set s,% =n! (X — X,)? and denote by 02 = D(X) the variance
i=1
of Xi.Let]...lco= sup |...|
—00<X <OC

Our main results are presented in the next two theorems, namely, in Theorem 1, we first
study the uniform convergence to zero of the discrepancy between the actual distribution
of «/n (X, — 1) and the approximation /n (Y:N" - %}’Yn) of it (Part A) and then we
study the uniform and non-uniform convergence to zero of the discrepancy between
the actual distribution of 4(7,, — u) and the approximation 3\@ (YZN” — %7,,) of it
(Part B).

Theorem 1. Let X1, X», ... bei.i.d. variables with distribution F. Let N, be a positive
integer valued random variable independent of X1, X, .... Let F,, be the empirical
distribution of Xy,...,X,. Given X1,...,Xn, let X}, X},,... be conditionally
independent, with common distribution F,.

A) IfEX‘lt < 00, EN, =n+ O(/nloglogn) and DN, = O(nloglogn), then
- ~ N, -
I P(v/n(Xn — ) < x) — P* (ﬁ (X,’:N" — T"Xn) < x) oo
= O(n~t(loglogn)?) a.s.

B) IfE|X1|®> < o0, EN, = n+ O(/n) and DN, = O(n), then

”P (ﬁ()-(n —n) < x) — p* <—@ (X':N” — -I&)_(n> < x>
o s n

n

=0 1) as.

‘OO

and

(1+ Ix?)

P (ﬁ(in —u) < x) - pP* (ﬁ(X;N" - %)—(n) < x)

o Sn

=0 (n_%) a.s.




Asymptotic Accuracy of the Bootstrap with Random Sample 353

Further, the main result on the same convergence problem for the approximation
VNL(X I X,) or @ (Y;,” — X, is the following theorem.

_1
Theorem 2. Let N,,, X1, X2, ... be as in Theorem 1 and E(N,, *) = O(n_%).
(A) IfEX‘l‘ < 00, then

lim supn? (loglog )™ * | P(VA(X — 1) < %) = P*(/Na(XYy, — Xn) < Dlloo

n—>o0

= D((X1 — w)?)
Rt R

= 202, /e

(B) IfE|X1]® < 00, then

”P (-‘;E(Xn —p) < x) - P* (‘[N_"(X;ﬂvn - Xp) < x) =0 7) as.
and
aA+1x»|P (4()_(,, — ) < x) — P* (‘/5—1—_”()2}‘\,” - X, < x) = O(n_%)a.s.

For the proof of our theorems we will need some facts and easily derived results.
Lemma 1. For every ¢ > 0, we have

Ix¢(cxHoo = —=
c

2mwe
and 3
1 2+/2
1+ Hxo(cx < + 5
”( |x| ) ¢( )”00 cm 6204ﬁ

_2
2

where ¢ (x) = \/%e
Lemma 2. [6, Lemma 6.3.2, p. 186] For every ¢ > 0, we have
|®(x) — ®(cx)| < min{l, |x|¢(min(1, c)x)|1 — cl},

where ®(x) is the standard normal distribution function.
By the proof of Theorem 1 in [9], we have

Lemma 3. With the notation and assumptions as in the previous section, we have: if
EX} < oo, then

lim supn (loglogn) 2|52 — 02| = V2D((X1 — )?) a.s.

n—0o0

o (2)-2(®)-(5-7)=()

and

= O(n 'loglogn) a.s.

’OO
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Lemma 4. [6, Lemma 6.3.1, p. 186] Let X1, X2, ... be i.i.d. random variables with
EX; =0.IfE|X3| < 0o, then

(14 xP)|P(Sy < x0+/n) — @(x)]| <

f

where S, =3 0 Xi, p=E|X1 — w|? and c is absolute constant, ¢ < 30.5378.
Also, in the proofs, we shall use the following versions of Theorems 6.2.1 and 6.3.1
in [6].

Theorem A. Let N, X1, X»,... be independent random variables, where N takes
values among the natural numbers and X1, X2, ... are identically distributed with
EX; =0.IfE|X;| < 0o, then for all a € (0, 1), we have

x Kp N
Py <x)— 0| —— Se———— a)Ej— -1},
|rsv<a-o(75)|, < 575w+ 20" g

where K is the universal appearing in the Berry-Esséen bound, Sy = ) X; and
i=1

01(@ = max { kg, o iz}

Theorem B. With N, X1, Xy, ... as in Theorem A, ifE|Xf| < o0 and EN? < oo,
then foralla € (0,1), b € (1, 00),

X p
P -o Ki(a,
v <=0 ()| < ke o

N _1’ (DN)%}

Ky(a,b,3)max { E | — , ———
+K>(a ) { EN EN)E

where
Ki(a,3) = c+0.7655a73, ¢ < 30.5378,

{w(b,3) v(3)} b*u(3) 1
max

a+.a' 1—a 2 Y

K>(a,b,3) = - 1)2 1—g

w(b,3) = (1 + |x])xe (—"ﬁ) ”

v(3) = (1+|x|3)min{ d’()]H < 1.2936,

2
w@) = |1+ [Py mi [ [ T(P)}” < 25958,
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Remark. If Ny, is a Poisson variable with EN,, = n, and EX} < oo, then

1 = = N
lim supn%(loglogn)_i IP (Vn (Xn — 1) < x) = P*(/n(X;M — TnX") <t)llloo

n—>o0

ie D((Xy — w)?)
= 7 as
202, /e

However, if E|X i’| < 00, we only have

P (4 (X — ) < x) — P* (ﬁ()_(;N" = %X’n) < x)

y 1
lim supn?

n—0c Sn

_’j"( )+Q1<a)[as Vae @ 1)
(om0

2
\/;Kz(a, b,3) as. Yae (0,1), Vb e (1,00),

‘OO

lim sup n a
n—>00

e Y.
lim supn HP (ﬁ(xn — ) < .\‘) - P"'( X =X = ,\') H
\ (" '

n—-o00 Sn

(> a
2K
< —Tp a.s.
a-
and
_ JN. - -
lim sup n? (1 P (ﬂ(xn o) = x) _ p* (—l(Xj‘v - X, < x)
n—>00 ag Sn "
2
<22 as.
(o2
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