
Vetnam Journal of Mathematics 26:.4 (1998) 337-349
Vte trnl a rnn J[,o,ur rrrm aLlL

olf

Mt A\lf lHt lE iVt AVlf ll tC ss

o Springer-Verlag 1998

Multipoint Boundary-value Problems
for Tlansferable Differential-algebraic

Equations II - Quasilinear Case*

Pham Ky Anh

D ep artme nt of M at hemati c s
College of Natural Science of Vietnam National University

334 Nguyen Trai, Hanoi, Vietnam

Received September 10, 1997
Revised April 9, 1998

Abstract. This paper deals with the solvability and approximate solution of multipoint boundary-
value problems (BVPs) for quasilinear differential-algebraic equations (DAEs). If the correspond-
ing linear multipoint BVPs for transferable DAEs are regular, then under certain hypotheses, the
Schauder fixed point principle ensures the solvability of multipoint BVPs for quasilinear DAEs.
Otherwise, in irregular cases, a Tikhonov iterative regularization process can be implemented for
finding approximate solutions of quasilinear multipoint BVPs.

1.. Introduction

This paper is the second part of our work on multipoint b oundary value problems (BVPs)

for dffirential-algebraic equations (DAEs) [1]. As already mentioned in [1], the paper

is motivated by a series of works by Miirz and her colleagues on two - point BVPs for

DAEs (see 16,7lfor an extensive bibliography) and Sweet's results on multipoint BVPs

for ordinary differential equations (ODEs for short) [8]. It is also closely related to our

early works on nonlinear BVPs [2-5].
Consider the following multipoint BVP for quasilinear differential algebraic system:

L x ' . :

f x  : :

( l  .1 )

( r .2)

A ( t ) x ' +  B ( t ) x :  f  ( x , t ) ,
7 T

I  aagy*11 l :  y ,
Jtn

t  €  J : : l t o , T l ,
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where A, B e C(J, Rnxz) are continuous matrix-valued functions, n e BV (J, Rnxu )
isamatrix-valuedfunctionof boundedvariations, ), € IR', and / : IR'x IRl -+ IR,
is a nonlinear vector-valued function. By the Riesz theorem, the left-hand side of (1.2)
represents a general form of linear bounded operators from C :: C(J,IRn) to IRn.
In what follows, we assume the pair of matrices {A, B} satisfies the transferability
conditions l2l, i.e.,

(1) thereexistsacontinuouslydifferentiableprojector-function Q e C1 lJ,IRnxn), i.e.,
Q2 (t) : Q (r), such that Im QG) : KerA (r) for all t e J ;

(2) the matrix G:: A* BQis non-singularforallt e J.

Let P :: I - Q,then P e Cl 1J,IRn) is also a projector-function and p e : e p : 0.
SinceAx'  :  APxt  :  A(Px) ' -  APlx,  weshouldaskforsolut ionsof  (1.1)belonging
to the Banach space:

X  : :  { x  e  C  :  Px  e  C l1 l ,  n ' ; 1

with the norm llxl l :: l lr l l- * l l(Px)' l l-. In what follows, we use the expression Axl
as an abbreviation of A{(P x)t - P'x}.

Denote Q,G): :  QG)G-| ( t )B(r ) ;  P,( / )  i :  I  -  Q,G)and, ler lbethefundamental
solution matrix of the ordinary initial valued problem (IVP for short):

Y l  -  (Pt  P,  -  PG-t  B)Y;  Y( td :  I .

It has been shown [2] that x (t) i: P,(t)Y (t)P (rs) is the fundamental solution matrix.
whose columns belong to ,t, satisfying the relations:

A ( t )X /  +  B ( t )X ( t ) :O ;  P ( td (X ( ro )  -  l )  : 0 .

Moreover, KerX(l) : KerA(/o) for every r e "I.
In the remainder of this section, we recall the main results of [1]. Denote by D the

so-calledshootingmatrix/,r dq(t)X(t)andbyR6the(closed)subspace ${ aaglxlt;:
x e C| of IRn. Let )) :: C x IR' be a Banach space with the norm

l l  ( l  )  l l  ' :  rqr- + rvr
| \ v  /  i l  

' ' "

and J/o :: C x Ro a closed subspace of /. Here, lyl denotes an arbitrary norm of
lz € IR"; however, for definiteness, we shall use the mtx-nofin.

Theorem l,l, The operator
^  ( t x \
L, ,: 

\r"; )
acting from X into ))o is continuously invertible if and only if the shooting matrix D
satisfies conditions:

KerD : KerA(/o);lm D :Ro. (1 .3 )

Now, let us turn to the irregular case where at least one of the conditions (1.3)
does not hold. Since KerA(/o) C KerD, for the sake of simplicity, we suppose
dimKerA(rs) : u < dimKerD : p. Let {ul},y:l be an orthonormal basis of KerA(r6),
i.e., wlr wl : 6ij, where, in what follows, the superscript Z denotes transposition. An
extension of {,rl}l:1 to an orthonormal basis of KerD will be denoteA as {ul}l:r. Define
a column matrix

<D (r) :: (qu+t(t), . . . , qr(t)) ,
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where g;(t) :: X(t)w? and put M :: fi Or 1t7O61at.
It is easy to see [] that M is nonsingular and .{ can be decomposed into a direct sum

of closed subspaces X : KerL O KerW, where

(Wx)(t) :: Q(t)M-r [' o'1r1r61a,
Jtu

and
KerL : {x : Q(t)a : a e IRP-'}.

lenote an orthonormal basis of KerDz and Wg :: (wora1, . . ., ror),

< (p - v) and p x n matrices, respectively.

Theorem 1.2. The following assertions hold:
(l) The opefator

-  / L x \
L. ,:  

\ ; . ;  )
mapping X into ! is a bounded linear NoZther operato4 and

lndL : dimKerl - codimlm L = -v.

(2) The linear multipoint BVP:

A(t)x' * B(t)x = q(t) i  [ '  or1,1r1r1 : r,
Jh

with the given data q € C, 1u € R' is solvable if and only if

/ r r
* ( r -  |  a a 6 r 6 ) : 0 ,

\ J r . /

where
f t

F(t ) : :  x@ I  y- l (s) .p(s) [ I+  p/ (s) ]c- l (s)q(s)ds + ee)G-L(Oqe).
Jt"

(3) A general solution of ( 1.a) can be represented as:

x(t) : x(t)@o l- woa) + F(/) -f Q(t)a, (1.5)

'where
^ . /  7 r  \

70:  D- '  ( . ,  -  
/ .  

dr t ( t )F( t )  
)  

,

6 is the restriction of D into ImDr , a is an arbitrary vector ofIRP-' , and

. p T
x :  -M- '  I  O ' ( s ) {X (s )70  *  F (s ) }ds .

Jt"

2. Multipoint BVPs for QuasiHnear DAEs with Linear Regular Parts

Consider multipoint BVP (1.1)-(1.2) with a transferable pair of matrices {A, B}. The
triplet {A, B, r..l is said to be regular if the regularity condition (1.3) holds.

(1.4)
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Theorem 2.1. Suppose T e Roandthe triplet {A,B,r.,} is regulax Furthe4 assutrc
the nonlinearfunction -f : IR' x IRI -+ IR" satisfies thefollowing conditions:

l f  ( x , t ) l < c r l x l P  * c z ;  V x  e  I R n , Y t  e  J ,

where p,, cl, c2are constants and} < p, < l.

(2 .1 )

l f ( x , t ) - f ( x , t ) l < a ( r , l h - t z D ;  Y t 1 , t 2 e J ;  Y x  € I R n ,  l x l  < r ,  ( Z . Z )

where a(r,s) : IR+ x [0, Z - /o] -+ IR+ is continuous in s for everyfixedr eR* ::
[0, oo) and o(r,0) : 0.

Finally, suppose the derivative f j(x, t) is a continuous matrix-function; moreove4

KerA(s) CKerfj(x, r); Vx e IR'; Yt,s € J. (2.3)

Then there exists qt least one solution of ( I .1 ) and ( 1.2).

Proof. sincethetriplet{A,8,4}isregular,fromTheoreml.l,itfollowsthat.cpossesses
a bounded inverse. Thus, problem (1.1)-(1.2) is reduced to a fixed-point equation:

x :  L- IF(x)

where F : C -> C x IRn is definedby

/  f  rxo l .  tF ( x ) : : ( ' * t ' ' " ) ,  t e r .

Using the growth condition (2.1), we have

(2.4)

Yx  e  X ,Y t  e  J  l f  ( x ( t ) , t ) l  <  c t l x ( t ) l p  * cz  <  c l l l x l l { *  c2 ,

therefore,

l lL - r f (x) l l . l lL- t  l lm-ax( l / (x( r ) ,  / ) l  +  ly l )  <  l lL- t  l l (c r l lx l lp  + cz* ly l )

or equivalently,

l lL - t  r@) l l l l lx l l  <  l l .4-1 l l {cr  l lx l lp-1 *  (cz - r  ly l ) l lx l l -1} .

Since the right-hand side of the last inequality tends to zero as llxll -+ oo, this
inequality implies L-r F maps a closed ball B, :- {x e X : llxll < r} with a
sufficiently large radius r > 0 into itself. Further, to show the relative compactness
of the set L-L ?(8,), it sufflces to prove that the set,A/ of all functions t r-> f (x(t), t)
for x € B, is relatively compact in C("r, IRn).

First, we observe that the uniform boundedness of ,A/ is immediately implied from the
following estimates:

Yx e 8, ,  Yt  < J,  l f  (x( t ) , t ) l  <  c t lx( t ) lp  *  cz < ctp *  cz.
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Further, as f j(x, /) is continuous on the compact A :: {(x, t) : lxl < r; t e "/}, there
exists a constant C, > 0 such that

l f l ( * , t ) l  <  C, ;  Y(x,  r )  e  A.  (2 .5)

Using (2.3) and (2.5) and taking into account the fact that ll(Px)/ll- < llxll < r for
x € 8,. we find

Yx  e  8 , ,  Y t , 7  e  J ,  l f  ( x ( t ) , t )  -  f  ( xG) ,7 ) l  = l f  ( x ( t ) , t )  -  f  ( x (7 ) , t ) l

] - l f  (x(7) , t )  -  f  (xO, i ) l  s  I  [ '  f : f *Ol*  s(x( r )  -  xO), t ) (x( t )  -  x( i ) )ds l
.  

J 0

* o(r , l r  -  i l )  :  |  [ '  f ] (x( i )  *  s(x(r)  -  . r( t )) ,  t )(p(t)x(t)  -  p(7)x(t))dsl
J O

* a(r, v -71) < c, lP(t)x(t) - P(7)x(7)l
*  a( r , l t  -71)  < rC, l t  -71+ a(r ,V -7 ' ' ) .

Thus, the equicontinuity of ,A/ is proved. Applying the well-known Schauder fixed point
theorem, we come to the conclusion of Theorem2.L l

Remark. Conditions (2.1)-(2.3) are trivially fulfilled for a special case, where f (x, t) :
q( t ) ,  ( t  e  " I ) ,  and q e C(J,N).

mple. We consider problem (1.1)-(1.2) with the following data:

t l  - t  1 2 \  / l  - ( 1 + r )  t 2 + 2 t \
a : ( o  r  - t | ; a : ( o  - r  t - r  | ; / : : [ 0 , t l  e . 6 )

\ 0  0  0 /  \ 0  0  r  /

f  ( x , t ) :  ( a ( )Q l  + I )P /z  +s t7 ) ,qz7 ) ,qs ( t ) ) r ,  ( 23 )

where p e (0, 1); a, qi e C(/, IR) and a(t) > 0 for every t e "I. The boundary
condition is siven as

It has been verified [1] that the pair {4, B} is transferable and the triplet {A, B, 4} is
regular. It is easy to see that conditions (2.1) afi (2.2) are fulfilled. Further, since

/  ua( t )x t0 *  x lY/z- '  o  o\
f ( x . r )  : [  0  0  0 1 ,

\  0  0  0 /

it follows that for any x € IR3 and t. s e J

fo' 
*,{ia, : yi (i : I, 2).

,,: (i : l),'
Obviously,

(2.8)

Kerf l * . t \ : I  
SPan{(o '  l '  o)z ;  (o '  o '  1)z}  u  #o

[ R '  x l : 0 .
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Therefore, KerA(s) : Span{(0, r, 1)r} C Ker f l(x, t),Yx e R.3, Vr, s e ,I and condi-
tion (2.3) holds.

By Theorem 2.1, problem (1.1) and (1.2) with the data given by (2.6)-(2.8) is solvable
for any yt, yz e R.

3. Multipoint BVPs for Quasilinear DAEs with Linear Irregular Parts

In this section, we deal with problem (1.1)-(1.2), where the triplet {A, B, a} is irregular.
The reader is referred to previous sections for some notations and results.

Suppose the function f (x, t) and its derivative fl@, t) are continuous on the set
A : :  { ( r , r ) :  r  e  I R n ;  l x l  <  R ;  t  e  J } . L e t H :  C  - - >  C b e a n o p e r a t o r o f
Hammerstein-Nemyski type defined on the set Bs :: {x e C : llx ll- < R} by

H(x)( t ) : :  X( / )  [ '  y - t19r1s)(1*  r '1s; ;c- r1s;  f  (x(s) ,s)ds
Jn

+ QQ)G- | ( t ) f  (x ( t ) , t ) ;  t  e  J .

Forx € Bs,wadenoteby E(x) thematrix

T T I f I
E(x)  :  -w I  dn@lxO I  y- I (s) r (s) [  r  +  p '  G) lG-  ' (s)4(x(s) ,  s)o(s)  ds

Jtn I Jr^

+eG)G-t ( t)  f j (x(t) ,r)o(/)  l .
I

Further, assume the initial approximation xo(r) is given and the z-approximation
xm(t) (m > 0) has been found. We decompose x^(t) into two components x^(t) -
u*( t )*Q(t )a* ,wheteu^ eKerW,am eIRp-v.  Suppose xm € N and,(x*( t ) , r )  e  A
for every t e J,we define the following quantities:

E* i: E(x^); N^ i: nlrZ- I a^I;

'&. :: * (, - [' a,11qn.14\ .
\ J / o /

Here, for the sake of brevity, we denote the n x n and (p - v) x (p - u) identity matrices
by the same symbol 1. They will be easily recognized from the context.

Then the first component of the next approximation can be determined from the
equation

Lu .+ r  :  ( { : \  ( 3 . r )
\ /^  /

From Theorem 1.2, it follows that problem (3.1) is solvable and its general solution
can be represented as

f * ( t ) : :  f  (x - ( t ) ; t ) ;  F^ ( t ) : :  H(x* ) ( t ) ;
P / r T \

yn ; :  y -  Lr i  (v -  I  dr t | )F-e) l  wi ;
= \ J h /

um+rt) :  X(t)@o.* I  Wsa.) *  F^(t)
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where 

ro,- : D-' (r* - ['
\ Jrn

and
" 7 7

0)m: -M-t  I  O'  ( r ) tX( t )To,^  *  FmQ)ldt .
Jto

Following [5], we find the second component by an iterative regularization process:

343

arlQ)r*())

amtr : a^ - N;r {nlrv* + q^(a* - o(o))} (3.2)

where a(0) € IRp-' is a specially chosen element and {cvr}f are regularization
parameters.

Finally, the (m * l)-approximation can be computed as

xm+r( t )  :  u*+r( t )  *  Q(t )a^a1 (m > 0) .  (3.3)

It should be emphasized that process (3.1)-(3.3) is always well defined, however,
its convergence can be established only in particular cases. For example, we have the
following result:

Theorem 3.1. Assume problem (1.1)-(1.2) possesses a solution x* e X such that

l l r * l l *  < Rand f l@*Q), t ) :0 foreveryt  e J .  Fur ther , le t

l f l (x,t) - f l@,t) l  < l lx -Tl Y(x, t),  @, t) e L.

Then process (3.1)-(3.3) with a specially chosen sequence {a^l and

n T

aQ\-M-r  I  or ls ;x*1s;ds
J,o

will be locally cotNergent.

Proof. Lete > 0beafixedsmallnumber, suchthate < /(R- llr.l l*).Definetwosets
' 'As : :  {(x, t)  :  t  e J;  lx -  x*(t) l  < r}  and B : :  {x e X :  l lx-x* l l*  < r} ,  where
r ;: e/1. Obviously, Ao C A andB C 60; moreover, foran arbitraryfixedx e B and
for any t e J, (x(t), r) e Ao.

Observing that for every (x,/) e As, lfl(x,t)l : lfj(x,t) - fj(x*(t),/)l <
llx - x*(t)l < r, we come to the inequality:

l f j (x. t) l  < e, V(x, r)  e A6. (3.4)

Further, if x,T e B,thenforany t e J ands € [0,1], (t(/) *s(x(r) -7(t)), /) e A6.
By virtue of (3.4) and the relation lf (x(t),t) - f @(t), r)l : I Ii tlO<rl * s(r(r) -
7 (t)), t) (rc (t) - T (t)) d s I we obtain

l f  (x( t ) , t )  -  f  @(t ) ,  r ) l  <  e l r ( r )  -7( t )1 . (3.s)
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Suppose the m-approximation xm € B has been found (xs e 6 given). The next
(m j 7)-approximation will be constructed by formulae (3.1)-(3.3). Since x-, x* e B,
relation (3.5) implies

l l f *  -  f * l l *  <  e l lx^  -x* l l -  <  e l lx .  - r * l l , (3.6)

where /* (r) :: f (x* (t) , t).

Further, let F*(t) :: H(x*)(t)i V* :: W(y - II antlf.fL)) and x*(t) -

u*(t) + Q(t)a*, where u* e KerW, a* € IRP-'. From Theorem 1.2, it is easy to
conclude that Vx : 0.

Using (3.1) and taking into account the fact that Lu* : ( f 
. 

), *. nna
\ v  l

l lu*+t - u*l l  < l1(l l f* - . f* l l-  + ly- - yl). (3.7)

Here,H denotes a bound of llZ'111, where f ir th" restriction of f, into KerW. It is
not difficult to express ?l in terms of the initial data {A, B , q} and their related quantities
X(t), Y (t), P (t), QQ), G(t), D,. . . . Before continuing our calculation, we note that

lw l  <  lw lz  <  l rp l  Vu  e  IRP,

l E r  |  .  p l E l vE €  Rpx(p-uJ ,

lM l  <  lM lz  vM 6  P (z -v )x (P -v ) ,

(3.8)
(3.e)

(3.10)

where, as usual, l.l and l.lz stand for the max-norm and Euclidean norm of vectors or
matrices, respectively.

Using (3.8)  andnot ingthat  lu ;12:  |  ( i  -  1 , . . . ,  p) ,  weobta in

P  f T  - 7 7
l y * - y l : l D r !  |  d n G ) 6 ^ e ) - F * ( r ) ) u r ; l <  l * i  I  d q ( F * - F . ) l

i = l  
J t o  J r o

drt(F* - r.)l

=D@f 1,"' orrr^ - r\lz

= i I 1,,' orrr^ - F\lz 3 p | 1,"'
s (pJV vf n) llr^ - F* ll- ,

where vrf 4 is the total variation of 4 on ,I.
On the other hand, it follows from (3.5) that

lF.( t )  -  F*(r) l  :  lxAl  I  y-r  rg + r ' \c-r7y@*G),s) -  / (x*(s) ,  s) lds
J,o

+  Q G - t l f  @ * ( t ) , t )  -  f  ( x * ( t ) , ) l l

7 T
<  s { l l x l l _  L  l r - ' p ( r  +  p l )G-11ds  +  l lQG- r  l l _ } l l x .  _  r * l l ,

v L o
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therefore,

l y *  -  y l  <  ec l l l x ^  -  x * l l ,  ( 3 .11 )

where c1 i: c2 (pJ p vfi n) and

c2:: l lXl l* [ '  y-t rg * p,16-1ds + l l  eG-rl l*.
Jto

Combining (3.6) and (3.11) together with (3.7), we obtain

l lu^+t - u*l l  < e?l(I + c)l lxm - r*l l .  G.tZ)

Now, let us deal with the second component ap..1. First, note that

vm:vm-  v*  :  *  [ '  d r t ( t ) lH(x* ) ( t )  -  H(x ; ( t )1 .  (3 .13)
Jto

It is easy to prove that H : Bs + c is continuously differentiable and for any
x € B g ,  h e C ,

(H:@)h)(D : x(t) [ '  v-t6yr1syfr + r '1s;]c-r1s )f l@(s), s)h(s) ds
Jh (3.14)

+ Qe)G-t ( t )  f : (x(t) , t )h(t) ,  t  e J.

Furtheq from (3.14), it follows that

l ln i@)l l  S c2e, Yx e B.

Finally, it is obvious that

l lH!(x) -  H|(r) l l  < c2l l lx -  i l l * ,  Yx, i  e Bs. (3.15)

Using the Lipschitz continuity of f l(x, /) on A, we have

f (x*(t) , t )  -  f  (x^(t) , t ) :  f ! (x-( t) , t )(x*(t)  -  *^(t))  + g*(t) ,  yt  e J,

where

f l f  
' l

c*G) :  |  |  f : (x - ( t )  * r (x* ( t )  -  xmt ) ) , t )  -  f : (xmT) ,  r )  l ( - r * ( r )  -  x . ( t ) )d t
J O L  I

and

ls^(t)l < llx-(t) - x* (t)12 
fo' 

, a, = f,l*. 
- 

"- l l1.

Taking into account the expression of f (x* (t), t) - f (x-(t), r) and the estimation of
g-(r), we find

H(x*)(t) - H(x-)(t)
f t

:  x(t) /  r-t  1syr1sy[r + r '1s;]c-l1s) f l@^G),s)(r*(s) - x-(s)) ds' 
Jt"

+ QG)G-| () f j(x-(t), t)(x* (t) - x*(t)) -t E*G),



f I

E^Q):: r@ 
J,^r-11s;r1s;II  

+ P'(s)]G-t(r)g.(r) ds + QQ)G-'(t)s^(t),

and

l ls .  l l -  < czl ls*11* .  
| t1**-  "-111.

(3.16)

Using the decomposition x^ - x* : trm u* + O (t) (a- - a*), we can rewrite (3. 13)
AS

v,, - v* : w [' dntHtr@)(t)(r* - x^) *E^']
Jt"

t f T: * I J,^ 
daHi@)Q)Q(t)(a* - a*)

+ [ '  aan'-1x*)(t)(u* -u^)t  [ '  orr^I.
Jto Jto t

Putting Km : w I{ ann',6^)Q)@* - u^) andi* = w 
{[ 

ane^and observing that

T r t \ r l !
w I dqH',(x;a(a* - a^):  lw I  anf,>lx@ I r- t1s;r1s;1/ + p/(s) l

Jto [ ./ro L Jn

c-t (s) f l@^(s), s)o(s) d s * ee)G-t 1t1 y!1x^1t1,/)o (r)l | {o. - o-)
I J

= -E^(a* -  a^) ,

we can reduce (3.2) to the form:

am+r :  a^ -  N;r1z[ IE-(a^ -  a*)  + K-  *E^7* am(a^ -  o(0)) ] .  (3.17)

Recalling the hypothesis of Theorem 3. I that a(o) = a* , we can rewrite (3 . 17) as

ctm*r - a* : -Nit Ef,,K* - N;r EIg-.
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(3.18)

By virtue of (3.9), we have El"t = plE*l < ca€, where ca i: pc2lW I ll O ll- vf, ry.
On the other hand using (3.10), we obtain

lN;r l  :  I@LE^ + a*I)-r l  = J p -  v l(Elg^ + a^I)-r  p

= Jp - r^"4 . l -
L > 0  L + A m

-  4E - v.a-r.

From (3.16), it follows that

t \*t s (twtv; rt) |E*|* = ( lwt rf l  r) v* - x*12,

W;'nl,E*l 11 caea^r ll** - x*112,
therefore,
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where 
c.tczr,o  :7  J  p  -nwtv l  n .

Observing that fj(x*(t), /) : 0 for every t e J,hence, (n!9.11a* - u^))(t): 0 and
taking into account inequality (3.15), we have

7 T

lK- l :  lw J,^ 
an{nl@)u) -  H:(x.)( t ) } (u* -  u*) l

< (c2llw I vl, n) ll*^ - x* llllu^ - u" ll.

Thus,

lN ; t  E IK^  =9 !9W^ -  x* l l l l u *  -  u* l l ,
dry

where c5 :: czczlJ p - vlwl vI4. From (3.18) and the last estimate, it follows that

la -+r  -  o* l  . 'o t  l lx*  -  x* l l2  + f l6^  -  x* l l l lu*  -  u* l l .
am am

Now, let e > 0 be sufficiently small, such that

e 'lminl",i;E-"' #^l'
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(3 .1e)

(3.20)

where 4 € (0, 1) is an arbitrary fixed number and c6 :: llOll- + ll(PO)'ll-.Recalling
that O(/)  :  (g,+tQ), .  . .  ,  qoQD with q;Q) :  X1r)r ! ,  we f ind (PO)/ :  (PX)tWs.
Let

E : :  {*  e X :  l lu -  u* l l  < r /2;  la -  a.* l  < r(2cd-r}

a n d B l  ' :  { J .  X : l l x  - x * l l  <  r } . _
Clearly, B c & C B.Let xs e B be an arbitrary initial approximation. We choose

the regularization parameters am - rq-.The following relations will be proved by
induction:

x^ e. 81 (m > 0);

l lu*  -  u* l l  <  rq^ 12;

lo^  -  o* l  < rq^ (2c61- '  .

For m : 0, relations (3.21)-(3.23) automatically hold. Assume (3.21)-(3.23) arc
satisfied for k < m. From (3.I2), (3.20) and (3.22), it follows that llu*a1 - u*ll <
e?l(I -l c ) r q^ < r q^+ | 1 2. Further, using (3. 1 9) and taking into account (3.2 2) together
with the fact that

l lx-  -  x* l l  < l lu* -  u* l l  + c6la^ -  a* l  < rq^, (3.24)

we find

la^+r -  a*1 < 
cal6'q^)2 

+ 
tgrq^+ 

:  eka, * c5/2)rq^ .  ,e '*  (2cd-t .
r q ^ "  r q ^ '  2

F ina l l y ,  l l x^+r - - r * l l  <  l lu -+r -u* l l *c6 la*ar -a* l  .  rQ^* t  <  r , there fore ,
xm*r € 61. Thus, relations (3.21)-(3.23) hold for every m > 0. Since llx- - x* ll < rq^ ,
the local convergence ofprocess (3.1)-(3.3) is proved. r

(3.2r)

(3.22)

(3.23)
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Example. Weareconcemedwiththeproblem(1.1){1.2)withthesamepairofmatrices
tA, Bt as in (2.6) and a three-point boundary condition Drx(O) * Dzx(t) + \x(l) : O,
where

Let  f  (x , t ) :  (x1-  s inx1,  x ] ,4@" -  1))z . I t is  easy to showthat

(3.2s)

In this case, the triplet {A, B, ry} is irregular [1]. Clearly, x* (t) = 0 is an exact solution
of our problem. Further,

therefore, f!(x",t) : 0 for every / e J :: [0, 1]. Obviously, fj(x,l) satisfies the
Lipschitz condition in r on each domain A :: {(x, t) : lxl < R; t e .I}. Theorem
3.1 ensures the local convergence of process (3.1)-(3.3) with a(0) : 0 and an initial
approximation.r0(/) sufficiently close to 0.
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Corrigendum

The author has noticed some computational errors concerning matrices P G-l B , Y, X, D
onp. 355 in [1]. Fortunately, the conclusions onthe solvability of BVP (1), (2) withgiven
data (19), (20) or (19), (21) remain true. Further, the matrice D1 in three-point boundary
condition (22) on p. 357 in [1] should be changed as in Example 3.1 of the present
paper. The necessary and sufficient conditions for the solvability of the above-mentioned
three-point BVP should read:

se-'q2g)ds; y, *  qzQ) .

The author apologies to the reader for the errors.

vz : "iqz (L) ,t * " Io' :  * ( : )


