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Abstract. This paper deals with the solvability and approximate solution of multipoint boundary-
value problems (BVPs) for quasilinear differential-algebraic equations (DAEs). If the correspond-
ing linear multipoint BVPs for transferable DAEs are regular, then under certain hypotheses, the
Schauder fixed point principle ensures the solvability of multipoint BVPs for quasilinear DAEs.
Otherwise, in irregular cases, a Tikhonov iterative regularization process can be implemented for
finding approximate solutions of quasilinear multipoint BVPs.

1. Introduction

This paper is the second part of our work on multipoint boundary value problems (BVPs)
for differential-algebraic equations (DAEs) [1]. As already mentioned in [1], the paper
is motivated by a series of works by Mérz and her colleagues on two - point BVPs for
DAEs (see [6, 7] for an extensive bibliography) and Sweet’s results on multipoint BVPs
for ordinary differential equations (ODEs for short) [8]. It is also closely related to our
early works on nonlinear BVPs [2-5].

Consider the following multipoint BVP for quasilinear differential algebraic system:

Lx:=A@®x'+ BO)x = f(x.1), teJ:=[n Tl (1.1)

T
Fod='= / dn(t)x(®) = vy, (1.2)

fo
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where A, B € C(J,IR"*") are continuous matrix-valued functions, n € BV (J, IR**")
is a matrix-valued function of bounded variations, y € IR”, and f : IR” x IRl — IR”
is a nonlinear vector-valued function. By the Riesz theorem, the left-hand side of 1.2)
represents a general form of linear bounded operators from C := C(J,IR") to IR".
In what follows, we assume the pair of matrices {A, B} satisfies the transferability
conditions [2], i.e.,

(1) there exists a continuously differentiable projector-function @ € C'(J, IR**"), i.e.,
Q%(t) = Q(1), such that Im Q(¢) = KerA(¢) forallt € J;
(2) the matrix G := A + BQ is non-singular for all ¢ € J.

Let P := I—Q,then P € C!(J, IR")is alsoa projector-functionand PQ = QP =0.
Since Ax’ = APx’ = A(Px)' — AP’x, we should ask for solutions of (1.1) belonging
to the Banach space:

={xeC:PxecC\(JR"}
with the norm [|x || := ||x[loc + [[(PX) [loo- In what follows, we use the expression Ax’
as an abbreviation of A{(Px)’ — P’x}.

Denote Q;(t) := Q)G (t)B(t); P;(t) := I — Q4(¢) and let Y be the fundamental

solution matrix of the ordinary initial valued problem (IVP for short):

=(P'P,— PG™IB)Y; Y1) = I.

It has been shown [2] that X (¢) := P;(¢)Y (¢) P () is the fundamental solution matrix,
whose columns belong to X', satisfying the relations:

AOX +BOX (@) =0; P(to)(X(to) — 1) =

Moreover, KerX (t) = KerA(z) forevery t € J.

In the remainder of this section, we recall the main results of [1]. Denote by D the
so-called shooting matrix fz dn (1) X () and by Ry the (closed) subspace { ft dn®)x(t) :
x € C}of IR". Let Y := C x IR” be a Banach space with the norm

()

and )y := C x Ry a closed subspace of ). Here, |y| denotes an arbitrary norm of
v € IR”; however, for definiteness, we shall use the max-norm.

Lx
L7 o=3 (l"x)

acting from X into Yy is continuously invertible if and only if the shooting matrix D
satisfies conditions:

= lgllec + |7

Theorem 1.1. The operator

KerD = KerA(7); Im D = Ry. (1.3)

Now, let us turn to the irregular case where at least one of the conditions (1.3)
does not hold. Since KerA(fp) C KerD, for the sake of simplicity, we suppose
dimKerA(#p) = v < dimKerD = p. Let {w } 1 be an orthonormal basis of KerA (%),

ie., wOTu)O = 4;j, where, in what follows, the superscnpt T denotes transposition. An

extension of { wlo};’=1 to an orthonormal basis of KerD will be denoted as {w; oy i—1- Define
a column matrix

Q1) := (@o41(0), ..., 9p(1)),
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where ¢i(r) := X ()w{ and put M := f,| &7 (t)®(t)dt.
It is easy to see [1] that M is nonsingular and A’ can be decomposed into a direct sum
of closed subspaces X’ = Kerl @ KerW, where

i
Wx)(t) = d@)M™! [ &7 (s)x(s)ds
fy

and
KerL ={(x =®()a:a e RP7"}.
Further, {“’.".lf‘:! will denote an orthonormal basis of Ker DT and Wy := (W4qs o WY,

T
w
1
W= ( : ) are n X (p —v) and p x n matrices, respectively.

7
w),

Theorem 1.2. The following assertions hold:
(1) The operator
Lx
Lx = (Fx)

mapping X into ) is a bounded linear Noéther operator, and

IndL = dimKerL — codimIm £ = —v.
(2) The linear multipoint BVP:

T
AWX + BOX = 40): f Dy (1.4)
fo

with the given data q € C, y € IR" is solvable if and only if

T
W (y - dn(t)F(t)> —o,
fo
where

t
F@) = X() f YY) P()I + P'(5)IG L (s)g(s)ds + Q)G L (1)q(r).
)

(3) A general solution of (1.4) can be represented as:
x(t) = X(t)(Xo + Woa) + F(2) + ®(t)a, 1.5)

T
¥o=D! (y - / dn(t)F(t)) ,
fo

D is the restriction of D into ImD”, a is an arbitrary vector of IRP™", and

- where

1
a=-M" / @7 (s){X ()Xo + F(s)}ds.
fo

2. Multipoint BVPs for Quasilinear DAEs with Linear Regular Parts

Consider multipoint BVP (1.1)-(1.2) with a transferable pair of matrices {A, B}. The
triplet {A, B, n} is said to be regular if the regularity condition (1.3) holds.
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Theorem 2.1. Suppose y € Rg and the triplet (A, B, n} is regular. Further, assume
the nonlinear function f : R* x R! — IR" satisfies the Sfollowing conditions:

[fGx, D] Scilxl* + e Vx € R, Ve € J, 2.1
where |, c1, ¢; are constants and 0 < . < 1.

Ifx, 1) = fx, ) <o h—nl); Ya,bel; VxeRY, |x|<r, (22)
where w(r,s) : RT x [0, T — ty] = IRY is continuous in s for every fixedr € RT :=
[0, 00) and w(r, 0) = 0.

Finally, suppose the derivative f[(x, t) is a continuous matrix-function; moreover,
KerA(s) C Kerf,(x,); Vx e R";  Vi,5 € J. (2.3)

Then there exists at least one solution of (1.1) and (1.2).

Proof. Sincethe triplet {A, B, n}isregular, from Theorem 1.1, it follows that £ possesses
a bounded inverse. Thus, problem (1.1)—(1.2) is reduced to a fixed-point equation:

x =LV Fx) (2.4)

where F : C — C x IR" is defined by
Fx) = (f(";’)”)>, tel

Using the growth condition (2.1), we have
Vxe X, Ve el |f(x®), 0] < clx@®* + c2 < crllx]l” + e,
therefore,
IL7F N < L7 max (£ @, D] + 1y D < 1L e lx I + ez + Iy 1)
or equivalently,
L FEN/x < 1L el 17 + (ea + [y DI~

Since the right-hand side of the last inequality tends to zero as ||x|| — oo, this
inequality implies £~!'F maps a closed ball B, := {x € X : Ix[I < r} with a
sufficiently large radius » > O into itself. Further, to show the relative compactness
of the set L~ F(B3,), it suffices to prove that the set A of all functions ¢ — f(x(¢), 1)
for x € B, is relatively compact in C(J, IR™).

First, we observe that the uniform boundedness of A is immediately implied from the
following estimates:

VxeB, Vield, |[fx@®,D) 2clx@®F +c2 <eir +ca.
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Further, as f](x, t) is continuous on the compact A := {(x,?) : |x| < r;t € J}, there
exists a constant C, > 0 such that

| fi(x, )] < Cr; Y(x,8) € A. 2.5)

Using (2.3) and (2.5) and taking into account the fact that ||(Px)'||o < ||x|| < r for
x € B,, we find

Vx € B, Vt,t € J, |f(x®), 1) — fx@), D < [fx(0), 1) — f(x(®),1)]
1
+1f&x@®, 0 = f&@), D] < I/O [iG@) +s(x @) — x@), D(x(0) — x(@)ds|

1
+ o, |t -7 = | /0 FLx@® +s@x(@®) — x@), )P Ox() — POx(D)ds|
+o(r, |t —7]) < G [P(t)x(t) — P(®)x(?)]
+o(r, |t —1)) <rCrlt — 1|+ o(r, |t —1]).

Thus, the equi-continuity of AV is proved. Applying the well-known Schauder fixed point
theorem, we come to the conclusion of Theorem 2.1. [ |

Remark. Conditions (2.1)—(2.3) are trivially fulfilled for a special case, where f(x, t) =
q), (teJ),andq € C(J,IR").

Example. We consider problem (1.1)~(1.2) with the following data:

1 —t ¢ 1 —(141) 242t

A=(O 1 —t>;B=<O -1 t—l);]::[o,l] 2.6)
0 0 O 0 0 1

o, 0) = @@+ D2 4+ q10), ¢2(0), a3 @), 2.7

where u € (0,1); a,q; € C(J,IR) and a(?) > O for every ¢ € J. The boundary
condition is given as

1
/ i)y Wl 2y
0

100
dn=(o 1 O)dt. 2.8)

000

It has been verified [1] that the pair {A, B} is transferable and the triplet {4, B, } is
regular. It is easy to see that conditions (2.1) and (2.2) are fulfilled. Further, since

Obviously,

pa@®)xi(1+x)*271 0 0
fix, 1) = 0 00},
0 00

it follows that for any x € IR? and ¢, s € J

Span{(0, 1,0)"; (0,0, )T} x1 #0

Ker f/(x,t) =
erfy 1) {IR3 S
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Therefore, KerA(s) = Span{(0, s, I)T} C Kerf/(x, 1), Vx € IR3, V¢, s € J and condi-
tion (2.3) holds.

By Theorem 2.1, problem (1.1) and (1.2) with the data given by (2.6)—(2.8) is solvable
for any 1, y» € R.

3. Multipoint BVPs for Quasilinear DAEs with Linear Irregular Parts

In this section, we deal with problem (1.1)—(1.2), where the triplet {A, B, n} is irregular.
The reader is referred to previous sections for some notations and results.

Suppose the function f(x,¢) and its derivative f](x,?) are continuous on the set
A= {(x,t) : x € R"; |x]| < R; t € J}. Let H: C — C be an operator of
Hammerstein—Nemyski type defined on the set By := {x € C : | x]lco < R} by

H(x)() := X(t)/ YY) P$)T + P'(s)G™L(s) f (x(5), s)ds
fo
+0MOG O fx@,1); tel

For x € By, we denote by E(x) the matrix
% t
E(x) = —W/ dn(t)[X(t)/ YY) P + P/(S)]G_I(S)ﬂ(x(s),S)‘D(S)ds
i) fo

+0GH) fl(x (@), t)<b(r>}.

Further, assume the initial approximation xp(¢) is given and the m-approximation
Xm(t) (m > 0) has been found. We decompose x,,(f) into two components x,,(t) =
Um(t) + ®(t)an, where u,, € KerW, a,, € R?~". Suppose x,, € X and (x,,(¢), t) € A
for every ¢ € J, we define the following quantities:

Jm (@) == fOm@); 1); Fn(t) := HQm)(t);
Yin 1=y — iw? (y ~ /,OT dn(r)Fm(o) wi;
Ep, = E(xml)z;le = E'E, + a1
W, =W (y — /tTdn(t)Fm(t)> .

Here, for the sake of brevity, we denote the n x n and (p — v) x (p — v) identity matrices
by the same symbol 7. They will be easily recognized from the context.

Then the first component of the next approximation can be determined from the
equation

Lotmyr = (){:) . (3.1)

From Theorem 1.2, it follows that problem (3.1) is solvable and its general solution
can be represented as

um1() = X (@) Xo.m + Wown) + Fn(t)
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where

T
X0,m = 5_1 (Vm _/ dn(t)Fm(t))

4}
and
T
om =—M"" [ " ()X ()Xom + Fn(t)}dt.
o

Following [5], we find the second component by an iterative regularization process:

nt1 = am = Ny {Epy WU + ot (@ — a©)) (3.2)
where a©® e IRP™ is a specially chosen element and {®,}7° are regularization

parameters.
Finally, the (m + 1)-approximation can be computed as

Xm1() = Umt1(t) + P(Dam1 (m > 0). (3.3)
It should be emphasized that process (3.1)—(3.3) is always well defined, however,
its convergence can be established only in particular cases. For example, we have the

following result:

Theorem 3.1. Assume problem (1.1)—(1.2) possesses a solution x* € X such that
Ix*lc < R and f(x*(t),t) = O for every t € J. Further, let

|fr (e, ) = [ @ O < lx =X V(x,0), (X, 1) € A.

Then process (3.1)—(3.3) with a specially chosen sequence (o} and
T
a® = M1 / T (s)x* (s)ds
fo

will be locally convergent.

Proof. Lete > 0be afixed small number, such that ¢ < [(R — ||x*||x0). Define two sets
Agi={(x,t):teJ; |x —x*@)| <r}and B :={x € X : |x — x*||oo < 1}, Where
r := ¢/1. Obviously, Ag C A and B C Bp; moreover, for an arbitrary fixed x € B and
forany ¢ € J, (x(¢), 1) € Ao.

Observing that for every (x,7) € Ao, |filx,1)| = |fi(x,t) — fi(x* (@), 1) <
llx — x*(¢)| < &, we come to the inequality:

|fiGx, )] <& V(x,1) € Ao. (3.4)
Further, if x,x € B, thenforany ¢ € J and 5 € [0, 1], (x(z) + s(x(t) — X()), 1) € Ao.
By virtue of (3.4) and the relation | f (x(¢),t) — f(x(¢),t)| = |f01 FLEE®) + s(x(t) —
x(2)), t)(x(t) — x(¢))ds| we obtain

[fx@), 1) — f&@), D] < elx@) —X(@)|. (3.5
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Suppose the m-approximation x,, € B has been found (xo € B given). The next
(m 4+ 1)-approximation will be constructed by formulae (3.1)—(3.3). Since x,,, x* € B,
relation (3.5) implies

Ifm = [ lloo < &llxm — x"lloo < &llm — x, (3.6)

where f*(¢) := f(x*(¢), 1).

Further, let F*(t) := H(x*)();, ¥* = W(y — ftOT dn(®)F*(t)) and x*(t) =
u*(t) + ®(t)a*, where u* € KerW, a* € IRP". From Theorem 1.2, it is easy to
conclude that ¥* = 0.

*
Using (3.1) and taking into account the fact that Lu* = < j; >, we find
lmi1 —u™| < HU fin = oo + [¥m = ¥ D). (3.7
Here, H denotes a bound of ||Z~! ||, where Z is the restriction of £ into KerW. It is

not difficult to express H in terms of the initial data {A, B, 7} and their related quantities
X(0), Y (), P(r), Q(2), G(), D, .. .. Before continuing our calculation, we note that

lw| < |wlz < /plw] Yw € IR?, (3.8)
|ET| < p|E| VE € RP*P=Y), (3.9)
M| < /p—vIM|, YM e RP=I)x(-v) (3.10)

where, as usual, |.| and |.|; stand for the max-norm and Euclidean norm of vectors or
matrices, respectively.
Using (3.8) and noting that {w;|; =1 ({ =1, ..., p), we obtain

p T r T
=Y w f e Fn(®) = @] < 3 lw,-Tf dn(Fy — F*)|
i=1 fo I=q fo
p
<3l / dn(F - F9),

p T
Z I/ dn(Fn — F9)|, < pJﬁ|/ dn(Fn — F*)|
AL fo Iy

< (PP VE ) 1 Fm = F*lloo

IA

where V{ 7 is the total variation of 7 on J.
On the other hand, it follows from (3.5) that

|En () — F*®) = | X () f Y7'P(+ PG [f (im(s), 8) — F(x*(s), 5)1ds
+ 0G7 ' [f (), 1) — F(x* (), )]

T
< s{uxnoo/ [Y'PU + PG ds + QG oo} llxm — x*|I,

[4)
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therefore,
[V — v| < ectllxm — x™ |, (3.11)

where ¢1 := ¢ (p/P Vi 1) and
T
¢ = 1 Xlloo / Y P + PG lds + 110G oo
o

Combining (3.6) and (3.11) together with (3.7), we obtain
lum+1 —u*|l < eH( + c1)llxm — x*|. (3.12)

Now, let us deal with the second component a,, 1. First, note that

T
v, =V, — ¥ = W/ dn(®)[H(x*)(t) — H(xm)(®)]. (3.13)
fo

It is easy to prove that H : Byp — C is continuously differentiable and for any
X € Bo, heC,

t .
(H,()h) () = X(2) / YY) PE)[I + P/ ()]G (s) £l (x(s), s)h(s) ds
4]

(3.14)
+0MOGT M) f(x®), Dh(), 1€,
Further, from (3.14), it follows that
|H,(x)|| < c2¢6, Vx € B.
Finally, it is obvious that
I1H (x) — Hy®)|| < coll|x — Xlloo, Vx,% € By. (3.15)

Using the Lipschitz continuity of f}(x, ) on A, we have

FOEH@, 1) = fOm(@®), 1) = f{xn @), ) (x*) = xm (@) + gm(t), Vi€ J,

where

1
gm(t) = /O [f; Gom(®) + TO* () — X (1)), 1) — £ (xm(2), r)}(x*(t) — X (1)) dt
and )
lgm ()] < 1|xm (2) —x*(t)|2[0 tdt < éuxm — x*%.

Taking into account the expression of f(x*(¢),?) — f(x,,(¢), t) and the estimation of
gm(2), we find

H(x*)(t) — H(xm)()
=X(r) / YU PG + P/ ()]G7L() fL(im(s), $)(x*(5) — xm(s)) ds
to
+ WG fLGm (@), DE* () — X (1)) + (),
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where
&) = X (1) / t Y @) PO[I + P'()]GT (5)gm(s) ds + Q)G (1) gm(®),
and ) B -
18mlloo < c2llgmlloo < = Ulxm — x*)1%. (3.16)

Using the decomposition x,, —x* = u,, —u* + ®(t)(ay — a*), we can rewrite (3.13)
as

T
Uy — W = W [ AnLH. Gem) O = Xm) + B
]
T
=w| [ 00 @ —an)
tp

T T
+ [ anH @ —um) + [ dng,).

) fo

Putting Ky = W [,/ dnH] (xn)(t)(u* = up) and g = W [T dng,, and observing that

T T t
W/ dnH, (xm)®(@* — ap) = [W/ dﬂ(t)[X(t)/ Y~ )P (s)I + P'(s)]
t fo

fo
G~ () £ (em(s), $)®(s) ds + Q)G ™ () f (¥ @), t)cb(z)} }(a* — am)
=—E,(a* —ap),
we can reduce (3.2) to the form:
am+1 = am — Ny UEL[Em(am — @) + K + 8l + am(@m —a®)}.  (3.17)
Recalling the hypothesis of Theorem 3.1 that @@ = a*, we can rewrite (3.17) as
amy1 —a* = —N,'ELK, — N 'ELg,. (3.18)

By virtue of (3.9), we have |EL| < p|En| < c3¢, where ¢3 := pca|W|[|9]l0o vtT0 7.
On the other hand using (3.10), we obtain

IN | = (ELEn + am D)7 < /D —VI(ELE, + anD)™'),

1
< +/p—vmax
=vP vx_o)»+am
= p—v.a,gl.

From (3.16), it follows that
.~ T = ool T *(12
8l < (IW1V 1) I8mlloo < ( S1W1 VG 1) lltm — 712,

therefore,
—1 T~ -1 2
|Nm Emgml 5 C4£Otm ”xm -~ x*” s
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where
C2C3 l

S VP =VIW Vi

Observing that f](x*(¢), t) = O forevery t € J, hence, (H; x*)(w* — um))(t) = 0 and
taking into account inequality (3.15), we have

Cq =

T
|Km| = |W / dn{H, (xm)(t) — H,(x*) (@)} (u* — up)|
t
< (W] VE 0} 1xm — x* Nt — u*|l.

Thus,

1T Ccs€
IN, 'EL K| < ——lom — X"l — ")l
m

where ¢5 1= cpc3l/p — v|W| vg n. From (3.18) and the last estimate, it follows that

ca€ , . Cs€
lami1 —a*} < —lxm — x* " + == llxm — x| lum — u*|. (3.19)
Oy Om

Now, let £ > 0 be sufficiently small, such that

q . 1 1
£ < = min 3 . 3.20
2 [(C4+CS/2)C6 H(A +61)} G
where g € (0, 1) is an arbitrary fixed number and cg := || ®||oc + [|(PP)’ ||0o. Recalling
that () = (@v41(), ..., @p (1)) with ¢;(¢) = X(t)w?, we find (P®) = (PX)'W,.
Let

Bi={x e X:llu—u*ll <r/2; la—a*| <rQce)""}

and By :={x € X' : [x —x*| < r}.

Clearly, B C By C B. Let xp € B be an arbitrary initial approximation. We choose
the regularization parameters o, = rq™. The following relations will be proved by
induction:

Xm € By (m > 0); 3.21)
ttm — u*|| < rq™/2; (3.22)
|am —a*| < rg™2ce)~L. (3.23)

For m = 0, relations (3.21)—(3.23) automatically hold. Assume (3.21)-(3.23) are
satisfied for £ < m. From (3.12), (3.20) and (3.22), it follows that |lu, 1 — u*|| <
eH(1+c1)rq™ < rq™*+! /2. Further, using (3.19) and taking into account (3.22) together
with the fact that

Im = x*I| < llum — u*ll + colam —a*| < rqg", (3.24)

we find

£ m
g = (s +cs/Drg" < rg" 26 .

* C4€ my2
lamt1 —a™| < E;(rq ) St rq”
Finally, xmt+1 — x*|| < |ums1 — u*| + c6lami1 — a*| < rg™t! < r, therefore,
Xm41 € Bi. Thus, relations (3.21)—(3.23) hold for every m > 0. Since || x,, —x*| < rq™,
the local convergence of process (3.1)-(3.3) is proved. [ |
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Example. We are concerned with the problem (1.1)—(1.2) with the same pair of matrices
{A, B}asin (2.6) and a three-point boundary condition D1x(0) 4+ D>x ( %) +D3x(1) =0,

where
-1 0 O 0 0 O e 00
D1=<O —e 0),D2=(0JE0),D3=(000).
0O 0 O 0 0 1 001

Let f(x,?) = (x; — sinxy, x%, x3(e® — 1))T. It is easy to show that

—Dy r=

B 0 0<t<i

nt) = o beva (3.25)
Dy+D;y t=1.

In this case, the triplet {A, B, n}isirregular [1]. Clearly, x*(¢) = 0is an exact solution
of our problem. Further,

l1—cosx; O 0
fi@x, 1) = ( 0 2x72 0 ) ,
0 0 & —14 x3e™

therefore, f/(x*,t) = O for every t € J := [0, 1]. Obviously, f;(x,?) satisfies the
Lipschitz condition in x on each domain A := {(x,?) : |x| < R; ¢t € J}. Theorem
3.1 ensures the local convergence of process (3.1)-(3.3) with a©® = 0 and an initial
approximation xo(¢) sufficiently close to 0.
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Corrigendum

The author has noticed some computational errors concerning matrices PG~ 1By, x ,D
onp. 355 in [1]. Fortunately, the conclusions on the solvability of BVP (1), (2) with given
data (19), (20) or (19), (21) remain true. Further, the matrice D; in three-point boundary
condition (22) on p. 357 in [1] should be changed as in Example 3.1 of the present
paper. The necessary and sufficient conditions for the solvability of the above-mentioned
three-point BVP should read:

1

1 LR 1
V2 = e%q3 (E) /2+e/0 se” qa(s)ds; ys = g3 (‘2‘> +g3(1).

The author apologies to the reader for the errors.



